Privacy Preserving Bandits

Joint work with:

- Mohammad Malekzadeh (QMUL/Brave)
- Hamed Haddadi(ICL/Brave)
- Ben Livshits (ICL/Brave)

Dimitrios Athanasakis (Brave) • 02.03.2020 @dimmu

Why this is an important topic

Personalization is ubiquitous

- Many sites/apps offer personalized experiences
- Advertising (arguably the single biggest application of personalization) fuels the internet.

Personalization is often invasive

- Tracking all over the internet
- Why is my being a fan of my little pony relevant to the pricing of my plane tickets?
- Some info gets REALLY personal

Real-time Ad bidding

No such thing as a free ad

How website advertisement auctions work

Image source: The economist

Big tech faces competition and privacy concerns in Brussels

https://www.economist.com/briefi ng/2019/03/23/big-tech-faces-co mpetition-and-privacy-concerns-i n-brussels

Let's learn everything locally

Great for privacy

- No data ever leaves the user's device, therefore fewer things to worry from a privacy perspective.
- Eventually the local model will learn a very accurate model recommendation policy for the user.

Not so good for utility

- It may take a long time for the local model to learn a useful recommendation policy
- What happens when new personalization options appear

Online advertising and bandits

Learning

- What are the user's interests?
- Should we display an ad for product X to user Y?
- Have the interests of the user changed?

Earning

 Given what we know about the user how can we maximise his engagement?

State? What state?

• "brave://histograms"

• Example:

• Past 100 page visits? (%)

Tech.	Edu.	Fin.	News.	Etc.
0.25	0.15	0.05	0.20	0.35

C 🛛 😡 😨 Brave | brave://histograms

Histogram: Net.DNS.DnsTask.SuccessTime recorded 505 samples, mean = 29.8 (flags = 0x41)

0	•••	
4	0	$(1 = 0.2\%) \{0.0\%\}$
5	0	$(6 = 1.2\%) \{0.2\%\}$
6	0	$(8 = 1.6\%) \{1.4\%\}$
7	0	$(10 = 2.0\%)$ {3.0%}
8	0	$(14 = 2.8\%)$ {5.0%}
9	0	$(20 = 4.0\%)$ {7.7%}
10	0	$(17 = 3.4\%)$ {11.7%}
12	0	$(34 = 6.7\%)$ {15.0%}
14	0	$(35 = 6.9\%)$ {21.8%}
16	0	$(32 = 6.3\%)$ {28.7%}
18	0	$(50 = 9.9\%)$ {35.0%}
21	0	$(57 = 11.3\%)$ {45.0%
24	0	$(58 = 11.5\%)$ {56.2%
28	0	$(54 = 10.7\%)$ {67.7%
32	0	$(39 = 7.7\%)$ {78.4%}
37	0	$(18 = 3.6\%)$ {86.1%}
43	O	$(11 = 2.2\%)$ {89.7%}
50	0	$(5 = 1.0\%)$ {91.9%}
58	0	$(5 = 1.0\%)$ {92.9%}
67	0	$(7 = 1.4\%)$ {93.9%}
77	0	$(3 = 0.6\%) \{95.2\%\}$
89	0	$(0 = 0.0\%)$ {95.8%}
103	0	$(4 = 0.8\%) \{95.8\%\}$
119	0	$(4 = 0.8\%)$ {96.6%}
137	0	$(3 = 0.6\%) \{97.4\%\}$
158	0	$(3 = 0.6\%)$ {98.0%}
182	-0	$(1 = 0.2\%)$ {98.6%}
210	-0	$(2 = 0.4\%)$ {98.8\%}
242	0	$(3 = 0.6\%)$ {99.2%}
279		
495	-0	$(1 = 0.2\%) \{99.8\%\}$
571		

Research Question

- How we can we enable an agent to know its user **faster** and **better**?
 - Choose the best CBA
 - Warm start, instead of Cold!

Reward

LONG LIVE THE REVOLUTION. OUR NEXT MEETING WILL BE AT THE DOCKS AT MIDNIGHT ON JUNE 28 [78]

How can we use user data to initialize a warm model without violating a user's privacy?

Slight Problem

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

Can you recognize yourself by your own data?

VS

Vanilla model inversion

VS

Model inversion on noised data

Can we quantify privacy?

Differential Privacy:

Crowd-blending

Definition 1: Differentially-Private Data Sharing. Given $\epsilon, \delta \geq 0$, we say a data sharing mechanism \mathcal{M} satisfies (ϵ, δ) -differential privacy if for all pair of neighbor datasets of context vectors \mathbf{X}, \mathbf{X}' differing in only one context vector \mathbf{x} and for all $R \subset Range(\mathcal{M})$,

Definition 2: Crowd-Blending Encoding. Given $l \geq 1$, we say an encoding mechanism \mathcal{M} satisfies $(l, \bar{\epsilon} = 0)$ -crowd-blending privacy if for every context vector \mathbf{x} and for every context dataset $\mathbf{X} = \mathbf{X}' \cup \{\mathbf{x}\}$ we have

$$\{y \in \mathcal{M}(\mathbf{X}) : y = \mathcal{M}(\{\mathbf{x}\})\} \ge l \text{ or } \mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{X}')$$

$$Pr[\mathcal{M}(\mathbf{X}) \in R] \le e^{\epsilon} Pr[\mathcal{M}(\mathbf{X}') \in R] + \delta$$

(Dwork & Roth 2013)

(Gehrke et al 2011)

Our approach: ESA + LinUCB

State Space

- Histograms
 - D-dimensional vector of real numbers
 - Its sum is 1
 - It's rounded to F decimal points
- e.g. if we set **D=10**:
 - with **F=1** we have ~ **100K** possible states
 - with **F=2** it is **~ 4T**

Number of possible states is too large

 $\binom{10^F + D - 1}{D - 1}$ F 10 Stars into D Bars

Encoding

- e.g. **D=3**, **F=1**
- 66 possible states
- 6 cluster
 - Locality-sensitive hashing

• 3bits

This helps increasing the size of the crowd a user can blend in.

E.g. D=10 \rightarrow 10 bits : 4T \rightarrow 1K

Shuffling

- Anonymization: Remove Meta-data (eg.ip address) received from local agents
- **Shuffling:** gather tuples received from different sources into batches and shuffle their order.
- **Thresholding:** remove tuples whose encoded context vector frequency in the batch is less than a defined threshold.
- Yes, that means throwing away potentially useful data for the sake of privacy
- This happens in an sgx secure enclave

Model updates

- **Updates** are performed using standard LinUCB update rules on the data the shuffler releases.
- Agents can then upload their local models according to the globally updated weights

Privacy Model

- Crowd-Blending + Sampling ⇒ Differential Privacy
 - \circ iid random sampling with probability ${oldsymbol
 ho}$

$$\mathbf{E}_{\mathrm{DP}} = \ln\left(p \cdot \left(\frac{2-p}{1-p} e^{\mathbf{e}_{\mathrm{CB}}}\right) + (1-p)\right)$$

р

Evaluation

Algorithm

• Linear UCB

Context

• Histograms

Environment

Synthetic Datasets

- Linear and nonlinear randomly initialized mapping functions
 - Input: a histogram
 - Output: a stochastic preference model

• Real Multi-Label Datasets

- Input: a binary vector (features)
- Output: a binary vector (labels)

Criteo Ad Recommendation Dataset

- Input: Integer values (unknown features)
- Output: a one-hot vector (product category)

Results: Synthetic Data

- Left: effect of available actions on expected reward for varying numbers of users
- Bottom: effect of the dimensionality of the context on expected reward

Results: Multi-Label Classification

• MediaMill: d=20, |A|=40, ~ 44000 instances

TextMining: d=20, |A|=20, ~28,500 instances

Results: Ad. Recommendation (Criteo)

• k= 32

• k= 128

|A|=40, d=10, u=3,000 agents

Some Remarks

- The Criteo ad recommendation experiments are somewhat strange but surely interesting
- ESA is making a comeback (ESA Revisited)
- Also SMPC for bandits
- Feel free to play around with the notebooks. Also stickers, again

Personal Notes

- Mohammad will be looking for a job soon.
- Pleasantly surprised to see some remote presentations.

Github: https://github.com/mmalekzadeh/privacy-preserving-bandits

Let's keep in touch

1. Poster #15

- 2. Working on privacy? Let's talk. Have experiences in the adtech ecosystem? We'd like to hear from you.
- 3. We're always looking for great engineers: <u>https://brave.com/careers/</u>