
Fast and Generic Collectives for Distributed ML

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee
Jorgen Thelin, Nikhil R. Devanur, Ion Stoica

1

DNNs empower state-of-the-art results across many different applications

2

Image Classification

Speech Recognition Game Playing

Robot Control

Speed-up DNN training: Data Parallelism

3

Data parallel training speed-up on
ImageNet-1K dataset*

Significantly reduce
training time

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

Speed-up DNN training: Data Parallelism

4

Data parallel training speed-up on
ImageNet-1K dataset*

Significantly reduce
training time

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

5

Data parallel training speed-up on
ImageNet-1K dataset*

Significantly reduce
training time

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

Model Synchronization
∇W = ∇W1 + ∇W2 + ⋯ + ∇WN

∇W1

Speed-up DNN training: Data Parallelism
∇W2

∇W3 ∇W4

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

Despite many performance optimizations, model synchronization
is a big overhead in data parallel training on cloud servers

Multi-GPU scaling performance
using TensorFlow*

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018 6

>50% communication
overhead

Multi-GPU scaling performance
using TensorFlow*

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019
*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018

7

>50% communication
overhead

Up to 90%
communication

overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^

Despite many performance optimizations, model synchronization
is a big overhead in data parallel training on cloud servers

Multi-GPU scaling performance
using TensorFlow*

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019
*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018

8

>50% communication
overhead

Model synchronization is a big overhead in data parallel training
despite many performance optimizations

Up to 90%
communication

overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^

To alleviate communication bottlenecks,
recently there have been

big improvements in hardware and software.

State of the art (hardware)

NVIDIA DGX-1 NVIDIA DGX-2

9

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

• Faster Interconnects

PCIe 3.0 (x16) ~10GB/s
• Shared

NVLink
• Point-to-point
• 1st Gen (P100) ~18GB/s
• 2nd Gen (V100) ~ 23GB/s

11

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

• Faster Interconnects

PCIe 3.0 (x16) ~10GB/s
• Shared

NVLink
• Point-to-point
• 1st Gen (P100) ~18GB/s
• 2nd Gen (V100) ~ 23GB/s

NVSwitch
• Fully connected crossbar
• 6x NVLink 2nd Gen Bandwidth

~130GB/s

12

State of the art (software)

Ring-based collective communication protocols
13

NCCL
(Nvidia Collective Communication Library)

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

14

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

15

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

16

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

17

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

18

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

19

Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)

20

State of the art (software)

Ring-based collective communication protocols
21

NCCL
(Nvidia Collective Communication Library)

Can these hardware & software improvements
alleviate communication bottleneck

in data-parallel training?

22

Can these hardware & software improvements
alleviate communication bottleneck

in data-parallel training?

Not Really

23

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box
24

There are many different 4 GPU
allocations with a server

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box
25

High communication overheads even with
state-of-the-art hardware (NVLink) and

software (NCCL)

4 GPU allocation with highest overhead

4 GPU allocation with lowest overhead

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

26

High communication overheads is consistent
across different number of workers and

for a range of DNNs

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

27

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

Communication overheads become
more pronounced with increasing GPU

computation power.Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

High communication overheads is consistent
across different number of workers and

for a range of DNNs

28

High communication overheads consistent
across different number of workers and

for a range of DNNs

Communication overheads become
more pronounced with increasing GPU

computation power.Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

We need Faster Collective Communication Protocols.

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

Talk Outline

• Motivation
• Challenges to achieving faster collective communication
• Design
• Evaluation

29

Challenge 1: Different server configurations

30

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

DGX1-P100 (NVLink 1st Gen, ~18GB/s) DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Challenge 1: Different server configurations

Protocols needs to be topology aware to effectively use hardware links.

31

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

DGX1-P100 (NVLink 1st Gen, ~18GB/s) DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Challenge 2: Link heterogeneity

NVLink topologyPCIe topology

32

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

GPU3GPU0

Ring-based collectives can only utilize homogeneous links.

GPU1

Challenge 2: Link heterogeneity

NVLink topologyPCIe topology

33

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

GPU3GPU0

Ring-based collectives can only utilize homogeneous links.

GPU1

Why not heterogeneous links?
e.g. PCIe will be bottleneck if included in a NVLink ring

Challenge 3: Fragmentation in multi-tenant clusters

Examples of fragmented allocation
(8GPU job across 2 servers)

3 + 5
2 + 6

34

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Challenge 3: Fragmentation in multi-tenant clusters

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs
must embrace fragmentation to avoid queuing delays.

Why fragmentation?

35

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

36

Irregular topo. à no ring

Existing solutions (NCCL) fall back to
PCIe if they cannot form a NVLink ring.

36

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Challenge 3: Fragmentation in multi-tenant clusters

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs
must embrace fragmentation to avoid queuing delays.

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

Ring-based collective communication protocols

37

BLINK
38

Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

Talk Outline

• Motivation
• Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

• Design
• Evaluation

39

How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Blink

Probe available links at job run time

40

How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Link heterogeneity

Blink

Probe available links at job run time

Concurrent data transfer over
heterogenous links

41

How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over
heterogenous links

Spanning trees (v.s. Rings) are more
flexible and optimal.

42

How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over
heterogenous links

Spanning trees (v.s. Rings) are more
flexible and optimal.

More NCCL-compatible API, seamless
integration with TF, PyTorch, etc.

43

Blink workflow

44

Blink workflow

45

Broadcast comparison (Trees v.s. Rings)

46

6-GPU topology

Broadcast comparison (Trees v.s. Rings)

Broadcast from GPU3

47

Unused link

NCCL 2 rings

Broadcast comparison (Trees v.s. Rings)

48

Blink 3 Spanning trees

3 Spanning trees > 2 Rings

Use All the links available à Optimal

Broadcast from GPU3

TreeGen: packing max. spanning trees
• Given available topology, pack max. unidirectional spanning trees.

49

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Packing unidirectional spanning trees

TreeGen: packing max. spanning trees

50

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Maximize the sum of
bandwidth usage
among all links

Constrain: amount of BW usage
should not exceed ANY link capacity
when packing multiple trees

Packing unidirectional spanning trees

Optimization problem

• Given available topology, pack max. unidirectional spanning trees.

TreeGen: packing max. spanning trees

51

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Optimization problem Too many trees!
181 spanning trees for

8-GPU DGX-1V

Constrain: amount of BW usage
should not exceed ANY link capacity
when packing multiple trees

Packing unidirectional spanning trees

• Given available topology, pack max. unidirectional spanning trees.

Data size per-tree is too small
to fully saturate link BW.

Maximize the sum of
bandwidth usage
among all links

TreeGen: packing max. spanning trees

52

Optimization problem Approximate packing

approxi
mation Either a tree use

ALL BW of a link,
or not use it.

181 trees for
8GPU DGX-1V

6 trees for
8GPU DGX-1V

approximation

• Given available topology, pack max. unidirectional spanning trees.

TreeGen
• Given available topology, pack max. unidirectional spanning trees
• Direct support for one-to-many/many-to-one primitives
• e.g. Reduce, Broadcast, etc.

Reduce

Broadcast

53

TreeGen
• Given available topology, pack max. unidirectional spanning trees
• Direct support for one-to-many/many-to-one primitives
• e.g. Reduce, Broadcast, etc.

Reduce

Broadcast

• Extend to many-to-many primitives (e.g. AllReduce)
• Pick a root node, reduce towards root, then broadcast in reverse direction.

Reduce à
Broadcast ß AllReduce

54

TreeGen for NVSwitch (DGX-2)

55

TreeGen for NVSwitch (DGX-2)

56

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

TreeGen for NVSwitch (DGX-2)

57

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

1

TreeGen for NVSwitch (DGX-2)

58

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

2

TreeGen for NVSwitch (DGX-2)

59

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

3

TreeGen for NVSwitch (DGX-2)

60

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

4

TreeGen for NVSwitch (DGX-2)

61

• DGX-2 single-hop tree

NVSwitch

GPU1

Reduce 1-hop tree introduces
Min. latency

GPU2 GPU3 GPU 4

4GPU Reduce

TreeGen for NVSwitch (DGX-2)

62

• DGX-2 single-hop tree

NVSwitch

GPU1

Reduce 1-hop tree introduces
Min. latency

GPU2 GPU3 GPU 4

AllReduce à Reduce, Broadcast
For N GPUs,

N 1-hop trees, with each tree responsible for 1/N data.

Broadcast

Blink workflow

63

CodeGen
• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency

64

CodeGen

65

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency

CodeGen

66

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

CodeGen

67

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

CodeGen

68

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

CodeGen

69

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

Blink design recap

• Packing spanning trees while minimizing trees
• Single hop trees for DGX-2 (NVSwitch)

• Chunking, pipelining transfers for max link utilization
• Auto chunk size selection with MIAD

• GPU stream reuse for fair sharing of links
• PCIe + NVLink Hybrid transfers
• Support for multi-machine collectives

70

Drop-in NCCL replacement (load-time, no code recompile)

Talk Outline

• Motivation
• Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

• Design
• Evaluation
• AllReduce and Broadcast Microbenchmarks
• End-to-end improvements
• Benefits of One-Hop Trees over Rings or Double Binary trees
• Rest of the extensive evaluation à refer to the paper

71

Microbenchmarks (DGX-1V)

72

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology AllReduce

Microbenchmarks (DGX-1V)

73

AllReduce

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology

NCCL2 (2 rings)

Microbenchmarks (DGX-1V)

74

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology

NCCL2 (2 rings)

Blink (3 spanning trees)

AllReduce

Microbenchmarks (DGX-1V)

75

AllReduce
(up to 8x speed-up, 2x geo-mean)

Microbenchmarks (DGX-1V)

Broadcast (up to 6x speed-up, 2x geo-mean)

AllReduce (up to 8x speed-up, 2x geo-mean)
76

End-to-end Benchmarks (DGX-1V)

77

Blink end-to-end Communication time reduction (ImageNet1K)

up to 87% Communication
time reduction (51% avg.)

End-to-end Benchmarks (DGX-1V)

78
Blink end-to-end training time reduction (ImageNet1K)

Blink end-to-end Communication time reduction (ImageNet1K)

up to 87% Communication
time reduction (51% avg.)

up to 40% end-to-end
training time reduction

Microbenchmarks (DGX-2)

16 GPU AllReduce

Throughput
(up to 3.5x speed-up)

Latency
(Up to 3.32x reduction)

79
Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.

• Topology heterogeneity results in link underutilization for collectives.

• Blink packs spanning trees for optimal link utilization

• Auto-generates one-to-all, all-to-one, all-to-all collectives
• Broadcast, AllReduce, etc.

• Faster collective communication than NCCL
• Up to 6x faster Broadcast (2x geo-mean)
• Up to 8x faster AllReduce (2x geo-mean)
• Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on

DGX-1 machines.

Guanhua Wang guanhua@cs.berkeley.edu

80

Back-ups

81

TreeGen

• Handle hybrid communication (e.g. PCIe & NVLink)
• Balance amount of data transfer over different link types based on link bandwidth.
• Take link type switching (i.e. disable_peer_access) latency into account.

82

TreeGen

• Multi-server transfers

83

Multiple DGX-1s DNN Training

• 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
• Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)
• Projection with 100/400 Gbps inter-server bandwidth, highlight

Blink’s advantage.

84

