BLINK

Fast and Generic Collectives for Distributed ML

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee

Jorgen Thelin, Nikhil R. Devanur, lon Stoica

l _ Microsoft’
riselab WISCONSIN Research

DNNs empower state-of-the-art results across many different applications

Image Classification Robot Control

% Hey Siri
A

amazonalexa
N

eCeo

0+ AlphaGo

L ToL

Speech Recognition Game Playing

Time to train, hours

Speed-up DNN training: Data Parallelism

Data parallel training speed-up on
ImageNet-1K dataset™

Significantly reduce
training time

. 51
0 L] | E— ———
1 16 32 64

Number of nodes

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

Speed-up DNN training: Data Parallelism

Data parallel training speed-up on
ImageNet-1K dataset™

Significantly reduce
training time

160 150

0
(=)

[=2]
[s»]

Time to train, hours

I

Number of nodes

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

Speed-up DNN training: Data Parallelism

vw! VW2
Data parallel training speed-up on “
ImageNet-1K dataset™

Significantly reduce
training time
vws3 vwe

- . 1 ——>
L1 — —
1 16 32 64

Number of nodes

160 150

0
(=)

(=2
o

Time to train, hours

I

Model Synchronization
VW =VW1+ VW2 + ... + VWN

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

Despite many performance optimizations, model synchronization
IS a big overhead in data parallel training on cloud servers

Training with synthetic data on NVIDIA® Pascal™ GPUs

18,000.0
16,000.0 >50% communication
14,000.0 overhead

3 12,000.0

< 10,000.0
Q

& 8,000.0
£
= 6,000.0
4,000.0
—]
8 16 32 64 128

0.0
1

Multi-GPU scaling performance

i using TensorFlow*
—
8 16 32 64

128

1

Inception V3 ResNet-101
Number of GPUs and model name

M Distributed TensorFlow Oldeal

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018 6

Despite many performance optimizations, model synchronization
IS a big overhead in data parallel training on cloud servers

Training with synthetic data on NVIDIA® Pascal™ GPUs
18,000.0
16,000.0
14,000.0

o 12,000.0
< 10,000.0
(<]
& 8,000.0
E 6,000.0
4,000.0 i
2,000.0
0 == =" ;
1 8 16 32 64 128 1 8 16 32 64 128
Inception V3 ResNet-101
Number of GPUs and model name
M Distributed TensorFlow Oldeal
—&— AlexNet —— VGG-16 —8— ResNet-50 —¥— GNMT-8 —&— GNMT-16
ET)\IOO——— — —'— —%Qmo ————————————— 'y
2.5 80 2.5 80 =%
Z3 60 = & 2 60
. S 40 . 2 40 —
& o g o
E2 20 £° 20
oxX o XX
O <~ 0 T T T T (@ 0 T T T T v
12 4 8 16 32 12 4 8 16 32
Number of GPUs Number of GPUs

>50% communication

overhead

Multi-GPU scaling performance
using TensorFlow*

Up to 90%

communication
overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch”

APipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019
*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018

Model synchronization is a big overhead in data parallel training
despite many performance optimizations

To alleviate communication bottlenecks,

recently there have been
big improvements in hardware and software.

NVIDIA DGX-2

)

1

NVIDIA DGX-

State of the art (hardware

What is inside?

* Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

What is inside?

Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

Faster Interconnects

PCle 3.0 (x16) ~10GB/s
e Shared

NVLink

* Point-to-point

e 1stGen (P100) ~18GB/s
e 2nd Gen (V100) ~ 23GB/s

NVIDIA" NVLink"

>

NVIDIA.

11

What is inside?

* Computation * Faster Interconnects
NVIDIA P100: 5.3 Tera-FLOPs PCle 3.0 (x16) ~10GB/s NVIDIA® NVLink”
Double Precision e Shared
L
NVIDIA V100: 7.8 Tera-FLOPs NVLink
Double Precision * Point-to-point 5
<
e 1stGen (P100) ~18GB/s

. 2nd Gen (V100) ~ 23GB/s

NVSwitch

e Fully connected crossbar

* 6x NVLink 2" Gen Bandwidth
~130GB/s

State of the art (software)

NCCL

(Nvidia Collective Communication Library)

O
<
NVIDIA.

Ring-based collective communication protocols

gloo

13

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2

—

Topology Ring Broadcast (from GPUO)

GPU3

14

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2

- -

—

Topology Ring Broadcast (from GPUO)

GPU3

15

Ring-based collectives (e.g. Broadcast)

GPUO

Topology Ring Broadcast (from GPUO)

GPU3

16

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2 GPU3

.]
—

—

Topology Ring Broadcast (from GPUO)

17

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2

Topology Ring Broadcast (from GPUO)

GPU3

[] l
—
—)

18

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2

Topology Ring Broadcast (from GPUO)

GPU3

19

Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2 GPU3

Topology Ring Broadcast (from GPUO)

20

State of the art (software)

NCCL

(Nvidia Collective Communication Library)

O
<
NVIDIA.

Ring-based collective communication protocols

gloo

21

Can these hardware & software improvements
alleviate communication bottleneck
in data-parallel training?

Can these hardware & software improvements
alleviate communication bottleneck
in data-parallel training?

Not Really

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

e(%)

%

network

B AlexNet

B ResNet18
B ResNet50
®m VGG

N
o

o

Communication Percenta
N w N
o o o
.
—
I
]

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

There are many different 4 GPU
allocations with a server

24

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

e(%)

N w -b-gU'I
o o o o

Communication Percenta
o

o

m

/ 4 GPU allocation with highest overhead]
High communication overheads even with

state-of-the-art hardware (NVLink) and
software (NCCL)

network

B AlexNet
B ResNet18
8 ResNet50
® VGG

4GPU

4 GPU allocation with lowest overhead J

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

25

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

DGX1-V100

e(%)

%

High communication overheads is consistent

i
o

network across different number of workers and
- s Aexlet for a range of DNNs

m -

8 ResNet50
® VGG

o

Communication Percenta
o 8 8
D

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

26

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

o

Communication overheads become

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

9 DGX1-V100

0

§4O High communication overheads is consistent
% network across different number of workers and
a 30 _

= - 2 RedNets for a range of DNNs

820 i _ - S ResNets0

S A -

c 10

=)

£

£

o

o

more pronounced with increasing GPU
computation power.

Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

27

High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

We need Faster Collective Communication Protocols.

Talk Outline

* Motivation
* Challenges to achieving faster collective communication
* Design

e Fvaluation

29

Challenge 1: Different server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2 Gen, ~23GB/s)

Challenge 1: Different server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2 Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.

31

Challenge 2: Link heterogeneity

PCle topology

NVLink topology

Ring-based collectives can only utilize homogeneous links.

32

Challenge 2: Link heterogeneity

PCle topology NVLink topology

Ring-based collectives can only utilize homogeneous links.

Why not heterogeneous links?
e.g. PCle will be bottleneck if included in a NVLink ring

33

Challenge 3: Fragmentation in multi-tenant clusters

" 25% e e e e e e e e e e e e e e e e
=

.220% ..
15% e . .-
o 10% 4.

Percentage of
Multi-GPU
o
N

4 5 6 7 8
of GPUs

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Examples of fragmented allocation
(8GPU job across 2 servers)
3+5
2+6

34

Challenge 3: Fragmentation in multi-tenant clusters

" 25% e
=

.azo% e
15% AR P R M .
Z 10% -
5% -

Percentage of
GPU

Mult

o
N

4 5 6 7 8
of GPUs

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs

must embrace fragmentation to avoid queuing delays.

35

Challenge 3: Fragmentation in multi-tenant clusters

25% -
20% -
15% -
= 10% -
5% -
0% -

jobs

=)

GP

Percentage of

Mult

2 4 5 6 7 8
of GPUs

Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation? I Irregular topo. = no ring

Many cluster schedulers are not topology-aware. Existing solutions (NCCL) fall back to

PCle if they cannot form a NVLink ring.
Without support for efficient migration, DNN jobs

must embrace fragmentation to avoid queuing delays. 36

Can we do better than state-of-the-art?

.. q|00 Topology Heterogeneity

. 1. Different server configurations
2. Link heterogeneity

n 3. Fragmentation in multi-tenant clusters

<3

Uber
NVIDIA.

Ring-based collective communication protocols

37

Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

BLINK

38

Talk Outline

* Motivation

* Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

* Design
e Evaluation

39

How Blink handles topology heterogeneity

Topology Heterogeneity Blink

— Probe available links at job run time

Different server configurations

40

How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Different server configurations — Probe available links at job run time
: : Concurrent data transfer over
Link heterogeneity — :
heterogenous links

41

How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Different server configurations — Probe available links at job run time
— Concurrent data transfer over
heterogenous links

— Spanning trees (v.s. Rings) are more
flexible and optimal.

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

42

How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Probe available links at job run time

Different server configurations

Link heterogeneity

Concurrent data transfer over

heterogenous links

Fragmentation in multi-tenant clusters Spanning trees (v.s. Rings) are more
(irregular topology) flexible and optimal.

NCCL-compatible API, seamless
integration with TF, PyTorch, etc.

Blink workflow

Filter & TreeGen

Topology Topology R
Discovery
Assigned
GPUs

Scheduler

Trees

CodeGen

libBlink.so

S+

Main
Program

44

Blink workflow

Topology ! \ Trees
Tgpology » Filter & TreeGen F——»
Discovery ! !
Assigned
GPUs
Scheduler

CodeGen

libBlink.so

S+

Main
Program

45

Broadcast comparison (Trees v.s. Rings)

6-GPU topology

Broadcast comparison (Trees v.s. Rings)

Broadcast from GPU3

4--x--->

Unused link

NCCL 2 rings

47

Broadcast comparison (Trees v.s. Rings)
‘Broadeast from GPU3

Blink 3 Spanning trees

3 Spanning trees > 2 Rings

Use All the links available = Optimal

48

TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

@ @ GPU2/+ GPU3

Topology Packing unidirectional spanning trees

49

TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

@ @ GPU2/+ GPU3

Topology Packing unidirectional spanning trees
Optimization problem Maximize the sum of
maXZW,‘ . bandwidth usage
i

among all links

such that Ve € E,ZK,- xW; < Ce
i Constrain: amount of BW usage

| ifeeT. | should not exceed ANY link capacity
) l

where K; = , when packing multiple trees
0, otherwise

50

TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

GPU2 "GPU3 GPU2 [GPU3

Topology Packing unidirectional spanning trees
_ Maximize the sum of Too many trees!
maxzwi . bandwidth usage 181 spanning trees for
i among all links 8-GPU DGX-1V

such that Ve € E,ZKi*Wi < Ce
i Constrain: amount of BW usage

—— should not exceed ANY link capacity

1, ifeeT; : :
where K; = , when packing multiple trees
0, otherwise Data size per-tree is too small

to fully saturate link BW.

51

TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

maxZw,—) 181 trees for
i . 8GPU DGX-1V
maxZw,

suchthat Ve € E.) K;*xw; < ¢, P i=1 .
’z,-" appro such that VeEE,ZK,-*w,- <c approtatlon
: Either a tree use

where 6 {1, ifeeT; vwie{0,1} | » ALLBW ofa link, F————
0, otherwise {1, ifec7;, Ornotuseit 8GPU DGX-1V
where K; =

B 0, otherwise

mation

52

TreeGen

* Given available topology, pack max. unidirectional spanning trees

* Direct support for one-to-many/many-to-one primitives
* e.g. Reduce, Broadcast, etc.

Reduce

Broadcast

53

TreeGen

* Given available topology, pack max. unidirectional spanning trees

* Direct support for one-to-many/many-to-one primitives

* e.g. Reduce, Broadcast, etc.

Reduce

e Extend to many-to-many primitives (e.g. AllReduce)

Broadcast

* Pick a root node, reduce towards root, then broadcast in reverse direction.

Reduce =
Broadcast €

. di . d1d2 . d1pd2dd3

GPU4
‘ @ @
d1Bd2d3P da

d1Pd2Pd3P d4 d1pd2Dd3P da

AllIReduce

54

TreeGen for NVSwitch (DGX-2)

TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

NVSwitch

4GPU Reduce
(G1->G4)

TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

4GPU Reduce
(G1->G4)

TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

4GPU Reduce
(G1->G4)

TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

WVSwitch ‘ 3

4GPU Reduce
(G1->G4)

TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

A

4GPU Reduce
(G1->G4)

60

TreeGen for NVSwitch (DGX-2)

* DGX-2 single-hop tree
T. T Reduce 1-hop tree introduces
NVSwitch Min. latency

4GPU Reduce

61

TreeGen for NVSwitch (DGX-2)

* DGX-2 single-hop tree

Tl T Reduce 1-hop tree introduces
NVSwitch Min. latency
\ l Broadcast

/

AllReduce = Reduce, Broadcast

For N GPUs,
N 1-hop trees, with each tree responsible for 1/N data.

Blink workflow

| | libBlink.so
Topology Topology Trees | - Main

Discovery

» Filter & TreeGen ———» CodeGen
: Program

Assigned
GPUs

Scheduler

63

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:
e Pipelining data chunks to reduce latency

GPU1 -> GPU2 5 GPU2 -> GPU3 sem GPU3 -> GHU4

w/o
chunking

w/
chunking

64

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:
* Pipelining data chunks to reduce latency

L 1GPU1 -> GPU2 [GPU2 -> GPU3 sa® GPU3 -> GAU4

w/o
chunking

w/
chunking

What chunk size to use?

* Too small, cannot fully utilize BW
* Too big, high latency

65

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD

1 GPU1 > GPU2 £ GPU2 > GPU3 mam GPUS - GHu4 (multiple-increase, additive-decrease)

o 10 ,
W/O. .E 8 I +ChUﬂkSl‘Z€ ... < -
chunking v E 0
-l
g 2 % 1o /
w/ = - 0 S
chunking i | 2 | 3 | 4 | S
iteration number
100 _» ‘> 4

What chunk size to use?

Throughput
(GBY/s)
[\ FLNe))

O -

8 _.,mr:[:hroug.h.pu,t

0 t T 1) 1 1
2 3 4 5

* Too small, cannot fully utilize BW
 Too b|g’ h|gh Iatency iteration number

66

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD
I GPU1 > GPU2 5 GPU2 > GPU3 mmm GPUS - GRA (multiple-increase, additive-decrease)
A 10
W/O. .g 8 N +ChUﬂkSIZ€ ... =
chunking ©w ~§4
=~ 24
C= SR
o W/k. g \—/O L T
chunking @) 1 5
h h k si 3 = 188 I - 3
What chunk size to use: B g0 e
%D E 40 *Thl‘()llgh‘pllt
2 S
* Too small, cannot fully utilize BW = ; > 3 4 5
e Too blg, hlgh Iatency iteration number

67

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD

1 GPU1 -> GPU2 555 GPU2 > GPU3 mmm GPU3 > GHU4 (multiple-increase, additive-decrease)

10
Chl\:\;lllc()ing .§ Ag S — +ChUﬂkSl‘Z€ ... <
=~ 24
g % S — /
chuvr\:/king 6 0 ' ' '
1 2 4 5
iteration number
hat chunk si 2 ER s
What chunk size to use: R ———
%n E 40 "'""Throughput
2 o
* Too small, cannot fully utilize BW = :) 3 4 s
 Too b|g’ h|gh Iatency iteration number

68

CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency
MIAD

1 GPU1 -> GPU2 555 GPU2 > GPU3 mmm GPU3 > GHU4 (multiple-increase, additive-decrease)

o 10
W/O_ .E 8 I +Ch11ﬂk gl.ze ...
chunking = a 6
=z
g 2 % |l / t
w/ = = O >r—
chunking (@)

1 3 5
1terat10n number

h h k i 3 = 188 - - -
What chunk size to use: 60 e 4
%054218 ~Tisbughput
=
s = =70 - . - -
* Too small, cannot fully utilize BW = ; 5 3 4 5
e Too blg, hlgh Iatency iteration number

69

Blink design recap

* Packing spanning trees while minimizing trees
 Single hop trees for DGX-2 (NVSwitch)

* Chunking, pipelining transfers for max link utilization
e Auto chunk size selection with MIAD

e GPU stream reuse for fair sharing of links
* PCle + NVLink Hybrid transfers

e Support for multi-machine collectives

Drop-in NCCL replacement (load-time, no code recompile)

70

Talk Outline

* Motivation

* Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

* Design

* Evaluation
* AlIReduce and Broadcast Microbenchmarks
* End-to-end improvements
* Benefits of One-Hop Trees over Rings or Double Binary trees
* Rest of the extensive evaluation = refer to the paper

71

Microbenchmarks (DGX-1V)

mBlink mNCCL 2

Topology AllIReduce

Microbenchmarks (DGX-1V)

mBlink mNCCL 2

Topology AllIReduce

&

/ \
/

Kol
—

~
S<
e

O

NCCL2 (2 rings)

73

Microbenchmarks (DGX-1V)

mBlink mNCCL 2 * I

e

NCCL2 (2 rings)

/\

é

Topology AllIReduce

Blink (3 spanning trees)

74

70

Microbenchmarks (DGX-1V)

%
v

0 ¢
b‘\

5-

6
Ne)

5-

?a

2

©
»

e

[|
5
7y
Q

():?

AllReduce
(up to 8x speed-up, 2x geo-mean)
A
SANCE
R

A
c-?.

o*
N

Allocated GPU IDs

mBlink mNCCL 2
4,5,6,7

0000000
\O <t o N -

w
(s/gD)mdysnoryy,

ONCCL 2

. .
60 + Blink

70

Microbenchmarks (DGX-1V)

140 =
N — -
100 +----=-=- e o
580 o S e - 3 .
= » & i
5 60 {ll--------------- P e el Nt
- L _ . : o : .

E 40 . - = R . SRR O R - -~ S — — — ey — - - . —— == [- - [I = - [- -
-
o Ll mninin il sl sl nl 0 | 1 1 1 il N 11 n
’\'\’\’\b’\’\’\’\'\’\b'\’\b’\‘o‘;b’\'\’\'\’\’\’\b’\'\’\b‘y’\'\’\’\’\’\’\b’\'\b A A S
PRSP PN N SIS SN SPL 0" p 2 a2 02" el SIENCARNCIPA SN LN LN S N PR PR PR o SRl 272" ‘0 R
NCAPSSPRCEN bf> r\;? S '\f’ q:, 2 \5 NSRS e \'» Q&ﬂ;{)&\?“p ,:)‘p bb‘\ b‘\ﬁb‘ el ,}u by b‘\(} b ?f; NeiNe) 5‘2 “)b‘ ﬁ)b‘ ,5?‘ ‘2 »X ,5‘?‘ % ?‘3%?‘? S
Allocated GPU IDs
Broadcast (up to 6x speed-up, 2x geo-mean)

0 Tom

60 __EBl_ml_(___ I
50 JENCCL2 S il E A f i i i i G i s A i e NP | |
A e o B | - - o e I
= 40
0N 1| | e B | | i | N e o | 1 I "ty | Sl | Sy B || - L TL 1L | i -~
520 Nz =M sa & & & -t s s =M=t 1t= 1=ttt - - - -

0 10 Hl|- et R T T PP 1L -1 2 BRIEN IR IE - - - -

§ 0 - 1 10 1T 010 117 N 10 N0 1h 15 0 117 O sl s 0 o nllis]
=
S RO 6‘0 B U R e A AN @“;f '\“;9 S N R O R S S

o ‘ﬂ ﬁ;* f};q q,./ f»q’ q’q' \ ‘\-« q ‘\ \-. \ ‘\-« b‘a (\’q o q/ \?‘ﬂ \.‘ \f‘;ﬁ \f:\ > \f} (» Q‘.\\ n\?‘ﬂ ﬁ.\?‘ﬁ q/?‘ﬁ (\,.(. f::-. q::}ﬂ (':Jﬁ \?(ﬁ \/':Jﬁ ﬁ:}” 0\?‘-« G\?‘w ?‘ﬁ
VENTANTNTNTNTNT QT QT QT VY @
Allocated GPU IDs Q-
76

AllReduce (up to 8x speed-up, 2x geo-mean)

End-to-end Benchmarks (DGX-1V)

. 100%
WResNetl8 -Z 2 80%
OResNet50 = = 00% up to 87% Communication
S E 40% - _ .
OAlexNet 3 E 20% I_m J'm i{h time reduction (51% avg.)
() g Y 0% [-
VGG16 B B

N ”\\\ gq\k -3_ (A
\' ("'m.-' "
\,\\\w)\\ O\ -f\)\\\'l
(16\ ©

Blink end-to-end Communication time reduction (ImageNet1K)

D .bj G naY \’\ \,\\,

77

End-to-end Benchmarks (DGX-1V)

. 100%
WResNetl8 = £ 80%
OResNet50 = = 0% up to 87% Communication
S E 40% - - : :
BAlexNet 3 £ 20% H‘ﬂ Jm time reduction (51% avg.)
avGGlé & S 0% —————————‘1——
‘\ M) o\) WS
\)_\ \0 \)\\\ \\ \Q)\\\\) ‘\\,, p Q’Af 2 . .— \ % \)_, b\
2O \\ \)\ U\’\ \,\\ \\(¥ \\\ »7

Blink end-to-end Communlcatlon time reduction (ImageNet1K)

WResNetl8 £ g %
(| g ; 40%
EIReSNetSO -9 up to 40% end-to-end
T £ sV
AlexNet 3 § bl - training time reduction
OvGGle 0%
o)) Y 6N Y 6 Y 6M Y 6N 109\3 %0?\3 N\@s\

0322
36?\3 3090 A,G?\) & AQ?\); ?\) \\ \)80 o 2090 23

Blink end-to-end training time reduction (ImageNet1K)
78

Microbenchmarks (DGX-2)

16 GPU AllReduce

(GB/s)

~o- NCCL —a—Blink

il ~o NCCL —a—Blink

VRV V VRV VRV RV VAR DR LRI R
Throughput Latency
(up to 3.5x speed-up) (Up to 3.32x reduction)

Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.

79

BLINK

Guanhua Wang guanhua@cs.berkeley.edu

* Topology heterogeneity results in link underutilization for collectives.

* Blink packs spanning trees for optimal link utilization

* Auto-generates one-to-all, all-to-one, all-to-all collectives
* Broadcast, AllIReduce, etc.

* Faster collective communication than NCCL
» Up to 6x faster Broadcast (2x geo-mean)
* Up to 8x faster AllIReduce (2x geo-mean)

* Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on
DGX-1 machines.

80

Back-ups

TreeGen

* Handle hybrid communication (e.g. PCle & NVLink)

* Balance amount of data transfer over different link types based on link bandwidth.

* Take link type switching (i.e. disable _peer access) latency into account.

Objective Tpcre + Tupa = ThvL
D:oral X BWpcye

— Dpcie = —
“" BWpcro + BWyyr

Tiapa X BWpcre X BWyy,
BWpcie +BWnyL

Dnvi =Dyotar — Dpcle

TreeGen

* Multi-server transfers

GPUI L GPU1 L By, =By 1+B;,+B; 3+B; 4 By, =B, 1+B,,+B, 3+B, 4

A, A, Ay Ay,

Bll B12 BZl BZI

Cl.l C1.2 c2.1 CZZ

D4 D, Dy, D,,

Az Ara Ay Ay,

B13 B14, BZ3 82.4

c13 c14 C23 c24

D3 Dy4 D3 Dy,] .
GPU3 GPU4 \GPU3—GPU4/ Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2

Machine 1 Machine 2

Data partitions Phase 1: local reduce Phase 2: cross-machine reduce-bcast Phase 3: local broadcast

Figure 10: Three-phase AllReduce protocol for cross-machine settings. Data item X, , refers to data partition X on server m and
GPU g. Each data partition has a distinct server-local root. The figure above shows the reduction (function is denoted as +) for
partition B which has a root at GPU?2. Similar protocol is followed for other data partitions.

83

Multiple DGX-1s DNN Training

1000 40
,8 ENCCL Z 30 BNCCL
£500 %250 0 Blink
& I Blink Z23°
E 0 = 10 ﬂ
S & 40Gbps 100Gbps 400Gbps
e . Cross-machine bandwidth
Q. Q. ross-mac -
(a) Using 2 DGX-1Vs (b) AllReduce Projections

* 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
* Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)

* Projection with 100/400 Gbps inter-server bandwidth, highlight
Blink’s advantage.

84

