

Memory-driven mixed low precision quantization for enabling deep inference networks on microcontrollers

Manuele Rusci*, Alessandro Capotondi, Luca Benini

*<u>manuele.rusci@unibo.it</u>

Energy-Efficient Embedded Systems Laboratory

Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi" – DEI – **Università di Bologna**

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL

Microcontrollers for smart sensors

Microcontrollers for smart sensors

- Low-power (<10-100mW) & lowcost
 - □ Smart device are battery- operated
- □ Highly-flexible (SW programmable)

But limited resources(!)

- □ few MB of memories
- □ single RISC core up to few 100s MHZ (STM32H7: 400MHz) with DSP SIMD instructions and optional FPU
- Currently, tiny visual DL tasks on MCUs (visual wake words, CIFAR10)

Source: STM32H7 datasheet

Challenge: Run 'complex' and 'big' (Imagenet-size) DL inference on MCU ?

Deep Learning for microcontrollers

"Efficient" topologies: Accuracy vs MAC vs Memory

Issue1: Integer-only model needed for deployment on low-power MCUs
Issue2: 8-16 bit are not sufficient to bring 'complex' models on MCUs (memory!!)

Memory-Driven Mixed-Precision Quantization

apply minimum tensor-wise quantization \leq 8bit to fit the memory constraints with very-low accuracy drop

Challenges:

8 bits

- How to define the quantization policy
- Combine quantization flow this with integer only transformation

End-to-end Flow & Contributions

Goal: Define a design flow to bring Imagenet-size models into an MCU device while paying a low accuracy drop.

We define a rule-based **methodology** to determine the **mixed-precision quantization policy** driven by a memory objective function.

Graph Optimization

A latency-accuracy tradeoff on iso-memory mixed-precision networks belonging to the Imagenet MobilenetV1 family when running on a STM32H7 MCU.

We introduce the **Integer Channel-Normalization** (ICN) activation layer to generate an **integer-only deployment** graph when applying **uniform sub-byte quantization**.

Graph Optimization

INTEGER-ONLY W/ SUB-BYTE QUANTIZATION

State of the Art

- I Inference with Integer-only arithmetic (Jacob, 2018)
 - □ Affine transformation between real value and (<u>uniform</u>) quantized parameters
 - Quantization-aware retraining
 - Folding of batch norm into conv weights + rounding of per-layer scaling parameters

real value quantized tensor (INT-Q)
tensor or sub-
tensor
$$\longrightarrow t = S_t \times (T_q - Z_t)$$

- Almost lossless with 8 bit on Image classification and detection problems. Used by TF Lite.
- 8 4 bit MobilnetV1: Training collapse when folding batch norm into convolution weights
- Obes not support Per-Channel (PC) weight quantization

Integer-Only MobilenetV1_224_1.0

Quantization Method	Тор1	Weights (MB)
Full-Precision	70.9	16.8
w8a8	70 1	4.06
w4a4	0.1	2.05

(Jacob, 2018) Jacob, Benoit, et al. "Quantization and training of neural networks for efficient integer-arithmetic-only inference." CVPR 2018

Integer-Channel Normalization (ICN)

$$Y_q = quant_{act} \left(\frac{\phi - \mu}{\sigma} \cdot \gamma + \beta \right)$$

 $\phi = \sum w \cdot x$

 $\mu, \sigma, \gamma, \beta$ are channel-wise batchnorm parameters

 $\Phi = \sum (W_a - Z_w) \cdot (X_a - Z_r)$

Replacing $t = S_t \times (T_q - Z_t)$

 S_w is scalar if PL, else array S_i, S_o are scalar

$$Y_q = Z_y + quant_{act} \left(\frac{S_i S_w}{S_o} \frac{\gamma}{\sigma} \left(\Phi + \left[\frac{1}{S_i S_w} \left(B - \mu + \frac{\beta \sigma}{\gamma} \right) \right] \right) \right)$$
$$M_0 2^{N_0} \left(\Phi + B_q \right) \qquad M_0, N_0, B_q \text{ are channel-wise integer params}$$

Integer-Only MobilenetV1_224_1.0

Quantization Method	Тор1	Weights (MB)
Full-Precision	70.9	16.8
PL+ICN w4a4	61.75	2.10
PC+ICN w4a4	66.41	2.12

Integer Channel-Normalization (ICN) activation function

holds either for PL or PC quantization of weights

Device-aware Fine-Tuning

MIXED-PRECISION QUANTIZATION POLICY

Deployment of an integer-only graph

Problem

Can this graph fit the memory constraints of our MCU device?

Deployment of an integer-only graph

Deployment of an integer-only graph

Goal Maximize memory utilization

[M1] : size(w0) + size(w1) + size (w2) + size(w3) < M_{ROM}

 $\delta = 5\%$

Weights Quantization Policy

Experimental Results on MobilenetV1

Iso-memory MobilenetV1 models with 2MB FLASH and 512kB RAM.

Model	Mparams	Full-Prec	Mix-PC	Mix-PL
224_1.0	4.24	70.9	64.3	59.6
192_1.0	4.24	70.0	65.9	61.9
224_0.75	2.59	68.4	68.0	67.0
192_0.75	2.59	67.2	67.2	64.8
224_0.5	1.34	63.3	63.5	63.1
192_0.5	1.34	61.7	62.0	59.5

Integer-only

Quantization-aware Fine-Tuning recipe:

- □ Init w/ pre-trained params
- BH on 4 NVIDIA Tesla P100
- □ ADAM, Ir=1e-4 (5e-5 @5eph, 1e-5 at 8 eph)
- □ Frozen batch norm stats after 1 eph
- Asymmetric quant on weights, either PC (min/max) or PL (PACT)
- □ Asymmetric activation (PACT)

Open source: https://github.com/mrusci/training-mixed-precision-quantized-networks

Experimental Results on MobilenetV1

Iso-memory MobilenetV1 models with 2MB FLASH and 512kB RAM.

Model	Mparams	Full-Prec	Mix-PC	Mix-PL
224_1.0	4.24	70.9	64.3	59.6
192_1.0	4.24	70.0	65.9	61.9
224_0.75	224_1.0 P0	D1 p2	68.0	67.0
192_0.75	P24 6 D23 4	P4 D5	67.2	64.8
224_0.5	P22 D21 2 P20	P6 D7 P8	63.5	63.1
192_0.5	· D19 P18	D9 P10	62.0	59.5
Quantization-awa Init w/ pre-t 8H on 4 NV ADAM, Ir=1 Frozen bate Asymmetric (min/max) o Asymmetric	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1 P2 D3 P4 D5 ph) P6 D7 P8 D9 P10 D11 D11 D11		

Integer-only

Higher drop due to more aggressive cuts

Open source: https://github.com/mrusci/training-mixed-precision-quantized-networks

Quantization-aware Fine-Tuning recipe:

- □ Init w/ pre-trained params
- 8H on 4 NVIDIA Tesla P100
- □ ADAM, Ir=1e-4 (5e-5 @5eph, 1e-5 at 8 eph)
- □ Frozen batch norm stats after 1 eph
- Asymmetric quant on weights, either PC (min/max) or PL (PACT)
- □ Asymmetric activation (PACT)

Open source: https://github.com/mrusci/training-mixed-precision-quantized-networks

Experimental Results on MobilenetV1

Iso-memory MobilenetV1 models with 2MB FLASH and 512kB RAM.

Deployments on MCUs

LATENCY-ACCURACY TRADE-OFF ON A STM32H7 MCU

Latency-Accuracy Trade Off

Experiments runs on a STM32H743 (400MHz clk)

- The implementation is based on the sw lib for mixed-precision inference (based on Cmsis-NN):
 - Cmix-NN:
 - https://github.com/EEESlab/CMix-NN
 - UINT2-4 software emulated
 - □ MAC 2x16 bits

PC on the pareto

But PC slower than PL by 20-30%

$$\Phi = \sum (X_q - Z_x) \cdot (W_q - Z_w)$$

= $\sum X_{im2col} \cdot (W_q - Z_w)$ PC
= $\sum X_{im2col} \cdot W_q - \sum X_{im2col} \cdot Z_w$ PL

Overall +8% with respect to best 8-bit integer-only MobilenetV1 fitting the device (Jacob et al. 2018)

Wrap-up

- We proposed an **end-to-end methodology** to train and deploy 'complex' DL models on **tiny MCUs**.
 - **sub-byte** uniform quantization
 - mixed-precision settings
 - a memory-driven rule-based method for determine the quantization policy
 - integer-only transformation with **ICN** activation layers
 - mixed precision **software** library for MCU
- Deployment of a 68% Imagenet MobilenetV1 into a MCU with 2MB FLASH and 512 kB RAM.