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DNNs empower state-of-the-art results across many different applications
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Time to train, hours

Speed-up DNN training: Data Parallelism

Data parallel training speed-up on
ImageNet-1K dataset™

Significantly reduce
training time
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Speed-up DNN training: Data Parallelism
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Despite many performance optimizations, model synchronization
IS a big overhead in data parallel training on cloud servers

Training with synthetic data on NVIDIA® Pascal™ GPUs
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Despite many performance optimizations, model synchronization
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Multi-GPU scaling performance
using TensorFlow*

Up to 90%

communication
overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch”
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Model synchronization is a big overhead in data parallel training
despite many performance optimizations

To alleviate communication bottlenecks,

recently there have been
big improvements in hardware and software.
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What is inside?

* Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision




What is inside?

Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

Faster Interconnects

PCle 3.0 (x16) ~10GB/s
e Shared

NVLink

* Point-to-point

e 1stGen (P100) ~18GB/s
e 2nd Gen (V100) ~ 23GB/s

NVIDIA" NVLink"

>

NVIDIA.
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What is inside?

* Computation * Faster Interconnects
NVIDIA P100: 5.3 Tera-FLOPs PCle 3.0 (x16) ~10GB/s NVIDIA® NVLink”
Double Precision e Shared
L
NVIDIA V100: 7.8 Tera-FLOPs NVLink
Double Precision * Point-to-point 5
<
e 1stGen (P100) ~18GB/s

. 2nd Gen (V100) ~ 23GB/s

NVSwitch

e Fully connected crossbar

* 6x NVLink 2" Gen Bandwidth
~130GB/s




State of the art (software)

NCCL

(Nvidia Collective Communication Library)
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Ring-based collective communication protocols

gloo

13



Ring-based collectives (e.g. Broadcast)
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Topology Ring Broadcast (from GPUO)

GPU3
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Ring-based collectives (e.g. Broadcast)

GPUO GPU1 GPU2 GPU3

Topology Ring Broadcast (from GPUO)
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State of the art (software)

NCCL

(Nvidia Collective Communication Library)
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Ring-based collective communication protocols

gloo
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Can these hardware & software improvements
alleviate communication bottleneck
in data-parallel training?



Can these hardware & software improvements
alleviate communication bottleneck
in data-parallel training?

Not Really



High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)
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Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box

There are many different 4 GPU
allocations with a server
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High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)
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Cross-GPU communication
measured as the percentage of
total epoch time when running

within a single 8-GPU DGX-1 box
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High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

DGX1-V100
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High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)
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High communication overheads even with
state-of-the-art hardware (NVLink) and software (NCCL)

We need Faster Collective Communication Protocols.




Talk Outline

* Motivation
* Challenges to achieving faster collective communication
* Design

e Fvaluation
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Challenge 1: Different server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2 Gen, ~23GB/s)



Challenge 1: Different server configurations

DGX1-P100 (NVLink 15t Gen, ~18GB/s) DGX1-V100 (NVLink 2 Gen, ~23GB/s)

Protocols needs to be topology aware to effectively use hardware links.
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Challenge 2: Link heterogeneity

PCle topology

NVLink topology

Ring-based collectives can only utilize homogeneous links.
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Challenge 2: Link heterogeneity

PCle topology NVLink topology

Ring-based collectives can only utilize homogeneous links.

Why not heterogeneous links?
e.g. PCle will be bottleneck if included in a NVLink ring
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Challenge 3: Fragmentation in multi-tenant clusters
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Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Examples of fragmented allocation
(8GPU job across 2 servers)
3+5
2+6
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Challenge 3: Fragmentation in multi-tenant clusters
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Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs

must embrace fragmentation to avoid queuing delays.
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Challenge 3: Fragmentation in multi-tenant clusters
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Within each 8-GPU server, # of GPUs allocated
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation? I Irregular topo. = no ring

Many cluster schedulers are not topology-aware. Existing solutions (NCCL) fall back to

PCle if they cannot form a NVLink ring.
Without support for efficient migration, DNN jobs

must embrace fragmentation to avoid queuing delays. 36



Can we do better than state-of-the-art?

.. q|00 Topology Heterogeneity

. 1. Different server configurations
2. Link heterogeneity

n 3. Fragmentation in multi-tenant clusters

<3

Uber
NVIDIA.

Ring-based collective communication protocols
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Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

BLINK
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Talk Outline

* Motivation

* Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

* Design
e Evaluation
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How Blink handles topology heterogeneity

Topology Heterogeneity Blink

— Probe available links at job run time

Different server configurations
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How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Different server configurations — Probe available links at job run time
: : Concurrent data transfer over
Link heterogeneity — :
heterogenous links
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How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Different server configurations — Probe available links at job run time
— Concurrent data transfer over
heterogenous links

— Spanning trees (v.s. Rings) are more
flexible and optimal.

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)
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How Blink handles topology heterogeneity

Topology Heterogeneity Blink

Probe available links at job run time

Different server configurations

Link heterogeneity

Concurrent data transfer over

heterogenous links

Fragmentation in multi-tenant clusters Spanning trees (v.s. Rings) are more
(irregular topology) flexible and optimal.

NCCL-compatible API, seamless
integration with TF, PyTorch, etc.



Blink workflow

Filter & TreeGen

Topology Topology R
Discovery
Assigned
GPUs

Scheduler

Trees

CodeGen

libBlink.so

S+

Main
Program
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Blink workflow

Topology ! \ Trees
Tgpology » Filter & TreeGen F——»
Discovery ! !
Assigned
GPUs
Scheduler

CodeGen

libBlink.so

S+

Main
Program
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Broadcast comparison (Trees v.s. Rings)

6-GPU topology



Broadcast comparison (Trees v.s. Rings)

Broadcast from GPU3

4--x--->

Unused link

NCCL 2 rings
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Broadcast comparison (Trees v.s. Rings)
‘Broadeast from GPU3

Blink 3 Spanning trees

3 Spanning trees > 2 Rings

Use All the links available = Optimal
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TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

@ @ GPU2/+ GPU3

Topology Packing unidirectional spanning trees
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TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

@ @ GPU2/+ GPU3

Topology Packing unidirectional spanning trees
Optimization problem Maximize the sum of
maXZW,‘ . bandwidth usage
i

among all links

such that Ve € E,ZK,- xW; < Ce
i Constrain: amount of BW usage

| ifeeT. | should not exceed ANY link capacity
) l

where K; = , when packing multiple trees
0, otherwise
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TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

GPU2 "GPU3 GPU2 [ GPU3

Topology Packing unidirectional spanning trees
_ Maximize the sum of Too many trees!
maxzwi . bandwidth usage 181 spanning trees for
i among all links 8-GPU DGX-1V

such that Ve € E,ZKi*Wi < Ce
i Constrain: amount of BW usage

—— should not exceed ANY link capacity

1, ifeeT; : :
where K; = , when packing multiple trees
0, otherwise Data size per-tree is too small

to fully saturate link BW.
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TreeGen: packing max. spanning trees

* Given available topology, pack max. unidirectional spanning trees.

maxZw,— ) 181 trees for
i . 8GPU DGX-1V
maxZw,

suchthat Ve € E. ) K;*xw; < ¢, P i=1 .
’z,-" appro such that VeEE,ZK,-*w,- <c approtatlon
: Either a tree use

where 6 {1, ifeeT; vwie{0,1} | » ALLBW ofa link, F————
0, otherwise {1, ifec7;, Ornotuseit 8GPU DGX-1V
where K; =

B 0, otherwise

mation
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TreeGen

* Given available topology, pack max. unidirectional spanning trees

* Direct support for one-to-many/many-to-one primitives
* e.g. Reduce, Broadcast, etc.

Reduce

Broadcast
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TreeGen

* Given available topology, pack max. unidirectional spanning trees

* Direct support for one-to-many/many-to-one primitives

* e.g. Reduce, Broadcast, etc.

Reduce

e Extend to many-to-many primitives (e.g. AllReduce)

Broadcast

* Pick a root node, reduce towards root, then broadcast in reverse direction.

Reduce =
Broadcast €

. di . d1d2 . d1pd2dd3

GPU4
‘ @ @
d1Bd2d3P da

d1Pd2Pd3P d4 d1pd2Dd3P da

AllIReduce

54




TreeGen for NVSwitch (DGX-2)



TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

NVSwitch

4GPU Reduce
(G1->G4)
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Hop Count

4GPU Reduce
(G1->G4)
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TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

WVSwitch ‘ 3

4GPU Reduce
(G1->G4)




TreeGen for NVSwitch (DGX-2)

* With NVSwitch, the connectivity among any subset of GPUs is uniform

* NCCL constructs a multi-hop ring.

Hop Count

A

4GPU Reduce
(G1->G4)
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TreeGen for NVSwitch (DGX-2)

* DGX-2 single-hop tree
T. T Reduce 1-hop tree introduces
NVSwitch Min. latency

4GPU Reduce
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TreeGen for NVSwitch (DGX-2)

* DGX-2 single-hop tree

Tl T Reduce 1-hop tree introduces
NVSwitch Min. latency
\ l Broadcast

/

AllReduce = Reduce, Broadcast

For N GPUs,
N 1-hop trees, with each tree responsible for 1/N data.



Blink workflow

| | libBlink.so
Topology Topology Trees | - Main

Discovery

» Filter & TreeGen ———» CodeGen
: Program

Assigned
GPUs

Scheduler
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:
e Pipelining data chunks to reduce latency

GPU1 -> GPU2 5 GPU2 -> GPU3 sem GPU3 -> GHU4

w/o
chunking

w/
chunking
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:
* Pipelining data chunks to reduce latency

L 1GPU1 -> GPU2 [ GPU2 -> GPU3 sa® GPU3 -> GAU4

w/o
chunking

w/
chunking

What chunk size to use?

* Too small, cannot fully utilize BW
* Too big, high latency
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD

1 GPU1 > GPU2 £ GPU2 > GPU3 mam GPUS - GHu4 (multiple-increase, additive-decrease)

o 10 ,
W/O. .E 8 I +ChUﬂkSl‘Z€ ............................................... < -
chunking v E 0
-l
g 2 % 1o /
w/ = - 0 S
chunking i | 2 | 3 | 4 | S
iteration number
100 _» ‘> 4

What chunk size to use?

Throughput
(GBY/s)
[\ FLNe))

O -

8 _.,mr:[:hroug.h.pu,t ...................

0 t T 1 ) 1 1
2 3 4 5

* Too small, cannot fully utilize BW
 Too b|g’ h|gh Iatency iteration number
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD
I GPU1 > GPU2 5 GPU2 > GPU3 mmm GPUS - GRA (multiple-increase, additive-decrease)
A 10
W/O. .g 8 N +ChUﬂkSIZ€ ............................................... =
chunking ©w ~§4
=~ 24
C= SR
o W/k. g \—/O L T
chunking @) 1 5
h h k si 3 = 188 I - 3
What chunk size to use: B g0 e
%D E 40 *Thl‘()llgh‘pllt ...................
2 S
* Too small, cannot fully utilize BW = ; > 3 4 5
e Too blg, hlgh Iatency iteration number
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency

MIAD

1 GPU1 -> GPU2 555 GPU2 > GPU3 mmm GPU3 > GHU4 (multiple-increase, additive-decrease)

10
Chl\:\;lllc()ing .§ Ag S — +ChUﬂkSl‘Z€ ............................................... <
=~ 24
g % S — /
chuvr\:/king 6 0 ' ' '
1 2 4 5
iteration number
hat chunk si 2 ER s
What chunk size to use: R ———
%n E 40 "'""Throughput ...................
2 o
* Too small, cannot fully utilize BW = : ) 3 4 s
 Too b|g’ h|gh Iatency iteration number
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CodeGen

* Translate TreeGen output (spanning trees) into real data transfer commands

* CodeGen optimizations:

R Automatic chunk size selection
* Pipelining data chunks to reduce latency
MIAD

1 GPU1 -> GPU2 555 GPU2 > GPU3 mmm GPU3 > GHU4 (multiple-increase, additive-decrease)

o 10
W/O_ .E 8 I +Ch11ﬂk gl.ze ...............................................
chunking = a 6
=z
g 2 % |l / t
w/ = = O >r—
chunking (@)

1 3 5
1terat10n number

h h k i 3 = 188 - - -
What chunk size to use: 60 e 4
%054218 ~Tisbughput
=
s = =70 - . - -
* Too small, cannot fully utilize BW = ; 5 3 4 5
e Too blg, hlgh Iatency iteration number
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Blink design recap

* Packing spanning trees while minimizing trees
 Single hop trees for DGX-2 (NVSwitch)

* Chunking, pipelining transfers for max link utilization
e Auto chunk size selection with MIAD

e GPU stream reuse for fair sharing of links
* PCle + NVLink Hybrid transfers

e Support for multi-machine collectives

Drop-in NCCL replacement (load-time, no code recompile)
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Talk Outline

* Motivation

* Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

* Design

* Evaluation
* AlIReduce and Broadcast Microbenchmarks
* End-to-end improvements
* Benefits of One-Hop Trees over Rings or Double Binary trees
* Rest of the extensive evaluation = refer to the paper
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Microbenchmarks (DGX-1V)

mBlink mNCCL 2

Topology AllIReduce



Microbenchmarks (DGX-1V)

mBlink mNCCL 2

Topology AllIReduce
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NCCL2 (2 rings)
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Microbenchmarks (DGX-1V)

mBlink mNCCL 2 * I

e

NCCL2 (2 rings)

/\

é

Topology AllIReduce

Blink (3 spanning trees)
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70

Microbenchmarks (DGX-1V)
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Microbenchmarks (DGX-1V)
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End-to-end Benchmarks (DGX-1V)
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Blink end-to-end Communication time reduction (ImageNet1K)
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End-to-end Benchmarks (DGX-1V)
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Blink end-to-end Communlcatlon time reduction (ImageNet1K)
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Blink end-to-end training time reduction (ImageNet1K)
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Microbenchmarks (DGX-2)

16 GPU AllReduce

(GB/s)

~o- NCCL —a—Blink

il ~o NCCL —a—Blink

VRV V VRV VRV RV VAR DR LRI R
Throughput Latency
(up to 3.5x speed-up) (Up to 3.32x reduction)

Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.
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BLINK

Guanhua Wang guanhua@cs.berkeley.edu

* Topology heterogeneity results in link underutilization for collectives.

* Blink packs spanning trees for optimal link utilization

* Auto-generates one-to-all, all-to-one, all-to-all collectives
* Broadcast, AllIReduce, etc.

* Faster collective communication than NCCL
» Up to 6x faster Broadcast (2x geo-mean)
* Up to 8x faster AllIReduce (2x geo-mean)

* Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on
DGX-1 machines.
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TreeGen

* Handle hybrid communication (e.g. PCle & NVLink)

* Balance amount of data transfer over different link types based on link bandwidth.

* Take link type switching (i.e. disable _peer access) latency into account.

Objective Tpcre + Tupa = ThvL
D:oral X BWpcye

— Dpcie = —
“" BWpcro + BWyyr

Tiapa X BWpcre X BWyy,
BWpcie +BWnyL

Dnvi =Dyotar — Dpcle




TreeGen

* Multi-server transfers

GPUI L GPU1 L By, =By 1+B;,+B; 3+B; 4 By, =B, 1+B,,+B, 3+B, 4

A, A, Ay Ay,

Bll B12 BZl BZI

Cl.l C1.2 c2.1 CZZ

D4 D, Dy, D,,

Az Ara Ay Ay,

B13 B14, BZ3 82.4

c13 c14 C23 c24

D3 Dy4 D3 Dy, ] .
GPU3 GPU4 \GPU3—GPU4/ Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2

Machine 1 Machine 2

Data partitions Phase 1: local reduce Phase 2: cross-machine reduce-bcast Phase 3: local broadcast

Figure 10: Three-phase AllReduce protocol for cross-machine settings. Data item X, , refers to data partition X on server m and
GPU g. Each data partition has a distinct server-local root. The figure above shows the reduction (function is denoted as +) for
partition B which has a root at GPU?2. Similar protocol is followed for other data partitions.
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Multiple DGX-1s DNN Training

1000 40
,8 ENCCL Z 30 BNCCL
£500 %250 0 Blink
& I Blink Z23°
E 0 = 10 ﬂ
S & 40Gbps  100Gbps 400Gbps
e . Cross-machine bandwidth
Q. Q. ross-mac -
(a) Using 2 DGX-1Vs (b) AllReduce Projections

* 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
* Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)

* Projection with 100/400 Gbps inter-server bandwidth, highlight
Blink’s advantage.
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