
© Copyright 2020 Xilinx

Trained Quantization Thresholds (TQT)

for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks

Sambhav Jain^*, Albert Gural#*, Michael Wu^, Chris Dick^

^Xilinx Inc., #Stanford University (*equal contribution)

March 3, 2020

© Copyright 2020 Xilinx

Background & Motivation

2

© Copyright 2020 Xilinx

Uniform Quantization

input

output

3

© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

4

© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

quantization parameters

5

© Copyright 2020 Xilinx

Threshold Selection

6

© Copyright 2020 Xilinx

Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: dotted red lines (min, max)

 Poor utilization of available precision

Threshold Selection

7

© Copyright 2020 Xilinx

Threshold Selection

8

Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: blue lines

 Better utilization of available precision

© Copyright 2020 Xilinx

Threshold Selection

1 Statistical Methods

Calibration

KL divergence minimization

SQNR maximization

Percentile / nSD initialization

…

2 Gradient Descent Methods

Google’s QAT (Jacob et al., 2017)

IBM’s PACT (Choi et al., 2018)

Xilinx’s TQT (Jain et al., 2019)

…

9

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

General case Special case

10

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

11

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

per-channel per-tensor

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

12

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

13

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

14

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

15

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

16

© Copyright 2020 Xilinx

MobileNets are hard to quantize – Why?

Dynamic range of weights (per-channel) in first depthwise

separable layer of MobileNet v2 (Nagel et al., 2019)

Weight distribution in first depthwise

separable layer of MobileNet v1

17

© Copyright 2020 Xilinx

With TQT: MobileNets can be quantized well

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

ours

18

© Copyright 2020 Xilinx

Trained Quantization Thresholds

19

© Copyright 2020 Xilinx

Implementation

Forward Pass Backward Pass

20

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

21

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

22

In the backward pass, approximate gradients of round/ceil to 1, without approximating round/ceil to be identity

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

23

non-zero!

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

24

non-zero!

© Copyright 2020 Xilinx

Transfer Curves

Threshold Gradient
Input Gradient

Toy L2 loss

25

© Copyright 2020 Xilinx

Range Precision Trade-off

(Update Rule)

26

© Copyright 2020 Xilinx

Clipped Threshold Gradients

PACT’s threshold gradients:

27

© Copyright 2020 Xilinx

Clipped Threshold Gradients

PACT’s threshold gradients

QAT’s threshold gradients (FakeQuant)

28

© Copyright 2020 Xilinx

Distributions after TQT retraining

29

© Copyright 2020 Xilinx

Results

30

© Copyright 2020 Xilinx

github.com/Xilinx/graffitist

31

© Copyright 2020 Xilinx

Tool for Neural Net Optimizations

32

Input Graph
Output Graph

--transforms

Intermediate Graphspattern

matcher

pattern

manipulator

<transform 1> <transform 2> <transform 3>

© Copyright 2020 Xilinx

Quantization Layer for TQT (unfused)

33

© Copyright 2020 Xilinx

Layer Precisions

Conv/FC

Eltwise Add

Concat

Avgpool

34

© Copyright 2020 Xilinx

BatchNorm folding (adopt best practices from Jacob et al., 2017)

 Ensure folded batch norms in training and inference graphs are mathematically equivalent

 Apply batch norm corrections (reduce training jitter by switching between batch and moving
average statistics)

 Freeze batch norm moving mean and variance updates post convergence for improved
accuracy

Explicitly merging input scales for scale preserving ops such as concat, bias-

add, eltwise-add, and maximum (for leaky relu)

Collapsing concat-of-concat layers into single concat, splicing identity nodes

Modeling average pool layers as depthwise conv layers with reciprocal

multiplier as weights to enable quantization

Graph Optimizations

35

© Copyright 2020 Xilinx

Thank You

© Copyright 2020 Xilinx

Backup

37

© Copyright 2020 Xilinx

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

Training

Platform (TF)

Dataset

Input Graph

TQT - Components

38

© Copyright 2020 Xilinx

Static Mode

Input Graph

Quantized

Inference Graph
Calibration Set

Training

Platform (TF) *.ckpt

Quantized

Training Graph

*.pb, *.ckpt

Dataset

39

© Copyright 2020 Xilinx

*.pb, *.ckpt

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 1: Train on the original input graph (or use pre-trained weights)

Training

Platform (TF)

Dataset

Input Graph

Retrain Mode

40

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 2: Generate quantized training graph; calibrate thresholds

*.pb, *.ckpt

41

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 3: Retrain quantized training graph (learn weights & thresholds)

*.pb, *.ckpt

TQT Retraining

42

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 4: Generate quantized inference graph for compiler

*.pb, *.ckpt

43

