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Deep Learning Becomes Ubiquitous

• Computer vision
• Natural language processing
• Speech
• Robotics

Applications
• Intelligent assistant: Google Now, Siri, Cortana
• Face recognition
• Video content understanding
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A Brief Introduction to Deep Learning
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• Training:
• Forward & backward pass
• Iterative



A Brief Introduction to Deep Learning
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• Inference:
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• Training:
• Forward & backward pass
• Iterative



Accelerate Deep Learning with GPUs
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Exclusive Access to GPU

An application can have multiple GPUs, but each GPU usually belongs to 

exactly one application at a time.

Advantages
• Simplifies hardware design
• Efficiency

Disadvantages
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• Lack of flexibility



Exclusive Access:

• Hinders the scheduling ability of GPU cluster managers
• Underutilization
• Hyper-parameter tuning (AutoML)
• Model serving (inference)
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Lack of Flexibility



Exclusive Access: Lack of Flexibility

• Hinders the scheduling ability of GPU cluster managers
• Starting or suspending job is expensive
• Often easier to just do non-preemptive scheduling → FIFO

• Head-of-line blocking
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Exclusive Access: Lack of Flexibility

• Underutilization
• Variance in memory usage → Overprovision

Model Peak Memory Usage

VAE 28M

Super Resolution 529M

Deep Speech 3993M

Inception4 11355M
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How Can We Efficiently Share a GPU for 
Deep Learning Applications?



Approach Efficiency
Dynamic
Memory

Flexible 
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

GPU Sharing

• Existing sharing solutions
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Approach Efficiency
Dynamic
Memory

Flexible 
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

Ideal Yes Yes Yes

Approach Efficiency
Dynamic
Memory

Flexible 
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

Approach Efficiency
Dynamic
Memory

Flexible 
Scheduling

Design Goals

Minimize deployment overhead
• No new hardware
• No modification from user side



Fine-grained GPU Sharing Primitives
for Deep LearningSalus

A consolidated execution service enabling sharing primitives
• Fast job switching,
• Memory sharing

without modifying any 
• User scripts,
• Operating systems, or
• Hardware

with the goal to
• Support new scheduler for GPU,
• Improve GPU utilization
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Others…CNTKPyTorchTensorflow Deep Learning FrameworksDeep Learning Frameworks

Salus Execution Service

ASIC…FPGAGPUCPU

User scripts

in DL Stack
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Salus

Salus Adaptor

Salus Execution Service



Salus

1. Salus Execution Service Transfer computation graph

2. Salus Adaptor Consolidates all GPU accesses

Components
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1. Salus Adaptor

2. Salus Execution Service



GPU

User Script

DL Framework

Salus Adaptor

User Script

DL Framework
…

…

Salus Adaptor

Salus in One SlideSalus

Memory 
Manager

Session

Scheduler
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• Create session
• Send computation graph
• For each iteration:
• Send input
• Check memory
• Queue in scheduler



Sharing Primitives

• Efficient job switching
• Memory sharing: GPU lane abstraction
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• Memory sharing: GPU lane abstraction



Sharing Primitives: Efficient Job Switching

Existing Approaches Time Scale

Stop and restart (checkpointing) 10~100s

Generate snapshot[1] ~1s

[1]: W. Xiao et al. “Gandiva: Introspective Cluster Scheduling for Deep Learning”. In: OSDI. 2018.

Bottleneck: data (memory) transfer
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Understand DL Job Memory

• 3 types of memory:
• Model
• Ephemeral
• Framework-internal
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Understand DL Job Memory

• 3 types of memory:
• Model
• Ephemeral
• Framework-internal

• Data transfer time is non-negligible
• Can be over 2X of corresponding inference latency

• Model memory << GPU memory capacity

Why not keep multiple jobs’ model in memory for fast switching?
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Sharing Primitives: Efficient Job Switching

Job switching is done by determine which job’s iteration to run next.
• Minimal switching overhead
• Flexible scheduling policies

A trade-off between maximum utilization and execution performance
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Sharing Primitives

• Efficient job switching
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Sharing Primitives

• Efficient job switching
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• Memory sharing: GPU lane



Sharing Primitives: Memory Sharing

• Efficient job switching
• Memory sharing: GPU lane

= Continuous physical memory + GPU stream

GPU lane 

• Time-slicing within lane, parallel across lanes
• Dynamic re-partitioning (lane assignment)
• Avoid in-lane fragmentation
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GPU Lane: Best Fit & Safety Condition

• A lane cannot accept arbitrary number of jobs
• The Safety Condition determines whether a job can go in a lane

!
"

𝑃" + max" 𝑇" ≤ 𝐶+

𝑃" : Model and framework-internal memory for job 𝑖
𝑇" : Ephemeral memory for job 𝑖
𝐶+ : Memory capacity of lane 𝑙
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GPU Lane: Best Fit & Safety Condition

• A lane cannot accept arbitrary number of jobs
• The Safety Condition determines whether a job can go in a lane

!
"

𝑃" +!
"

𝑇" ≤ 𝐶+Static Partitioning:

𝑃" : Model and framework-internal memory for job 𝑖
𝑇" : Ephemeral memory for job 𝑖
𝐶+ : Memory capacity of lane 𝑙
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Salus Scheduling Polices

FIFO is suboptimal
• HOL blocking
• Underutilization

With Salus
• Packing: achieves higher utilization
• Preemption: enables prioritization
• Fairness: equalizes the resource usage
• …
• What’s more? Still a huge design space!
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1. Flexible scheduler
2. Faster hyper-parameter tuning
3. High GPU utilization for inference

Evaluation
Deployment and evaluation on 
Intel E5-2670 with 2x NVIDIA 
Tesla P100 with 15 workloads
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A Production Trace

• 100 jobs from a production trace[1]

• 4 schedulers implemented as demo
• SRTF vs FIFO: 3.19x improvement in Avg. JCT

29[1]: G. Juncheng et al. “Tiresias: A GPU Cluster Manager for Distributed Deep Learning”. In: NSDI. 2019.



Sub-second Level Switching

• Slice of the 100 job trace, time is normalized
• Sub-second switching
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Hyper-parameter Exploration

• 2 sets of hyper-parameter exploration
• 300 exploration jobs in each set
• Makespan is important
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Pack Inference Applications

• 42 DL inference applications in 1 GPU
• User facing services: latency
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Fine-grained GPU Sharing Primitives
for Deep LearningSalus

Open sourced at: https://github.com/SymbioticLab/Salus
• Prebuilt docker image available
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https://github.com/SymbioticLab/Salus

