
Salus
Fine-grained GPU Sharing Primitives

for Deep Learning Applications

Advisor : Mosharaf Chowdhury

2020-03-03 By Peifeng Yu

Deep Learning Becomes Ubiquitous

• Computer vision
• Natural language processing
• Speech
• Robotics

Applications
• Intelligent assistant: Google Now, Siri, Cortana
• Face recognition
• Video content understanding

2

A Brief Introduction to Deep Learning

Errors

✗

Dog
Cat

Raccoon

3

• Training:
• Forward & backward pass
• Iterative

A Brief Introduction to Deep Learning

4

Cat

• Inference:
• Forward pass

• Training:
• Forward & backward pass
• Iterative

Accelerate Deep Learning with GPUs

5

Neural
Networks GPUs

Inherently
Parallel

Matrix
Operations

FLOPS

Exclusive Access to GPU

An application can have multiple GPUs, but each GPU usually belongs to

exactly one application at a time.

Advantages
• Simplifies hardware design
• Efficiency

Disadvantages

6

• Lack of flexibility

Exclusive Access:

• Hinders the scheduling ability of GPU cluster managers
• Underutilization
• Hyper-parameter tuning (AutoML)
• Model serving (inference)

7

Lack of Flexibility

Exclusive Access: Lack of Flexibility

• Hinders the scheduling ability of GPU cluster managers
• Starting or suspending job is expensive
• Often easier to just do non-preemptive scheduling → FIFO

• Head-of-line blocking

8

Exclusive Access: Lack of Flexibility

• Underutilization
• Variance in memory usage → Overprovision

Model Peak Memory Usage

VAE 28M

Super Resolution 529M

Deep Speech 3993M

Inception4 11355M

9

How Can We Efficiently Share a GPU for
Deep Learning Applications?

Approach Efficiency
Dynamic
Memory

Flexible
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

GPU Sharing

• Existing sharing solutions

11

Approach Efficiency
Dynamic
Memory

Flexible
Scheduling

Static Partitioning (SP) No No Yes

12

Approach Efficiency
Dynamic
Memory

Flexible
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

Ideal Yes Yes Yes

Approach Efficiency
Dynamic
Memory

Flexible
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

Approach Efficiency
Dynamic
Memory

Flexible
Scheduling

Design Goals

Minimize deployment overhead
• No new hardware
• No modification from user side

Fine-grained GPU Sharing Primitives
for Deep LearningSalus

A consolidated execution service enabling sharing primitives
• Fast job switching,
• Memory sharing

without modifying any
• User scripts,
• Operating systems, or
• Hardware

with the goal to
• Support new scheduler for GPU,
• Improve GPU utilization

13

Others…CNTKPyTorchTensorflow Deep Learning FrameworksDeep Learning Frameworks

Salus Execution Service

ASIC…FPGAGPUCPU

User scripts

in DL Stack

14

Salus

Salus Adaptor

Salus Execution Service

Salus

1. Salus Execution Service Transfer computation graph

2. Salus Adaptor Consolidates all GPU accesses

Components

15

1. Salus Adaptor

2. Salus Execution Service

GPU

User Script

DL Framework

Salus Adaptor

User Script

DL Framework
…

…

Salus Adaptor

Salus in One SlideSalus

Memory
Manager

Session

Scheduler

16

• Create session
• Send computation graph
• For each iteration:
• Send input
• Check memory
• Queue in scheduler

Sharing Primitives

• Efficient job switching
• Memory sharing: GPU lane abstraction

17

• Memory sharing: GPU lane abstraction

Sharing Primitives: Efficient Job Switching

Existing Approaches Time Scale

Stop and restart (checkpointing) 10~100s

Generate snapshot[1] ~1s

[1]: W. Xiao et al. “Gandiva: Introspective Cluster Scheduling for Deep Learning”. In: OSDI. 2018.

Bottleneck: data (memory) transfer

18

Understand DL Job Memory

• 3 types of memory:
• Model
• Ephemeral
• Framework-internal

19

Understand DL Job Memory

• 3 types of memory:
• Model
• Ephemeral
• Framework-internal

• Data transfer time is non-negligible
• Can be over 2X of corresponding inference latency

• Model memory << GPU memory capacity

Why not keep multiple jobs’ model in memory for fast switching?

20

Sharing Primitives: Efficient Job Switching

Job switching is done by determine which job’s iteration to run next.
• Minimal switching overhead
• Flexible scheduling policies

A trade-off between maximum utilization and execution performance

21

Sharing Primitives

• Efficient job switching

Time

M
em

or
y

22

Job 2

Job 1

Sharing Primitives

• Efficient job switching

Time

M
em

or
y

Lane 0

Lane 1

23

Job 3

Job 2

Job 1

• Memory sharing: GPU lane

Sharing Primitives: Memory Sharing

• Efficient job switching
• Memory sharing: GPU lane

= Continuous physical memory + GPU stream

GPU lane

• Time-slicing within lane, parallel across lanes
• Dynamic re-partitioning (lane assignment)
• Avoid in-lane fragmentation

24

GPU Lane: Best Fit & Safety Condition

• A lane cannot accept arbitrary number of jobs
• The Safety Condition determines whether a job can go in a lane

!
"

𝑃" + max" 𝑇" ≤ 𝐶+

𝑃" : Model and framework-internal memory for job 𝑖
𝑇" : Ephemeral memory for job 𝑖
𝐶+ : Memory capacity of lane 𝑙

25

GPU Lane: Best Fit & Safety Condition

• A lane cannot accept arbitrary number of jobs
• The Safety Condition determines whether a job can go in a lane

!
"

𝑃" +!
"

𝑇" ≤ 𝐶+Static Partitioning:

𝑃" : Model and framework-internal memory for job 𝑖
𝑇" : Ephemeral memory for job 𝑖
𝐶+ : Memory capacity of lane 𝑙

26

Salus Scheduling Polices

FIFO is suboptimal
• HOL blocking
• Underutilization

With Salus
• Packing: achieves higher utilization
• Preemption: enables prioritization
• Fairness: equalizes the resource usage
• …
• What’s more? Still a huge design space!

27

1. Flexible scheduler
2. Faster hyper-parameter tuning
3. High GPU utilization for inference

Evaluation
Deployment and evaluation on
Intel E5-2670 with 2x NVIDIA
Tesla P100 with 15 workloads

28

A Production Trace

• 100 jobs from a production trace[1]

• 4 schedulers implemented as demo
• SRTF vs FIFO: 3.19x improvement in Avg. JCT

29[1]: G. Juncheng et al. “Tiresias: A GPU Cluster Manager for Distributed Deep Learning”. In: NSDI. 2019.

Sub-second Level Switching

• Slice of the 100 job trace, time is normalized
• Sub-second switching

30

Hyper-parameter Exploration

• 2 sets of hyper-parameter exploration
• 300 exploration jobs in each set
• Makespan is important

31

Pack Inference Applications

• 42 DL inference applications in 1 GPU
• User facing services: latency

32

Fine-grained GPU Sharing Primitives
for Deep LearningSalus

Open sourced at: https://github.com/SymbioticLab/Salus
• Prebuilt docker image available

33

https://github.com/SymbioticLab/Salus

