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DNNs empower state-of-the-art results across many different applications
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Image Classification

Speech Recognition Game Playing 

Robot Control



Speed-up DNN training: Data Parallelism
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Data parallel training speed-up on 
ImageNet-1K dataset*

Significantly reduce 
training time

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5
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Data parallel training speed-up on 
ImageNet-1K dataset*

Significantly reduce 
training time

* https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems

Model Synchronization
∇W = ∇W1 + ∇W2 + ⋯ + ∇WN

∇W1

Speed-up DNN training: Data Parallelism
∇W2

∇W3 ∇W4

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5


Despite many performance optimizations, model synchronization 
is a big overhead in data parallel training on cloud servers

Multi-GPU scaling performance 
using TensorFlow*

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018 6

>50% communication
overhead



Multi-GPU scaling performance 
using TensorFlow*

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019
*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018
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>50% communication
overhead

Up to 90% 
communication

overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^

Despite many performance optimizations, model synchronization 
is a big overhead in data parallel training on cloud servers



Multi-GPU scaling performance 
using TensorFlow*

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019
*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018
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>50% communication
overhead

Model synchronization is a big overhead in data parallel training
despite many performance optimizations

Up to 90% 
communication

overhead

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^

To alleviate communication bottlenecks,
recently there have been 

big improvements in hardware and software.



State of the art (hardware)

NVIDIA DGX-1 NVIDIA DGX-2
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What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision



What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

• Faster Interconnects

PCIe 3.0 (x16)  ~10GB/s
• Shared

NVLink
• Point-to-point
• 1st Gen (P100)  ~18GB/s
• 2nd Gen (V100) ~ 23GB/s

11



What is inside?

• Computation

NVIDIA P100: 5.3 Tera-FLOPs
Double Precision

NVIDIA V100: 7.8 Tera-FLOPs
Double Precision

• Faster Interconnects

PCIe 3.0 (x16)  ~10GB/s
• Shared

NVLink
• Point-to-point
• 1st Gen (P100)  ~18GB/s
• 2nd Gen (V100) ~ 23GB/s

NVSwitch
• Fully connected crossbar
• 6x NVLink 2nd Gen Bandwidth 

~130GB/s
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State of the art (software)

Ring-based collective communication protocols
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NCCL 
(Nvidia Collective Communication Library)



Ring-based collectives (e.g. Broadcast)

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)
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Ring-based collectives (e.g. Broadcast)

GPU0 GPU1
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Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast (from GPU0)
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State of the art (software)

Ring-based collective communication protocols
21

NCCL 
(Nvidia Collective Communication Library)



Can these hardware & software improvements
alleviate communication bottleneck 

in data-parallel training? 
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Can these hardware & software improvements
alleviate communication bottleneck 

in data-parallel training? 

Not Really
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High communication overheads even with 
state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication 
measured as the percentage of 
total epoch time when running 

within a single 8-GPU DGX-1 box
24

There are many different 4 GPU 
allocations with a server



Cross-GPU communication 
measured as the percentage of 
total epoch time when running 

within a single 8-GPU DGX-1 box
25

High communication overheads even with 
state-of-the-art hardware (NVLink) and 

software (NCCL)

4 GPU allocation with highest overhead

4 GPU allocation with lowest overhead

High communication overheads even with 
state-of-the-art hardware (NVLink) and software (NCCL)
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High communication overheads is consistent 
across different number of workers and

for a range of DNNs

High communication overheads even with 
state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication 
measured as the percentage of 
total epoch time when running 

within a single 8-GPU DGX-1 box
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High communication overheads even with 
state-of-the-art hardware (NVLink) and software (NCCL)

Communication overheads become 
more pronounced with increasing GPU 

computation power.Cross-GPU communication 
measured as the percentage of 
total epoch time when running 

within a single 8-GPU DGX-1 box

High communication overheads is consistent 
across different number of workers and

for a range of DNNs
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High communication overheads consistent 
across different number of workers and

for a range of DNNs

Communication overheads become 
more pronounced with increasing GPU 

computation power.Cross-GPU communication 
measured as the percentage of 
total epoch time when running 

within a single 8-GPU DGX-1 box

We need Faster Collective Communication Protocols.

High communication overheads even with 
state-of-the-art hardware (NVLink) and software (NCCL)



Talk Outline

• Motivation
• Challenges to achieving faster collective communication
• Design
• Evaluation
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Challenge 1: Different server configurations

30

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

DGX1-P100 (NVLink 1st Gen, ~18GB/s) DGX1-V100 (NVLink 2nd Gen, ~23GB/s)



Challenge 1: Different server configurations

Protocols needs to be topology aware to effectively use hardware links.
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

DGX1-P100 (NVLink 1st Gen, ~18GB/s) DGX1-V100 (NVLink 2nd Gen, ~23GB/s)



Challenge 2: Link heterogeneity

NVLink topologyPCIe topology
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

GPU3GPU0

Ring-based collectives can only utilize homogeneous links.

GPU1



Challenge 2: Link heterogeneity

NVLink topologyPCIe topology
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

GPU3GPU0

Ring-based collectives can only utilize homogeneous links.

GPU1

Why not heterogeneous links?
e.g. PCIe will be bottleneck if included in a NVLink ring



Challenge 3: Fragmentation in multi-tenant clusters

Examples of fragmented allocation 
(8GPU job across 2 servers)

3 + 5
2 + 6

34

Within each 8-GPU server, # of GPUs allocated 
to 40,000 multi-GPU jobs at Microsoft.



Challenge 3: Fragmentation in multi-tenant clusters

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs 
must embrace fragmentation to avoid queuing delays.

Why fragmentation?
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Within each 8-GPU server, # of GPUs allocated 
to 40,000 multi-GPU jobs at Microsoft.
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Irregular topo. à no ring

Existing solutions (NCCL) fall back to 
PCIe if they cannot form a NVLink ring.
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Challenge 3: Fragmentation in multi-tenant clusters

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs 
must embrace fragmentation to avoid queuing delays.

Within each 8-GPU server, # of GPUs allocated 
to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?



Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

Ring-based collective communication protocols
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BLINK
38

Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters



Talk Outline

• Motivation
• Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

• Design
• Evaluation
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How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Blink

Probe available links at job run time
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How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over 
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Spanning trees (v.s. Rings) are more 
flexible and optimal.
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How Blink handles topology heterogeneity
Topology Heterogeneity

Different server configurations

Link heterogeneity

Fragmentation in multi-tenant clusters
(irregular topology)

Blink

Probe available links at job run time

Concurrent data transfer over 
heterogenous links

Spanning trees (v.s. Rings) are more 
flexible and optimal.

More NCCL-compatible API, seamless 
integration with TF, PyTorch, etc.
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Blink workflow
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Blink workflow
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Broadcast comparison (Trees v.s. Rings)
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6-GPU topology



Broadcast comparison (Trees v.s. Rings)

Broadcast from GPU3
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Unused link

NCCL 2 rings



Broadcast comparison (Trees v.s. Rings)
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Blink 3 Spanning trees

3 Spanning trees > 2 Rings

Use All the links available à Optimal

Broadcast from GPU3



TreeGen: packing max. spanning trees
• Given available topology, pack max. unidirectional spanning trees.
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GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Packing unidirectional spanning trees



TreeGen: packing max. spanning trees
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GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Maximize the sum of  
bandwidth usage 
among all links 

Constrain: amount of BW usage 
should not exceed ANY link capacity 
when packing multiple trees

Packing unidirectional spanning trees

Optimization problem

• Given available topology, pack max. unidirectional spanning trees.



TreeGen: packing max. spanning trees
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GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Topology

GPU1

GPU2 GPU3

GPU1

GPU2 GPU3

Optimization problem Too many trees!
181 spanning trees for 

8-GPU DGX-1V

Constrain: amount of BW usage 
should not exceed ANY link capacity 
when packing multiple trees

Packing unidirectional spanning trees

• Given available topology, pack max. unidirectional spanning trees.

Data size per-tree is too small 
to fully saturate link BW.

Maximize the sum of 
bandwidth usage 
among all links 



TreeGen: packing max. spanning trees
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Optimization problem Approximate packing

approxi
mation Either a tree use 

ALL BW of a link, 
or not use it.

181 trees for 
8GPU DGX-1V

6 trees for 
8GPU DGX-1V

approximation

• Given available topology, pack max. unidirectional spanning trees.



TreeGen
• Given available topology, pack max. unidirectional spanning trees
• Direct support for one-to-many/many-to-one primitives
• e.g. Reduce, Broadcast, etc.

Reduce

Broadcast
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TreeGen
• Given available topology, pack max. unidirectional spanning trees
• Direct support for one-to-many/many-to-one primitives
• e.g. Reduce, Broadcast, etc.

Reduce

Broadcast

• Extend to many-to-many primitives (e.g. AllReduce)
• Pick a root node, reduce towards root, then broadcast in reverse direction.

Reduce à
Broadcast ß AllReduce
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TreeGen for NVSwitch (DGX-2)
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TreeGen for NVSwitch (DGX-2)
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NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce 
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.



TreeGen for NVSwitch (DGX-2)
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NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce 
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

1



TreeGen for NVSwitch (DGX-2)

58

NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce 
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

2



TreeGen for NVSwitch (DGX-2)
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NVSwitch
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GPU2 GPU3 GPU 4
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TreeGen for NVSwitch (DGX-2)
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NVSwitch

GPU1

GPU2 GPU3 GPU 4

4GPU Reduce 
(G1->G4)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

Hop Count

4



TreeGen for NVSwitch (DGX-2)
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• DGX-2 single-hop tree

NVSwitch

GPU1

Reduce 1-hop tree introduces 
Min. latency

GPU2 GPU3 GPU 4

4GPU Reduce



TreeGen for NVSwitch (DGX-2)
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• DGX-2 single-hop tree

NVSwitch

GPU1

Reduce 1-hop tree introduces 
Min. latency

GPU2 GPU3 GPU 4

AllReduce à Reduce, Broadcast
For N GPUs, 

N 1-hop trees, with each tree responsible for 1/N data.

Broadcast



Blink workflow
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CodeGen
• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency
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CodeGen
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What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency



CodeGen
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• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD 
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency



CodeGen
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CodeGen
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• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD 
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency



CodeGen
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• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:

• Pipelining data chunks to reduce latency Automatic chunk size selection

MIAD 
(multiple-increase, additive-decrease)

What chunk size to use?

• Too small, cannot fully utilize BW
• Too big, high latency



Blink design recap

• Packing spanning trees while minimizing trees
• Single hop trees for DGX-2 (NVSwitch)

• Chunking, pipelining transfers for max link utilization
• Auto chunk size selection with MIAD

• GPU stream reuse for fair sharing of links
• PCIe + NVLink Hybrid transfers
• Support for multi-machine collectives
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Drop-in NCCL replacement (load-time, no code recompile)



Talk Outline

• Motivation
• Challenges to achieving high-performance collective communication

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

• Design
• Evaluation
• AllReduce and Broadcast Microbenchmarks
• End-to-end improvements
• Benefits of One-Hop Trees over Rings or Double Binary trees
• Rest of the extensive evaluation à refer to the paper
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Microbenchmarks (DGX-1V)
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology AllReduce



Microbenchmarks (DGX-1V)

73

AllReduce

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology

NCCL2 (2 rings)



Microbenchmarks (DGX-1V)
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GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

Topology

NCCL2 (2 rings)

Blink (3 spanning trees)

AllReduce



Microbenchmarks (DGX-1V)
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AllReduce
(up to 8x speed-up, 2x geo-mean)



Microbenchmarks (DGX-1V)

Broadcast (up to 6x speed-up, 2x geo-mean)

AllReduce (up to 8x speed-up, 2x geo-mean)
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End-to-end Benchmarks (DGX-1V)
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Blink end-to-end Communication time reduction (ImageNet1K)

up to 87% Communication 
time reduction (51% avg.)



End-to-end Benchmarks (DGX-1V)
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Blink end-to-end training time reduction (ImageNet1K)

Blink end-to-end Communication time reduction (ImageNet1K)

up to 87% Communication 
time reduction (51% avg.)

up to 40% end-to-end 
training time reduction



Microbenchmarks (DGX-2)

16 GPU AllReduce

Throughput
(up to 3.5x speed-up)

Latency
(Up to 3.32x reduction)

79
Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.



• Topology heterogeneity results in link underutilization for collectives.

• Blink packs spanning trees for optimal link utilization

• Auto-generates one-to-all, all-to-one, all-to-all collectives
• Broadcast, AllReduce, etc.

• Faster collective communication than NCCL
• Up to 6x faster Broadcast (2x geo-mean)
• Up to 8x faster AllReduce (2x geo-mean)
• Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on 

DGX-1 machines. 

Guanhua Wang                     guanhua@cs.berkeley.edu
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Back-ups
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TreeGen

• Handle hybrid communication (e.g. PCIe & NVLink)
• Balance amount of data transfer over different link types based on link bandwidth. 
• Take link type switching (i.e. disable_peer_access) latency into account.
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TreeGen

• Multi-server transfers
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Multiple DGX-1s DNN Training

• 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
• Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)
• Projection with 100/400 Gbps inter-server bandwidth, highlight 

Blink’s advantage.
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