BLINK

Fast and Generic Collectives for Distributed ML

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee Jorgen Thelin, Nikhil R. Devanur, Ion Stoica

DNNs empower state-of-the-art results across many different applications

Image Classification

Speech Recognition

Game Playing

Speed-up DNN training: Data Parallelism

* <u>https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems</u>

Speed-up DNN training: Data Parallelism

* <u>https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems</u>

Speed-up DNN training: Data Parallelism

Model Synchronization $\nabla W = \nabla W^1 + \nabla W^2 + \dots + \nabla W^N$

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

Despite many performance optimizations, model synchronization is a big overhead in data parallel training on cloud servers

Despite many performance optimizations, model synchronization is a big overhead in data parallel training on cloud servers

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018

Model synchronization is a big overhead in data parallel training despite many performance optimizations

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018

NVIDIA DGX-1

NVIDIA DGX-2

State of the art (hardware)

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs Double Precision

NVIDIA V100: 7.8 Tera-FLOPs Double Precision

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs Double Precision

NVIDIA V100: 7.8 Tera-FLOPs Double Precision

• Faster Interconnects

PCIe 3.0 (x16) ~10GB/s

• Shared

NVLink

- Point-to-point
- 1st Gen (P100) ~**18**GB/s
- 2nd Gen (V100) ~ **23**GB/s

What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs Double Precision

NVIDIA V100: 7.8 Tera-FLOPs Double Precision

• Faster Interconnects

PCIe 3.0 (x16) ~10GB/s

• Shared

NVLink

- Point-to-point
- 1st Gen (P100) ~**18**GB/s
- 2nd Gen (V100) ~ **23**GB/s

NVSwitch

- Fully connected crossbar
- 6x NVLink 2nd Gen Bandwidth ~130GB/s

State of the art (software)

NCCL

(Nvidia Collective Communication Library)

Ring-based collective communication protocols

Topology

Topology

Topology

Topology

Topology

Topology

Topology

State of the art (software)

NCCL

(Nvidia Collective Communication Library)

Ring-based collective communication protocols

Can these hardware & software improvements alleviate communication bottleneck in data-parallel training? Can these hardware & software improvements alleviate communication bottleneck in data-parallel training?

Not Really

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

High communication overheads is consistent across different number of workers and for a range of DNNs

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

High communication overheads is consistent across different number of workers and for a range of DNNs

Communication overheads become more pronounced with increasing GPU computation power.

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

DGX1-V100

We need Faster Collective Communication Protocols.

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box computation power.

Talk Outline

- Motivation
- Challenges to achieving faster collective communication
- Design
- Evaluation

Challenge 1: Different server configurations

DGX1-P100 (NVLink 1st Gen, ~18GB/s)

DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Challenge 1: Different server configurations

DGX1-P100 (NVLink 1st Gen, ~18GB/s)

DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.

Challenge 2: Link heterogeneity

Ring-based collectives can only utilize homogeneous links.

Challenge 2: Link heterogeneity

NVLink topology

Ring-based collectives can only utilize homogeneous links.

Why not heterogeneous links? e.g. PCIe will be bottleneck if included in a NVLink ring

Challenge 3: Fragmentation in multi-tenant clusters

Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Examples of fragmented allocation (8GPU job across 2 servers) 3 + 5 2 + 6

Challenge 3: Fragmentation in multi-tenant clusters

Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs must embrace fragmentation to avoid queuing delays.

Challenge 3: Fragmentation in multi-tenant clusters

Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs must embrace fragmentation to avoid queuing delays.

Irregular topo. \rightarrow no ring

Existing solutions (NCCL) fall back to PCIe if they cannot form a NVLink ring.
Can we do better than state-of-the-art?

100

Ring-based collective communication protocols

Topology Heterogeneity

- 1. Different server configurations
- 2. Link heterogeneity
- 3. Fragmentation in multi-tenant clusters

Can we do better than state-of-the-art?

Topology Heterogeneity

- 1. Different server configurations
- 2. Link heterogeneity
- 3. Fragmentation in multi-tenant clusters

Talk Outline

- Motivation
- Challenges to achieving high-performance collective communication
 - 1. Different server configurations
 - 2. Link heterogeneity
 - 3. Fragmentation in multi-tenant clusters
- Design
- Evaluation

Topology Heterogeneity

Blink

Different server configurations

Probe available links at job run time

Blink workflow

Blink workflow

Broadcast comparison (Trees v.s. Rings)

6-GPU topology

Broadcast comparison (Trees v.s. Rings)

NCCL 2 rings

Broadcast comparison (Trees v.s. Rings)

TreeGen

- Given available topology, pack max. unidirectional spanning trees
- Direct support for one-to-many/many-to-one primitives
 - e.g. Reduce, Broadcast, etc.

TreeGen

- Given available topology, pack max. unidirectional spanning trees
- Direct support for one-to-many/many-to-one primitives
 - e.g. Reduce, Broadcast, etc.

- Extend to many-to-many primitives (e.g. AllReduce)
 - Pick a root node, reduce towards root, then broadcast in reverse direction.

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

• With NVSwitch, the connectivity among any subset of GPUs is uniform

(G1->G4)

• NCCL constructs a multi-hop ring.

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

Hop Count

4

• DGX-2 single-hop tree

4GPU Reduce

• DGX-2 single-hop tree

AllReduce → Reduce, Broadcast

For N GPUs, N 1-hop trees, with each tree responsible for 1/N data.

Blink workflow

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Too small, cannot fully utilize BW
- Too big, high latency

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Too small, cannot fully utilize BW
- Too big, high latency

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Too small, cannot fully utilize BW
- Too big, high latency

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Too small, cannot fully utilize BW
- Too big, high latency

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency

- Too small, cannot fully utilize BW
- Too big, high latency

Blink design recap

- Packing spanning trees while minimizing trees
 - Single hop trees for DGX-2 (NVSwitch)
- Chunking, pipelining transfers for max link utilization
 - Auto chunk size selection with MIAD
- GPU stream reuse for fair sharing of links
- PCIe + NVLink Hybrid transfers
- Support for multi-machine collectives

Drop-in NCCL replacement (load-time, no code recompile)

Talk Outline

- Motivation
- Challenges to achieving high-performance collective communication
 - 1. Different server configurations
 - 2. Link heterogeneity
 - 3. Fragmentation in multi-tenant clusters
- Design

Evaluation

- AllReduce and Broadcast Microbenchmarks
- End-to-end improvements
- Benefits of One-Hop Trees over Rings or Double Binary trees
- Rest of the extensive evaluation \rightarrow refer to the paper

Microbenchmarks (DGX-1V)

Microbenchmarks (DGX-1V)

Blink (3 spanning trees)

74

Allocated GPU IDs

75

Microbenchmarks (DGX-1V)

End-to-end Benchmarks (DGX-1V)

End-to-end Benchmarks (DGX-1V)

Blink end-to-end Communication time reduction (ImageNet1K)

Blink end-to-end training time reduction (ImageNet1K)

Microbenchmarks (DGX-2)

16 GPU AllReduce

Throughput (up to 3.5x speed-up)

Latency (Up to 3.32x reduction)

Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.

- Topology heterogeneity results in link underutilization for collectives.
- Blink packs spanning trees for optimal link utilization
- Auto-generates one-to-all, all-to-one, all-to-all collectives
 - Broadcast, AllReduce, etc.
- Faster collective communication than NCCL
 - Up to 6x faster Broadcast (2x geo-mean)
 - Up to 8x faster AllReduce (2x geo-mean)
 - Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on DGX-1 machines.

Back-ups

TreeGen

- Handle hybrid communication (e.g. PCIe & NVLink)
 - Balance amount of data transfer over different link types based on link bandwidth.
 - Take link type switching (i.e. *disable_peer_access*) latency into account.

Objective
$$T_{PCIe} + T_{dpa} = T_{NVL}$$

 $\implies D_{PCIe} = \frac{D_{total} \times BW_{PCIe}}{BW_{PCIe} + BW_{NVL}} - \frac{T_{dpa} \times BW_{PCIe} \times BW_{NVL}}{BW_{PCIe} + BW_{NVL}}$
 $D_{NVL} = D_{total} - D_{PCIe}$

• Multi-server transfers

Figure 10: Three-phase AllReduce protocol for cross-machine settings. Data item $X_{m,g}$ refers to data partition X on server m and GPU g. Each data partition has a distinct server-local root. The figure above shows the reduction (function is denoted as +) for partition B which has a root at GPU2. Similar protocol is followed for other data partitions.

Multiple DGX-1s DNN Training

- 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
- Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)
- Projection with 100/400 Gbps inter-server bandwidth, highlight Blink's advantage.