Understanding the Downstream Instability of Word Embeddings

Megan Leszczynski, Avner May, Jian Zhang, Sen Wu, Chris Aberger, Chris Ré

Stanford University

Motivation

Recommend new content

Detect the latest spam

[<mark>SPAM</mark>:####] HELLO

My twenty year experience in Ministry One imperative thing I have ever learn is to hear the Voice of God and act to it. so I will like to inform you that (US\$1,000,000.00) One Million United state dollars shall be sent to you when you are ready to receive it.

Thanks God bless you abundantly. Best Regards

Learn new words

Donald J. Trump			Following
Despi	te the c	constant negative press	covfefe
RETWEETS 22,999	LIKES 27,982	الله 🏹 🎲 重 🚵 🔂 🕷	

9:06 PM - 30 May 2017

🛧 13K 🛃 23K 🖤 28K 🏁

Why retrain?

Changing distribution of popular videos

New spam techniques

Out-of-vocabulary words

Model freshness is necessary for user satisfaction in many products.

Google retrains their app store Google Play models *every day*, and Facebook retrains search models *every hour*.

[1] Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.[2] Hazelwood et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. HPCA, 2018.

But model training can be unstable...

Prediction churn

[1] Cormier et al. Launch and Iterate: Reducing Prediction Churn. NeurIPS, 2016.

Challenges of Instability

Debugging

Consistent user-experience

Model dependencies

Research reliability

Problem Setting: Embedding Server

Changing Data

Downstream Tasks

Embeddings are shared among downstream tasks.

How does the embedding instability propagate to these tasks?

Key takeaway: Stability-memory tension

With the right understanding,
we can improve stability by over 30%
– in the same amount of memory

Outline

Q: How do we define downstream instability?

A: % prediction disagreement

Q: What *embedding hyperparameters* impact downstream instability? A: hyperparameters related to memory

Q: How can we *theoretically understand* downstream instability? A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability? A: using the EIS (or k-NN) measures

Definition: Downstream Instability

Downstream instability = % prediction disagreement between models trained on a pair of embeddings

Metrics like instability are important for modularity.

Outline

Q: How do we define downstream instability?

A: % prediction disagreement

Q: What *embedding hyperparameters* impact downstream instability? A: hyperparameters related to memory

Q: How can we *theoretically understand* downstream instability? A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability? A: using the EIS (or k-NN) measures

Hyperparameters that Impact Memory

[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.

Impact of Dimension

Impact of Precision

Stability-Memory Tradeoff

Outline

Q: How do we define downstream instability?

A: % prediction disagreement

Q: What embedding hyperparameters impact downstream instability? A: hyperparameters related to memory

Q: How can we *theoretically understand* downstream instability? A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability? A: using the EIS (or k-NN) measures

Goal: Embedding distance measure

The measure must relate the distance between the embeddings to the downstream instability.

Eigenspace Instability Measure (EIS)

Key insight:

The predictions of a linear regression model trained on an embedding X depend on the **left singular vectors** of X.¹

[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.

Eigenspace Instability Measure (EIS)

EIS measures the similarity of the left singular vectors of two embeddings

For embeddings X and \widetilde{X} ,

EIS (X, \widetilde{X}) = similarity(U, \widetilde{U})

• Can be computed in time $O(nd^2)$

- n is the size of vocabulary and d is the dimension

Eigenspace Instability Measure (EIS)

Theorem (informal):

EIS is equal to the expected mean-squared difference between the predictions of the linear models trained on X and $\widetilde{X}.$

Direct theoretical connection between the EIS measure and the downstream instability.

Outline

Q: How do we define downstream instability?

A: % prediction disagreement

Q: What embedding hyperparameters impact downstream instability? A: hyperparameters related to memory

Q: How can we *theoretically understand* downstream instability? A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability? A: using the EIS (or k-NN) measures

Embedding measure for downstream instability?

- EIS measure
- k-NN measure [1,2,3]
- Semantic displacement (SD) [4]
- PIP loss [5]
- Eigenspace overlap (EO) [6]

[1] Hellrich & Hahn, COLING, 2016;
 [2] Antoniak & Mimno, TACL, 2018;
 [3] Wendlandt et al., NAACL-HLT, 2018;
 [4] Hamilton et al., ACL, 2016;
 [5] Yin & Shen, NeurIPS, 2018;
 [6] May et al., NeurIPS, 2019

Correlation with Downstream Instability

EIS and k-NN measures strongly correlate with downstream instability.

Selection Task Setup

- Use embedding distance measure to select hyperparameters for a fixed memory budget
- Record the difference in downstream instability to the oracle hyperparameters

Selection Task Results

EIS and k-NN measures outperform other measures as selection criteria.

Our theoretically grounded measure improves the stability **up to 34%** over a full precision baseline **in the same amount of memory**.

Stability-Memory Tension on KG Embeddings

🛨 Memory 🛛 🔶 Downstream Instability

Conclusion

- Exposed a stability-memory tradeoff for word embeddings.
- Proposed the EIS measure to understand downstream instability.
- Evaluated measures for hyperparameter selection to minimize instability.

Check out the paper for extended experiments with more embedding algorithms and downstream tasks!

Code:

http://bit.ly/embstability

Comments or Questions:

mleszczy@stanford.edu