
© Copyright 2020 Xilinx

Trained Quantization Thresholds (TQT)

for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks

Sambhav Jain^*, Albert Gural#*, Michael Wu^, Chris Dick^

^Xilinx Inc., #Stanford University (*equal contribution)

March 3, 2020



© Copyright 2020 Xilinx

Background & Motivation

2



© Copyright 2020 Xilinx

Uniform Quantization

input

output

3



© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

4



© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

quantization parameters

5



© Copyright 2020 Xilinx

Threshold Selection
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Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: dotted red lines (min, max)

 Poor utilization of available precision

Threshold Selection
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Threshold Selection 
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Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: blue lines

 Better utilization of available precision
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Threshold Selection 

1 Statistical Methods

Calibration

KL divergence minimization

SQNR maximization

Percentile / nSD initialization

…

2 Gradient Descent Methods

Google’s QAT (Jacob et al., 2017)

IBM’s PACT (Choi et al., 2018)

Xilinx’s TQT (Jain et al., 2019)

…
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Quantizer “Degrees of Freedom”
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MobileNets are hard to quantize
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MobileNets are hard to quantize
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MobileNets are hard to quantize – Why?

Dynamic range of weights (per-channel) in first depthwise

separable layer of MobileNet v2 (Nagel et al., 2019)

Weight distribution in first depthwise

separable layer of MobileNet v1
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With TQT: MobileNets can be quantized well
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Trained Quantization Thresholds
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Implementation

Forward Pass Backward Pass
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Implementation
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Implementation

Backward PassForward Pass

(Straight-Through Estimator)
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In the backward pass, approximate gradients of round/ceil to 1, without approximating round/ceil to be identity
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Implementation

Backward PassForward Pass

(Straight-Through Estimator)
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non-zero!
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Implementation

Backward PassForward Pass
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non-zero!



© Copyright 2020 Xilinx

Transfer Curves

Threshold Gradient
Input Gradient

Toy L2 loss
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Range Precision Trade-off

(Update Rule)
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Clipped Threshold Gradients

PACT’s threshold gradients:
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Clipped Threshold Gradients

PACT’s threshold gradients

QAT’s threshold gradients (FakeQuant)
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Distributions after TQT retraining
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Results
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github.com/Xilinx/graffitist
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Tool for Neural Net Optimizations
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Input Graph
Output Graph

--transforms

Intermediate Graphspattern

matcher

pattern

manipulator

<transform 1> <transform 2> <transform 3>
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Quantization Layer for TQT (unfused)
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Layer Precisions

Conv/FC

Eltwise Add

Concat

Avgpool
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BatchNorm folding (adopt best practices from Jacob et al., 2017)

 Ensure folded batch norms in training and inference graphs are mathematically equivalent

 Apply batch norm corrections (reduce training jitter by switching between batch and moving 
average statistics)

 Freeze batch norm moving mean and variance updates post convergence for improved 
accuracy

Explicitly merging input scales for scale preserving ops such as concat, bias-

add, eltwise-add, and maximum (for leaky relu)

Collapsing concat-of-concat layers into single concat, splicing identity nodes

Modeling average pool layers as depthwise conv layers with reciprocal 

multiplier as weights to enable quantization

Graph Optimizations
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Thank You
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Backup
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Static Mode
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*.pb, *.ckpt
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Step 1: Train on the original input graph (or use pre-trained weights)

Training 

Platform (TF)

Dataset

Input Graph

Retrain Mode
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Retrain Mode
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Step 2: Generate quantized training graph; calibrate thresholds
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Retrain Mode
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Step 3: Retrain quantized training graph (learn weights & thresholds)
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TQT Retraining
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Step 4: Generate quantized inference graph for compiler
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