Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion

PoET-BiN: Power Efficient Tiny Binary Neurons

Sivakumar Chidambaram¹, J.M. Pierre Langlois², Jean Pierre David¹

Department of Electrical Engineering ¹ Department of Computer and Software Engineering ² Polytechnique Montréal Montréal, Canada

03 March 2020

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion

Contents

1 Introduction

- 2 Background
- 3 PoET-BiN
- 4 Experimental setup and results

5 Conclusion

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
••				

Real-time deep learning use cases

Autonomous Driving

www.alten.com/sector/automotive/next-generation-camera-based-

adas-development/

Translation

Source : www.firebase.google.com/docs/ml-kit/translation

CCTV Monitoring

www.munhwa.com/news/view.html?no=2019100101

Required Attributes :

- Accuracy
- Latency and Throughput
- Power and Energy constraints
- Memory and Hardware costs

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
00				

Computation needs

Exponential Growth in the Training of Artificial Intelligence Programs

PetaFLOP/s-Day (Training)

Source: https://openai.com/blog/ai-and-compute/ Note: A petaFLOPS is a unit of computing speed equal to one quadrillion FLOPS. floating operations per second, a measure of computer performance.

Exponential rise in computations

PoET-BiN	MLSys	03 March 2020 4 / 20

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
	••			

Current Deep Learning Software Acceleration Techniques

Quantized Neural Networks

- Quantization of weights and activations
- Binarizing, Ternarization, Multi-bit quantization
- Helps in generalization on the unseen data

Pruning - Remove certain neurons from the vanilla neural network

- A bagging technique that averages various randomly pruned networks
- Introduces noise in the system that helps perform better on unseen data

Sparsification - Sparse matrix multiplication

- Removing connections between neurons
- Reduces the number of multiplication and additions
- Reduces number of memory reads
- Implemented on hardware devices such as FPGA, microprocessors, microcontrollers etc.

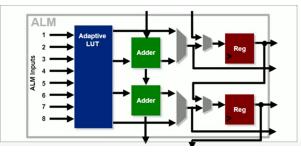
PoET-BiN

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
	00			

Hardware : FPGAs

PoE

- Goto device for rapid prototyping of accelerators
- FPGAs consist of Arithmetic Logical Modules (ALMs), programmable interconnects, IOs and BRAMs
- ALMs are the main computational unit
- 100,000s of ALMs in a typical FPGA
- Each ALM has a LookUp Table (LUT) with up to 8 inputs and up to 2 outputs
- Programmed using Hardware Description Languages



Source : https ://hackaday.com/2018/03/01/another-introduction-to-fpgas/

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		●000000		

Problem Definition and Objectives

Problem Definition :

- Vanilla neural networks are computation, power and area intensive
- Current acceleration approaches are still computationally intensive
- Quantized neural networks and pruning are not optimized for FPGAs

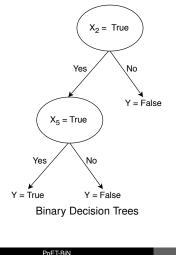
Objectives/Contributions :

- A modified Decision Tree training algorithm to better match LUTs with a fixed number of inputs.
- The Reduced Input Neural Circuit (RINC) : A LUT-based architecture founded on modified Decision Trees and the hierarchical version of the well known Adaboost algorithm to efficiently implement a network of binary neurons.
- A sparsely connected output layer for multiclass classification.
- The PoET-BiN architecture consisting of multiple RINC modules and a sparsely connected output layer.
- Automatic VHDL code generation of the PoET-BiN architecture for FPGA implementation.

	P∩	Ē	-	Ri	Ν
--	----	---	---	----	---

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		000000		

Binary Decision Trees



What are Binary DTs :

- Inputs(X) and Outputs(Y) are binary
- Node wise creation of Decision Tree from root to leaves
- The feature that most reduces the entropy is chosen
- Divides the representation space to classify data

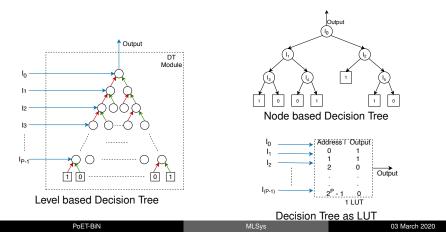
Challenges :

- To classify large datasets need larger **Decision Trees**
- Results in large implementations on the hardware- complex and high power consumption
- To effectively implement on FPGAs we need small Decision Trees of < 6 inputs to fit in one LUT

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		000000		

RINC-0 : Modified Decision Tree Algorithm

- Modified DT algorithm level based entropy reduction rather than node based
- Decision Trees are restricted by the number of inputs(I)
- A node-wise off-the-shelf 6-input Decision Tree would have only 7 leaf nodes
- Level-wise Decision Tree will have 2⁶ = 64 leaf nodes
- More granularity

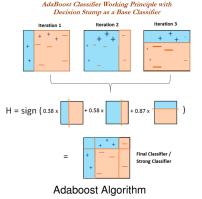


9/20

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		0000000		

RINC-1 : Incorporating Adaboost

- A single Decision Tree is a weak classifier
- Ensemble methods such as Boosting and Bagging are used to create strong classifiers from weak classifiers
- We use the well-know Adaboost algorithm



Source :https ://packtpub.com/book/bigdataandbusinessintelligence/adaboost-

classifier

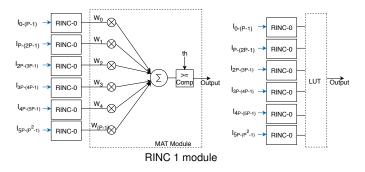
PoET-BiN

- The weak classifiers are created serially
- The samples are given equal weight initially
- The first weak classifier is trained on the data
- The mis-classified sample's weights are increased
- Subsequent classifier focuses on the incorrect samples
- Each classifier is assigned a weight based on the number of correctly classified samples
- A weighted sum of all the weak classifier outputs forms the strong classifier

MLSys	03 March 2020	10/20
-------	---------------	-------

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		0000000		

RINC-1 Module

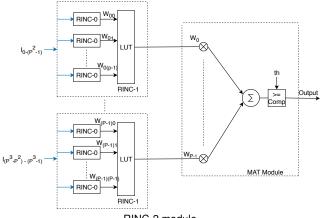


- The MAC and threshold operations can be implemented in a LUT
- Can group up to a maximum of P Decision Trees
- However, P Decision Trees with P² inputs are not enough compared to a MAC operation in a neural network
- Neuron in a neural network can have up to 4096 inputs as compared 36 (when P=6) in RINC-1 modules
- Hence, we introduce the hierarchical Adaboost algorithm

PoET-BiN

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		0000000		

RINC-2 : Hierarchical Adaboost

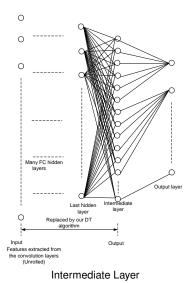


RINC-2 module

- The RINC-2 modules have adequate capacity to represent MAC operations
- Can only be used for binary classifications

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
		000000		

Binary to Multiclass Classification



Current Methods :

- Multiclass DTs : costly to implement
- One-vs-All classification : leads to reduction in accuracy

Our Approach :

- A sparsely connected intermediate layer before the final output layer for multiclass classification
- Only P neurons of the intermediate layer connected to each neuron in the output layer
- The neurons in the output layer need to have multiple bits to represent the probabilities and cannot be binary values
- Implemented as LUTs

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
			0000	

Experimental Setup

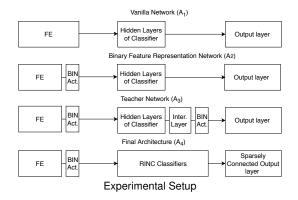


TABLE - Network architecture

ARCHITECTURE (ARCH.)	Symbol	DATASET
$LeNET_{FE} - (512FC) - (10FC)$	M1	MNIST
$VGG11_{FE} - (4096FC) - (4096FC) - (10FC)$	C1	CIFAR-10
VGG11 _{FE} – (2048FC) – (2048FC) – (10FC)	S1	SVHN

Introduction	Background 00	PoET-BiN 0000000	Experimental setup and results 0000	Conclusion
Results :	Accuracy			

- A₁: Vanilla network, A₂: Network with binary features, A₃: Teacher network with intermediate layer, A₄: PoET-BiN
- TABLE Overall classification accuracy on MNIST, CIFAR-10 and SVHN dataset

ARCH.	DATASET	A ₁ (%)	A ₂ (%)	A ₃ (%)	A ₄ (%)
M1	MNIST	99.20	99.06	98.93	98.15
C1	CIFAR-10	91.02	89.88	89.10	92.64
S1	SVHN	97.36	96.98	96.22	95.13

TABLE - Comparison with other techniques

IMPLEMENTATION		ACCURACY (%)	
	MNIST	CIFAR-10	SVHN
BINARYNET(2016)	98.97	89.76	95.06
POLYBINN(2018)	97.52	91.58	94.97
NDF(2015)	99.42	90.46	95.20
OUR WORK	98.15	92.64	95.13

- There is a reduction in accuracy for each modification introduced
- Comparable accuracy with other state-of-the-art networks
- Same feature extractor
- BinaryNet Neural Network approach
- POLYBINN Decision Tree approach
- NDF Hybrid approach
- Same feature extractor for fair comparisons

Introduction	Background	PoET-BiN		Conclusion
00	00	0000000	0000	000

Results : Power Consumption

- Measurements from Xilinx Power Analyzer tool
- Power consumption of the classification layers only

TABLE - RINC power

TABLE - Number of arithmetic operations

DATA SET	MNIST	CIFAR-10	SVHN	OP.	MNIST	CIFAR-10	SVHN
DYNAMIC(W)	0.468	0.300	0.374	Add.	0.26 M	18.9 M	5.2 M
STATIC(W)	0.045	0.041	0.043	Mult.	0.26 M	18.9 M	5.2 M
TOTAL(W)	0.513	0.341	0.417				

TABLE - Single arithmetic operation power

OPERATION	DYNAMIC (<i>mW</i>)				STATIC	TOTAL
(at 62.5 Mhz)	CLOCK	LOGIC	SIGNAL	10	(<i>mW</i>)	(<i>mW</i>)
MULTIPLICATION (16 BITS)	1	1	0	20	36	58
ADDITION (16 BITS)	1	0.0	1	24	36	62
MULTIPLICATION (32 BITS)	2	1	1	35	37	76
ADDITION (32 BITS)	1	0.0	2	48	37	88
MULTIPLICATION (FP)	5	6	5	46	37	98
ADDITION (FP)	4	3	5	34	37	83

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
			0000	

Results : Energy Consumption, Latency and Hardware Costs

- The networks were implemented on a Spartan-6 Xilinx FPGA
- Energy reduction by up to three orders of magnitude when compared to recent binary quantized neural networks

TECHNIQUE		ENERGY (J)	
	MNIST	CIFAR-10	SVHN
VANILLA	$8.0 imes 10^{-5}$	$5.7 imes 10^{-3}$	1.6×10^{-3}
1-bit Quant	2.1×10^{-7}	$3.9 imes 10^{-5}$	$9.2 imes10^{-6}$
16-bit Quant	$8.5 imes10^{-6}$	$6.0 imes 10^{-4}$	$1.0 imes 10^{-4}$
32-bit Quant	$1.7 imes 10^{-5}$	$1.2 imes 10^{-3}$	$3.6 imes10^{-4}$
POET-BIN	$8.2 imes10^{-9}$	$5.4 imes10^{-9}$	$4.1 imes 10^{-9}$

TABLE - Implementation results

DATA SET	MNIST	CIFAR-10	SVHN
LATENCY(NS)	9.11	9.48	5.85
NUMBER OF LUTS	11899	9650	2660

- Tens of thousands of LUTs, cannot be handcoded in VHDL
- Python library to generate VHDL from high level network information
- 8-input LUTs for MNIST and CIFAR-10, 6-input LUTs for SVHN
- Need original implementation of the other works to estimate the resource consumption for the fully connected layers for fair comparison

TABLE - Energy consumption

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
				000

Conclusion

Conclusion

- Proposed a Power-efficient Tiny Binary Neuron architecture
- Removed all MAC operations and memory access in classification layers
- Achieved comparable accuracies to other state-of-the-art works

Advantages

- Reduction in energy by up to three orders of magnitude when compared to recent binary quantized neural networks
- Can be implemented in any hardware, not just FPGAs

Further Work

- Implementation for the convolutional layers
- Results for larger datasets

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
				000

Acknowledgments

We thank

- Ahmed Abdelsalam for his suggestions and comments throughout the project
- MITACS and ReSMiQ for partially sponsoring the project

Introduction	Background	PoET-BiN	Experimental setup and results	Conclusion
				000

Thanks!

Questions???