

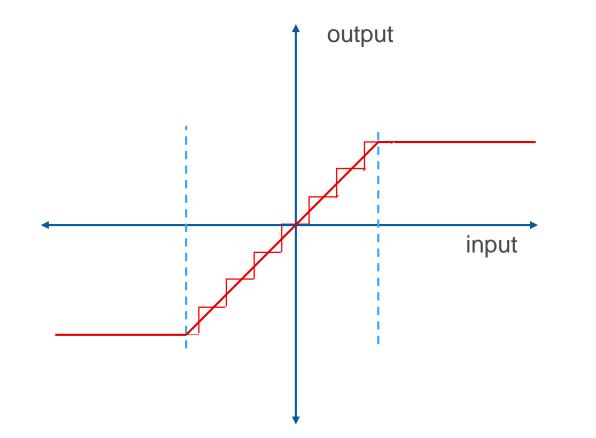
Trained Quantization Thresholds (TQT)

for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks

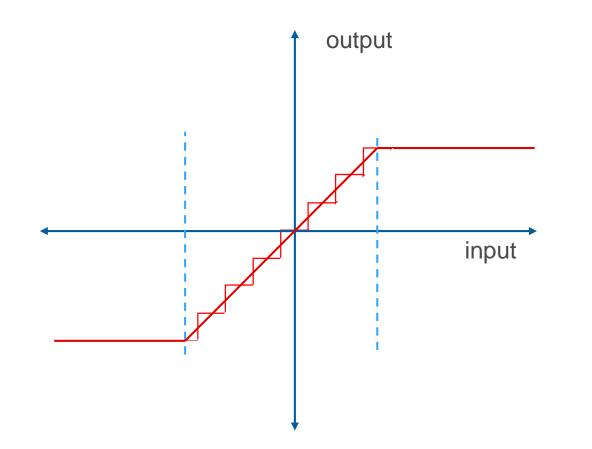
Sambhav Jain^{^*}, Albert Gural^{#*}, Michael Wu[^], Chris Dick[^]

[^]Xilinx Inc., [#]Stanford University (*equal contribution)

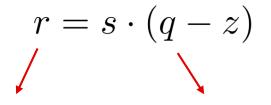
March 3, 2020


© Copyright 2020 Xilinx

Background & Motivation

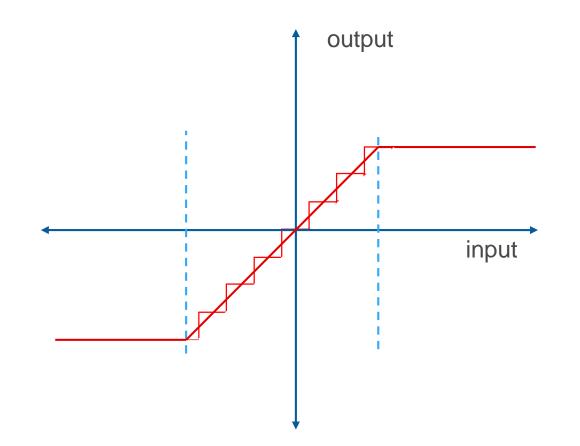


Uniform Quantization

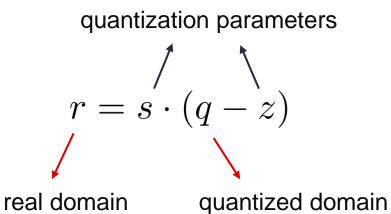


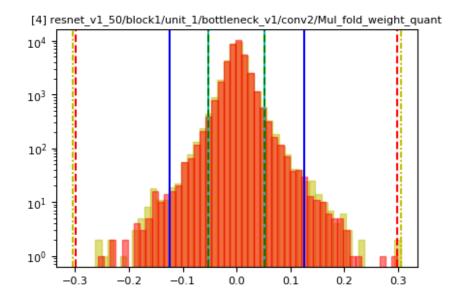
Uniform Quantization

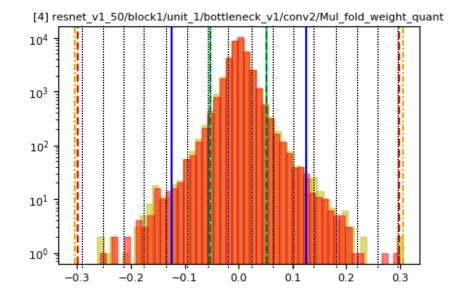
Affine Mapping

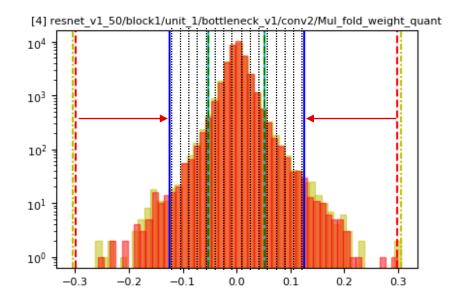


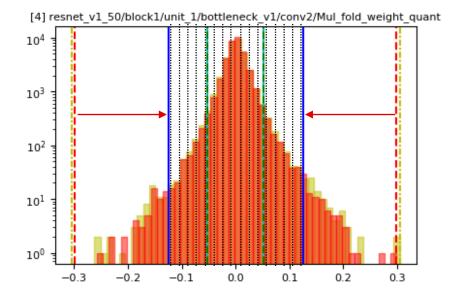
real domain


quantized domain


Uniform Quantization


Affine Mapping




Say 4-bit quantizer

- 16 quantization levels
- Clipping thresholds: dotted red lines (min, max)
- Poor utilization of available precision

Say 4-bit quantizer

- 16 quantization levels
- Clipping thresholds: blue lines
- Better utilization of available precision

Statistical Methods

Calibration KL divergence minimization SQNR maximization Percentile / nSD initialization

. . .

Gradient Descent Methods

Google's QAT (Jacob et al., 2017) IBM's PACT (Choi et al., 2018) Xilinx's TQT (Jain et al., 2019)

General case

Special case


Hardware Friendliness

Accuracy (Easy Network)

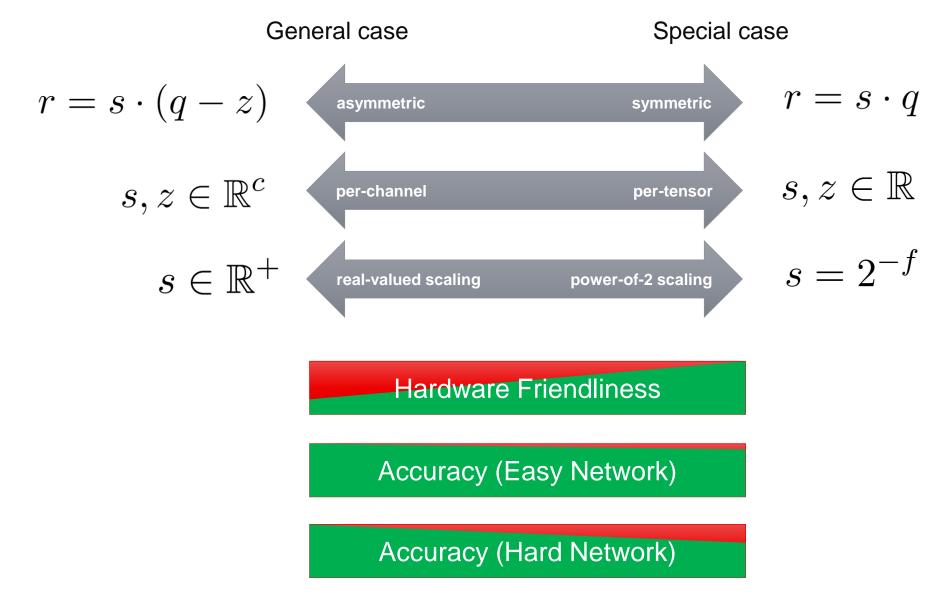
Accuracy (Hard Network)

© Copyright 2020 Xilinx

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)



Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

MobileNets are hard to quantize

real-valued scaling						
	←					
Network	Asymmetric,	Symmetric ,	Asymmetric,	Symmetric,	Floating Point	
	per-layer	per-channel	per-layer	per-channel		
	(Post Training	(Post Training	(Quantiza-	(Quantiza-		
	Quantization)	Quantization)	tion Aware	tion Aware		
			Training)	Training)		
Mobilenet-v1_1_224	0.001	0.591	0.70	0.707	0.709	
Mobilenet-v2_1_224	0.001	0.698	0.709	0.711	0.719	
Nasnet-Mobile	0.722	0.721	0.73	0.73	0.74	
Mobilenet-v2_1.4_224	0.004	0.74	0.735	0.745	0.749	
Inception-v3	0.78	0.78	0.78	0.78	0.78	
Resnet-v1_50	0.75	0.751	0.75	0.75	0.752	
Resnet-v2_50	0.75	0.75	0.75	0.75	0.756	
Resnet-v1_152	0.766	0.762	0.765	0.762	0.768	
Resnet-v2_152	0.761	0.76	0.76	0.76	0.778	

Degrees of Freedom

asymmetric	symmetric
per-channel	per-tensor
real-valued scaling	power-of-2 scaling

Hardware Friendliness

(Krishnamoorthi, 2018)

MobileNets are hard to quantize

real-valued scaling							
\leftarrow							
Network	Asymmetric,	Symmetric ,	Asymmetric,	Symmetric,	Floating Point		
	per-layer	per-channel	per-layer	per-channel			
	(Post Training	(Post Training	(Quantiza-	(Quantiza-			
	Quantization)	Quantization)	tion Aware	tion Aware			
			Training)	Training)			
Mobilenet-v1_1_224	0.001	0.591	0.70	0.707	0.709		
Mobilenet-v2_1_224	0.001	0.698	0.709	0.711	0.719		
Nasnet-Mobile	0.722	0.721	0.73	0.73	0.74		
Mobilenet-v2_1.4_224	0.004	0.74	0.735	0.745	0.749		
Inception-v3	0.78	0.78	0.78	0.78	0.78		
Resnet-v1_50	0.75	0.751	0.75	0.75	0.752		
Resnet-v2_50	0.75	0.75	0.75	0.75	0.756		
Resnet-v1_152	0.766	0.762	0.765	0.762	0.768		
Resnet-v2_152	0.761	0.76	0.76	0.76	0.778		

Degrees of Freedom

asymmetric	symmetric
per-channel	per-tensor
real-valued scaling	power-of-2 scaling

Hardware Friendliness

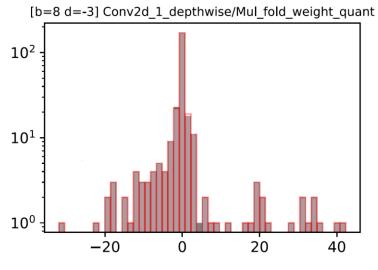
(Krishnamoorthi, 2018)

MobileNets are hard to quantize

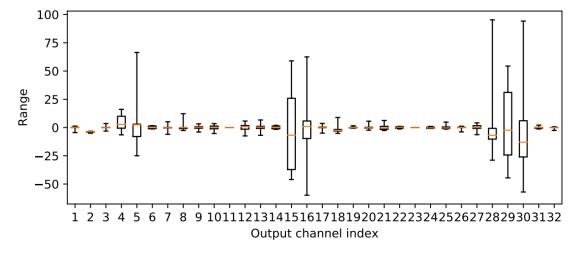
real-valued scaling						
	←					
Network	Asymmetric,	Symmetric ,	Asymmetric,	Symmetric,	Floating Point	
	per-layer	per-channel	per-layer	per-channel		
	(Post Training	(Post Training	(Quantiza-	(Quantiza-		
	Quantization)	Quantization)	tion Aware	tion Aware		
			Training)	Training)		
Mobilenet-v1_1_224	0.001	0.591	0.70	0.707	0.709	
Mobilenet-v2_1_224	0.001	0.698	0.709	0.711	0.719	
Nasnet-Mobile	0.722	0.721	0.73	0.73	0.74	
Mobilenet-v2_1.4_224	0.004	0.74	0.735	0.745	0.749	
Inception-v3	0.78	0.78	0.78	0.78	0.78	
Resnet-v1_50	0.75	0.751	0.75	0.75	0.752	
Resnet-v2_50	0.75	0.75	0.75	0.75	0.756	
Resnet-v1_152	0.766	0.762	0.765	0.762	0.768	
Resnet-v2_152	0.761	0.76	0.76	0.76	0.778	

Degrees of Freedom

4


asymmetric	symmetric
per-channel	per-tensor
real-valued scaling	power-of-2 scaling

Hardware Friendliness


(Krishnamoorthi, 2018)

MobileNets are hard to quantize – Why?

Weight distribution in first depthwise separable layer of MobileNet v1

Dynamic range of weights (per-channel) in first depthwise separable layer of MobileNet v2 (Nagel et al., 2019)

With TQT: MobileNets can be quantized well

Method PrecisionQuantization SchemeTop-1MobileNet v1 1.0 224 $7\overline{0.9}$ $\overline{FP32}$ $7\overline{0.9}$ QATINT8per-channel, symmetric, real scaling $\overline{PP32}$ $\overline{PP32}$ TQT $\overline{FP32}$ $7\overline{1.1}$ $\overline{PP32}$ per-tensor, symmetric, p-of-2 scaling $\overline{PP32}$ $\overline{P1.1}$ $\overline{PP32}$ $\overline{71.9}$ OURS $\overline{FP32}$ $7\overline{1.9}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
QAT INT8 per-channel, symmetric, real scaling 70.7 TQT $FP32$ per-tensor, asymmetric, real scaling 70.0 TQT $FP32$ $71.1per-tensor, symmetric, p-of-2 scaling 71.1MobileNet v2 1.0 224FP32$ 71.9
$\begin{array}{c c} INT8 & per-tensor, asymmetric, real scaling 70.0 \\ \hline TQT & FP32 \\ INT8 & per-tensor, symmetric, p-of-2 scaling 71.1 \\ \hline MobileNet v2 1.0 224 \\ \hline FP32 & 71.9 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
OURS $\overline{FP32}$
Ours $\overline{FP32}$
ours FP32 71.9
0015
QAT INT8 per-channel, symmetric, real scaling 71.1
INT8 per-tensor, asymmetric, real scaling 70.9
$\overline{FP32}$ $7\overline{1.7}$
IQI INT8 per-tensor, symmetric, p-of-2 scaling 71.8

per-channel	per-tensor
real-valued scaling	power-of-2 scaling

Hardware Friendliness

Trained Quantization Thresholds

Forward Pass

$$q(x;s) := \operatorname{clip}\left(\left\lfloor \frac{x}{s} \right\rceil; n, p\right) \cdot s$$

where
$$n = -2^{b-1}$$
, $p = 2^{b-1} - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^{b-1}}$ for signed data; $n = 0$, $p = 2^b - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^b}$ for unsigned data.

Backward Pass

Forward Pass

$$q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil \cdot s & \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p, \\ n \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil < n, \\ p \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil > p. \end{cases}$$

where $n = -2^{b-1}$, $p = 2^{b-1} - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^{b-1}}$ for signed data; n = 0, $p = 2^b - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^b}$ for unsigned data.

Backward Pass

Forward Pass

$$q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil \cdot s & \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p, \\ n \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil < n, \\ p \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil > p. \end{cases}$$

where $n = -2^{b-1}$, $p = 2^{b-1} - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^{b-1}}$ for signed data; n = 0, $p = 2^b - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^b}$ for unsigned data.

Backward Pass

E XILINX

$$\frac{\partial}{\partial x} \lfloor x \rceil = \frac{\partial}{\partial x} \lceil x \rceil = 1, \text{ but } \lfloor x \rceil \neq x \text{ and } \lceil x \rceil \neq x \text{ (Straight-Through Estimator)}$$

In the backward pass, approximate gradients of round/ceil to 1, without approximating round/ceil to be identity © Copyright 2020 Xilinx

Forward Pass

$$q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil \cdot s & \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p, \\ n \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil < n, \\ p \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil > p. \end{cases}$$

$$\nabla_{s}q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil - \frac{x}{s} \\ n \\ p \\ \end{cases} \quad \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p \\ \text{if } \left\lfloor \frac{x}{s} \right\rceil < n \\ \text{if } \left\lfloor \frac{x}{s} \right\rceil < p \\ \text{if } \left\lfloor \frac{x}{s} \right\rceil > p \end{cases}$$

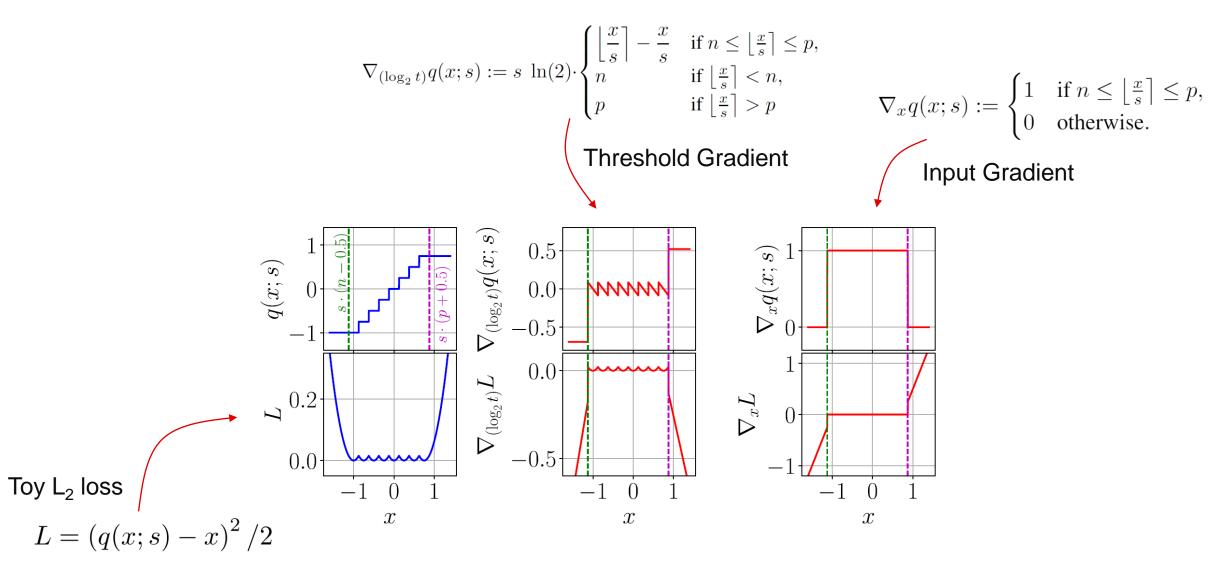
where $n = -2^{b-1}$, $p = 2^{b-1} - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^{b-1}}$ for signed data; n = 0, $p = 2^b - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^b}$ for unsigned data.

$$\frac{\partial}{\partial x} \lfloor x \rceil = \frac{\partial}{\partial x} \lceil x \rceil = 1, \text{ but } \lfloor x \rceil \neq x \text{ and } \lceil x \rceil \neq x \text{ (Straight-Through Estimator)}$$

Forward Pass

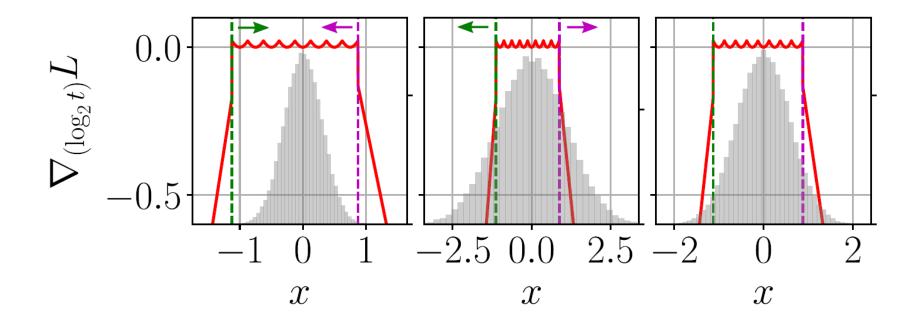
$$q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil \cdot s & \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p, \\ n \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil < n, \\ p \cdot s & \text{if } \left\lfloor \frac{x}{s} \right\rceil > p. \end{cases}$$

$$\nabla_{s}q(x;s) := \begin{cases} \left\lfloor \frac{x}{s} \right\rceil - \frac{x}{s} & \text{if } n \leq \left\lfloor \frac{x}{s} \right\rceil \leq p \\ n & \text{if } \left\lfloor \frac{x}{s} \right\rceil < n \\ p & \text{if } \left\lfloor \frac{x}{s} \right\rceil > p \end{cases}$$


Deelsward Dees

where $n = -2^{b-1}$, $p = 2^{b-1} - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^{b-1}}$ for signed data; n = 0, $p = 2^b - 1$ and $s = \frac{2^{\lceil \log_2 t \rceil}}{2^b}$ for unsigned data.

$$\nabla_x q(x;s) := \begin{cases} 1 & \text{if } n \le \left\lfloor \frac{x}{s} \right\rceil \le p, \\ 0 & \text{otherwise.} \end{cases}$$


$$\frac{\partial}{\partial x} \lfloor x \rceil = \frac{\partial}{\partial x} \lceil x \rceil = 1, \text{ but } \lfloor x \rceil \neq x \text{ and } \lceil x \rceil \neq x \text{ (Straight-Through Estimator)}$$

Transfer Curves

Range Precision Trade-off

 $\log_2 t \coloneqq \log_2 t - \alpha \cdot \nabla_{\log_2 t} L$ (Update Rule)

Clipped Threshold Gradients

PACT's threshold gradients:

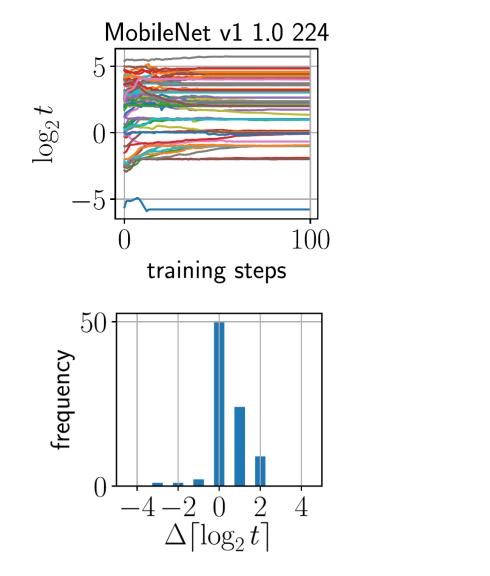
$$\frac{\partial y_q(x;\alpha)}{\partial \alpha} = \begin{cases} 0 & x \in (-\infty,\alpha) \\ 1 & x \in [\alpha, +\infty) \end{cases}$$

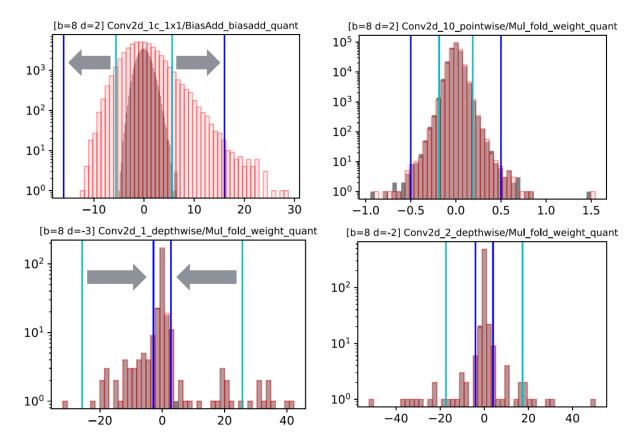
Clipped Threshold Gradients

PACT's threshold gradients

$$\frac{\partial y_q(x;\alpha)}{\partial \alpha} = \begin{cases} 0 & x \in (-\infty,\alpha) \\ 1 & x \in [\alpha, +\infty) \end{cases}$$

QAT's threshold gradients (FakeQuant)


$$\begin{array}{c} (a,1) \\ (a,u,x) \\ ($$



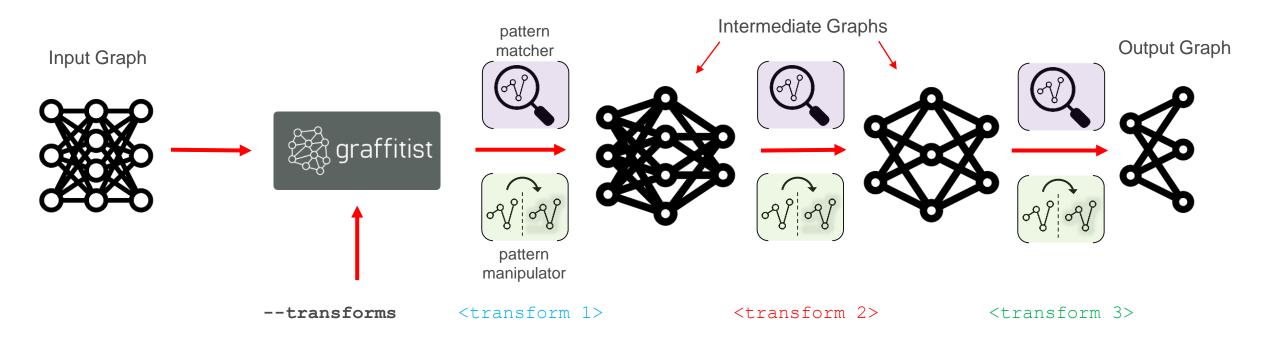
x

x

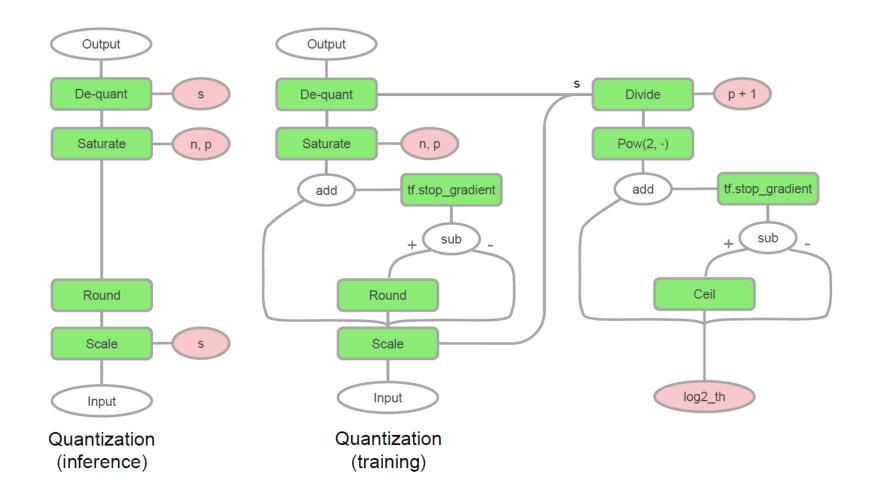
Distributions after TQT retraining

Results

Mo	ode	Precision	Bit-width	Accur	acy (%)	Epochs
			(W/A)	top-1	top-5	
		MobileNe	et v1 1.0 22	24		
			32/32	$\overline{71.0}$	90.0	
Static		INT8	8/8	0.6	3.6	
	wt	$\overline{FP32}$	32/32	$\overline{71.1}$	90.0	3.4
Retrain	wt	INT8	8/8	67.0	87.9	4.6
keti	wt,th	INT8	8/8	71.1	90.0	2.1
	wt,th	INT4	4/8	—	—	
		MobileNe	et v2 1.0 22	24		
			32/32	$\overline{70.1}$	89.5	
Static		INT8	8/8	0.3	1.2	
	wt		32/32	71.7	90.7	3.2
Retrain	wt	INT8	8/8	68.2	89.0	2.7
keti	wt,th	INT8	8/8	71.8	90.6	2.2
Ľ.	wt,th	INT4	4/8	_	_	



github.com/Xilinx/graffitist



Tool for Neural Net Optimizations

Quantization Layer for TQT (unfused)

Layer Precisions

Conv/FC

$$q_8\left(q'_{16}\left(\sum\left(q_{8/4}(w)\cdot q_8(x)\right)\right) + q'_{16}(b)\right)$$

Avgpool

 $q_8\left(\sum\left(q_8(r)\cdot q_8(x)\right)\right)$

Eltwise Add

 $concat(q'_8(x), q'_8(y), q'_8(z))$

 $q_8 \left(q_8'(x) + q_8'(y) \right)$

Concat

Graph Optimizations

BatchNorm folding (adopt best practices from Jacob et al., 2017)

- Ensure folded batch norms in training and inference graphs are mathematically equivalent
- Apply batch norm corrections (reduce training jitter by switching between batch and moving average statistics)
- Freeze batch norm moving mean and variance updates post convergence for improved accuracy
- Explicitly merging input scales for scale preserving ops such as concat, biasadd, eltwise-add, and maximum (for leaky relu)
- Collapsing concat-of-concat layers into single concat, splicing identity nodes
- Modeling average pool layers as depthwise conv layers with reciprocal multiplier as weights to enable quantization

XILINX.

Thank You

© Copyright 2020 Xilinx

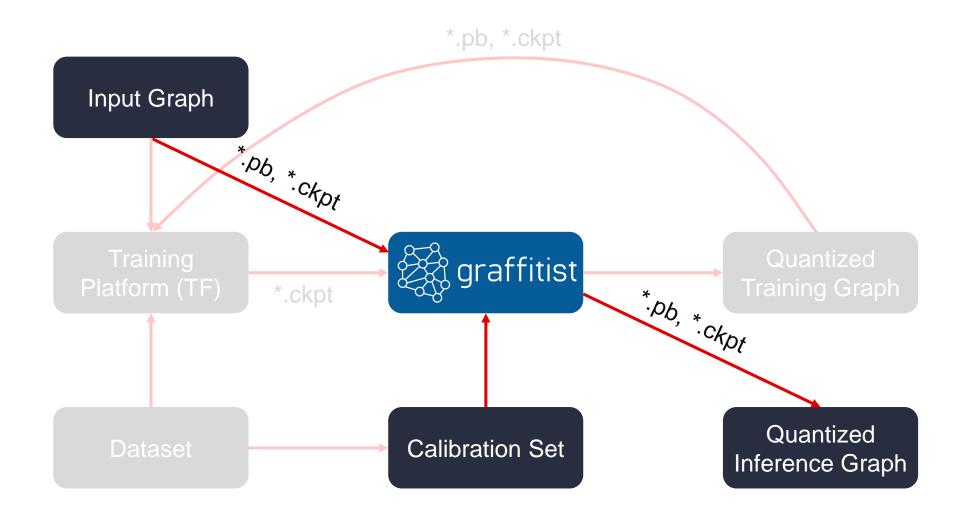
Backup

TQT - Components

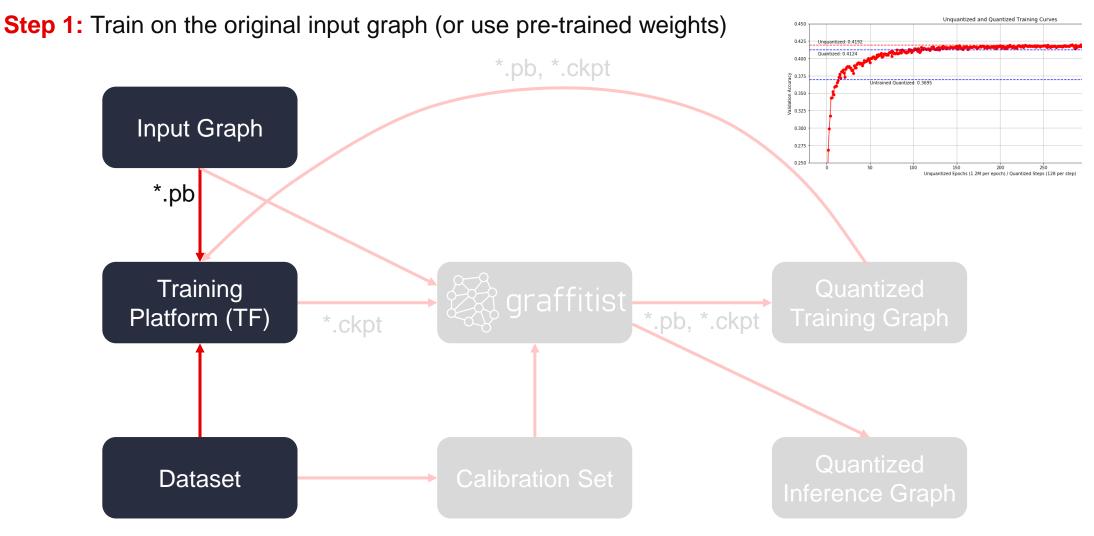
Input Graph

Training Platform (TF)

Quantized Training Graph


Dataset

Calibration Set


Quantized Inference Graph

