Ordering Chaos

Memory-Aware Scheduling for Irregularly Wired Neural Networks on Edge Devices

Byung Hoon Ahn, Jinwon Lee, Jamie Lin, Hsin-Pai Cheng, Jilei Hou, Hadi Esmaeilzadeh

Motivation: Enabling Intelligence, Transition from Cloud to Edge

Intelligence moving from the Cloud to the Edge

Low Latency

Privacy

Reliability

Intelligence is moving from **Cloud to Edge** for **Low Latency**, **Privacy**, and **Reliability**

Motivation: How to Make Deep Neural Networks More Efficient?

Motivation: Irregularly Wired Neural Networks

These **Efficient Networks** comprise of many **Irregular Wirings** We classify them as **Irregularly Wired Neural Networks**

Motivation: Emerging Class of DNNs for Resource Constrained Scenarios

Certain class of networks require less Resources for same Accuracy (a.k.a. More Efficient Networks)

Running Example: SwiftNet (ICCV-W'19)

Running Example: SwiftNet (ICCV-W'19)

Today's Frameworks are **Oblivious to "Peak Memory Footprint" Issue** When it come to **Irregularly Wired Neural Networks**

Running Example: SwiftNet (ICCV-W'19)

Size (8bits)	MACs	Peak Mem	ACC
249.7KB	57.4M	200KB	95.13%

Peak memory footprint (c.f., today's TF Lite scheduler = 800KB)

We cannot rely on human expert for scheduling all the time

Laziness drives innovations that improve productivity - Steven Shapiro

Our Solution

Automated Solution: Serenity (Ordering Chaos)

We propose an Automated Approach that:

- 1 Quickly **finds a memory-optimal schedule** for a fixed graph
- 2 Explores another dimension that alleviates the memory footprint of the graph

Search Space: Scheduling = Topological Ordering

While Conventional Network (e.g. AlexNet, ...) execution is "streamlined" Irregularly Wired Neural Network execution is "not streamlined"

Search Space: Scheduling = Topological Ordering

Search space is exponentially large and

Optimal solutions account for **very very small fraction** of the entire space

Brute Force Algorithm for Topological Ordering

Many zero-indegree sets are redundant Optimizing this eliminates redundancy

Dynamic Programming Algorithm for Topological Ordering

Dynamic Programming-based Topological Ordering can **speed-up the traversal of schedules significantly**

Overlaying Problem Constraints

Overlaying these constraints gives **Memory-optimal schedule** of the nodes

Dynamic Programming-based Scheduling

Size (8bits)	MACs	Peak Mem	ACC	
249.7KB	57.4M	200KB	95.13%	

(c.f., today's TF Lite scheduler = 800KB)

Identity Graph Rewriting

Graph Rewriting while maintaining the mathematical integrity allows further reduction in Peak Memory Footprint

Dynamic Programming-based Scheduling + Graph Rewriting

Output Activations In memory

Peak memory performance for different scheduling

Scheduling Strategy	Peak Mem	Time
Manual Optimization + Partial Convolution	200KB	2 days
(Automatic) Dynamic Programming-based Scheduling	200KB	?
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting	188KB	?

۲

Long Compile Time is Not Good for Mental Health

Pruning without Affecting Optimality

By setting an appropriate threshold, some paths can be pruned without affecting optimality

Adaptive Soft Budgeting

Adaptive Soft Budgeting finds appropriate threshold reducing the scheduling time significantly

Accelerating Automated Approach: Divide and Conquer

Many Irregularly Wired Neural Networks are Hourglass-shaped that enables Divide-and-Conquer

Peak memory performance for different scheduling

Scheduling Strategy	Peak Mem	Time
Manual Optimization + Partial Convolution	200KB	2 days
(Automatic) Dynamic Programming-based Scheduling	200KB	seconds
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting	188KB	minutes

۲

Evaluation

Evaluation: Benchmark Irregularly Wired Neural Networks

Network	Туре	Dataset	# MAC	# Weight	Top-1 Accuracy*
DARTS [ICLR'19]	Neural Architecture	ImageNet	574.0M	4.7M	73.3%
SwiftNet [CVPR-C'19, ICCV-W'19]	Search	Human Presence Detection	57.4M	249.7K	95.1%
Randomly Wired Neural Networks [ICCV'19]	Random	CIFAR10	111.0M	1.2M	93.6%
	Generators	CIFAR100	160.0M	4.7M	74.5%

* **Serenity** does not affect accuracy

Evaluation: Reduction in Peak Memory Footprint

Serenity reduces the Peak Memory Footprint by 1.68x without Graph Rewriting and 1.86x with Graph Rewriting

Evaluation: Reduction in Off-Chip Memory Communication

Serenity also reduces off-chip memory communication

by 1.52x, 1.49x, 1.51x, and 1.76x for 32KB, 64KB, 128KB, and 256KB, respectively

Evaluation: Reduction in Off-Chip Memory Communication

Serenity even eradicates off-chip memory communication

Evaluation: Scheduling Time

Average scheduling time of **Serenity** is **under a minute** for the benchmark models Can be further improved by **Porting from Python to C/C++**

Summary and Takeaways

- Irregularly Wired Neural Networks are emerging class of Network Architectures with many upsides in terms of efficiency, but current deep learning frameworks are oblivious to the Peak Memory Footprint challenge they introduce.
- We leverage Dynamic Programming-based Scheduling to find an optimal schedule; devise a Identity Graph Rewriting to further reduce Peak Memory Footprint; and develop Adaptive Soft Budgeting and Divide-and-Conquer to minimize overhead

Future Directions

1 **Expanding Applications** or **Revisiting** the **classical algorithms** or **compiler heuristics**:

- Problems of optimizing memory communication and inference time can also benefit from similar dynamic programming formulation

2. Using **Machine Learning** techniques to find good schedules in **one-shot**:

- Graph Neural Networks to parse and extract information from the graph
- Reinforcement Learning and other intelligent algorithms for scheduling

3. Exploring **Other Dimensions** of **reducing intermediate activations**:

- Quantization and Pruning are popular compression techniques

- Lossy/Lossless compression for intermediate activations are interesting future path