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Why retrain?
Changing distribution of popular videos New spam techniques Out-of-vocabulary words

Model freshness is necessary for user satisfaction in many products.



Google retrains their app store Google Play
models every day, and Facebook retrains search
models every hour.

[1] Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.
2] Hazelwood et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. HPCA, 2018.



But model training can be unstable...
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Prediction churn

[1] Cormier et al. Launch and Iterate: Reducing Prediction Churn. NeurlPS, 2016.



Challenges of Instability

Debugging Consistent user-experience
Model dependencies Research reliability
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Problem Setting: Embedding Server

Changing Data Downstream Tasks
'- / Named Entity Recognition (NER)
: sy Question Answering
v Embedding
Refresh Embeddings S| ) Scntiment Analysis

\ Relation Extraction

Embeddings are shared among downstream tasks.
How does the embedding instability propagate to these tasks?
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Key takeaway:
Stability-memory tension

With the right understanding,
we can improve stability by over 30%
— in the same amount of memory




Outline

'Q: How do we define downstream instability?

. A: % prediction disagreement )

Q: What embedding hyperparameters impact downstream instability?
A: hyperparameters related to memory

Q: How can we theoretically understand downstream instability?
A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability?
A: using the EIS (or k-NN) measures
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Definition: Downstream Instability
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Downstream instability = % prediction disagreement between models trained
on a pair of embeddings

Metrics like instability are important for modularity.



Outline

Q: How do we define downstream instability?
A: % prediction disagreement

'Q: What embedding hyperparameters impact downstream instability?

A: hyperparameters related to memory
. J

Q: How can we theoretically understand downstream instability?
A: using our eigenspace instability measure (EIS)

Q: How can we select embedding hyperparameters to minimize instability?
A: using the EIS (or k-NN) measures
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Hyperparameters that Impact Memory

‘A Dimension @ Precision = “@ Memory

# features / word # bits / feature

/Uniform 32-bit 1-bit A

Quantization 0.04 0.1 ‘ Downstream
Interval: ~ -0.03 ) -0.1 ope
101,01 008 01 Instability

[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.

11



Impact of Dimension
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Impact of Precision
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Stability-Memory Tradeoff
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Outline

Q: How do we define downstream instability?
A: % prediction disagreement

Q: What embedding hyperparameters impact downstream instability?
A: hyperparameters related to memory

'Q: How can we theoretically understand downstream instability? A

A: using our eigenspace instability measure (EIS)
. J

Q: How can we select embedding hyperparameters to minimize instability?
A: using the EIS (or k-NN) measures
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Goal: Embedding distance measure
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Distance (Emb1, Emb2) --------------- > Downstream Instability
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The measure must relate the distance between the embeddings to the
downstream instability.
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Eigenspace Instability Measure (EIS)

Key insight:

The predictions of a linear regression model trained on an embedding X
depend on the left singular vectors of X

= U
(X)

[1] May et al. On the downstream performance of compressed word embeddings. NeurlPS, 2019.

Singular Value
Decomposition
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Eigenspace Instability Measure (EIS)

= £|S measures the similarity of the left singular vectors of two
embeddings

For embeddings X and X,
EIS (X, X) = similarity(U, U)

= Can be computed in time 0 (nd?)
-n is the size of vocabulary and d is the dimension



Eigenspace Instability Measure (EIS)

Theorem (informal):

EIS is equal to the expected mean-squared difference
between the predictions of the linear models trained on X
and X.

Direct theoretical connection between the EIS measure
and the downstream instability.



Outline

Q: How do we define downstream instability?
A: % prediction disagreement

Q: What embedding hyperparameters impact downstream instability?
A: hyperparameters related to memory

Q: How can we theoretically understand downstream instability?
A: using our eigenspace instability measure (EIS)

(Q: How can we select embedding hyperparameters to minimize instability?\
A: using the EIS (or k-NN) measures
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Embedding measure for downstream instability?

= £|S measure

= k-NN measure [1,2,3]

= Semantic displacement (SD) [4]
= PIP |oss [5]

= Figenspace overlap (EO) [6]

[1] Hellrich & Hahn, COLING, 2016; [2] Antoniak & Mimno, TACL, 2018; [3] Wendlandt et al., NAACL-HLT, 2018;
[4] Hamilton et al., ACL, 2016; [5] Yin & Shen, NeurlPS, 2018; [6] May et al., NeurIPS, 2019



Correlation with Downstream Instability
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EIS and k-NN measures strongly correlate with downstream instability.
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Selection Task Setup

= Use embedding distance
measure to select
hyperparameters for a fixed
memory budget

= Record the difference in
downstream instability to
the oracle hyperparameters

% Disagreement
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Selection Task Results
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EIS and k-NN measures outperform other measures as selection criteria.
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Our theoretically grounded measure improves the
stability up to 34% over a full precision baseline
in the same amount of memory.



Stability-Memory Tension on KG Embeddings
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Conclusion

= Exposed a stability-memory tradeoff for word embeddings.
= Proposed the EIS measure to understand downstream instability.

= Evaluated measures for hyperparameter selection to minimize
instability.

Check out the paper for extended experiments with more embedding
algorithms and downstream tasks!

Code: Comments or Questions:
http://bit.ly/embstability mleszczy@stanford.edu
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