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Challenges with ML Benchmarking

● Diversity in deep learning models used
○ Problem Domains, Models, Datasets

● Pace of field
○ State-of-the-art models evolve every few months

● Varying evaluation metrics
○ Accuracy, Time to train, Latency of inference

● Multi-disciplinary field
○ Algorithms, Systems, Hardware, ML Software Stacks



State of the art: MLPerf 0.6

Area Benchmark Dataset  Model Reference 
Implementation 

Vision Image classification ImageNet ResNet-50 TensorFlow

Object detection COCO 2017 Mask R-CNN Pytorch

Object detection COCO 2017 SSD-ResNet34 Pytorch

Language/
Audio

Translation WMT Eng-Germ Transformer TensorFlow

Speech recognition WMT Eng-Germ GNMT PyTorch

Commerce Recommendation MovieLens-20M NCF PyTorch

Action Reinforcement Learning Go Mini-go TensorFlow
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ParaDnn vs MLPerf

- Avoid drawing conclusions based on 
several arbitrary models

- Generate thousands of parameterized, 
end-to-end models

- Prepare hardware designs for future 
models

- Complement the use of existing real-world 
models, i.e. MLPerf

- Good for studying accuracy or 
convergence with real datasets

- Represent the specific models some 
people care about

ParaDnn



ParaDnn Canonical Models

Fully Connected (FC)

CNNs: Residual, Bottleneck

RNNs: RNN, LSTM, GRU

# of Nodes # of NodesInput Output
# of Layers

# of Res/Bottleneck 
Blocks (filter size)Input OutputFC Layerx 4

RNN or LSTM or GRU cell (size)Input Output
# of Layers

RNN or LSTM or GRU cell



Models



Models

- ParaDnn covers a larger range than the real models
- from 10k to ~1 billion parameters



Analysis Enabled by ParaDnn

- Roofline analysis of TPU v2
- Homogenous Platform Comparison: TPU v2 vs v3
- Heterogeneous Platform Comparison: TPU vs GPU



The Roofline Model
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The Roofline Model
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Peak FLOPS



The Roofline Model

15David Brooks, Gu-Yeon Wei

Peak FLOPS

Memory Bandwidth



The Roofline Model
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The Roofline Model
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Transformer
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FC Models
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ParaDnn sweeps a large range of models, 
from memory-bound to compute-bound.



FC Models
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Compute-bound



FC Models
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Memory-bound



TPU v2 vs v3?
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How to upgrade to TPU v3?
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TPU v2
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TPU v2
TPU v3 (FLOPS  )



How to upgrade to TPU v3?
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TPU v2
TPU v3 (FLOPS  )

TPU v3 (Mem BW  )



How to upgrade to TPU v3?
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TPU v2
TPU v3 (Mem BW  )

TPU v3 (FLOPS  )

TPU v3 (FLOPS   Mem BW  )



How to upgrade to TPU v3?
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TPU v2
? x

? x

TPU v3 (FLOPS   Mem BW  )



Architecture of TPU v2 vs v3

28Figure is from https://cloud.google.com/tpu/docs/system-architecture

180 TFLOPS / Board

420 TFLOPS / Board

https://cloud.google.com/tpu/docs/system-architecture


Google’s Choice of TPU v3
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TPU v2

TPU v3
2.3 x

? x



TPU v3 vs v2: FC Operation Breakdown
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TPU v3 vs v2: FC Operation Breakdown
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Compute-bound: 
2.3x speedup



TPU v3 vs v2: FC Operation Breakdown
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Memory-bound: 1.5x 
speedup



TPU v3 vs v2: FC Operation Breakdown
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Memory-bound, but benefit 
from 2x memory capacity:

3x speedup



Google’s Choice of TPU v3
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TPU v2

TPU v3
2.3 x

1.5 x



TPU v3 vs v2: FC Operation Breakdown
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ParaDnn provides diverse 
set of operations, and 
shows different operations 
are sensitive to different 
system component 
upgrades.



TPU vs GPU?



Hardware Platforms
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Hardware Platforms
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300 GB/s 
per core



FC and CNN
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FC and CNN
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ConvA

Conv
Gradient

Weighted 
Sum

G

W Fewer Weights

Larger Conv ops



Hardware Platforms
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300 GB/s 
per core



FC TPU/GPU Speedup colored with Batch Size
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0.35
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FC TPU/GPU Speedup colored with Batch Size
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GPU is better
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FC TPU/GPU Speedup colored with Node Size
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45

More nodes 
    More weights 
    More memory-bound



Hardware Platforms
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300 GB/s 
per core

1.44x



CNN TPU/GPU Speedup colored with Batch Size
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CNN TPU/GPU Speedup colored with Batch Size

- Up to 6x speedup
- TPU architecture and software 

is highly optimized for CNNs
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CNN TPU/GPU Speedup colored with Batch Size

- All models runs faster on TPU.
- Larger batch sizes lead to 

higher speedups.
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CNN TPU/GPU Speedup colored with Filters

- More filters have higher 
speedup lower bounds
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Conclusion

- Parameterized methodology: ParaDnn + a set of analysis methods
- Single platform analysis: TPU v2
- Homogenous platform comparison: TPU v2 vs v3
- Heterogeneous platform comparison: TPU vs GPU



Limitations of this Work
- Does not include:

- Inference
- Multi-node system: multi-GPU, or TPU pods
- Accuracy, convergence
- Cloud overhead

- Tractability
- Limit the range of hyperparameters and datasets

- Small batch sizes (<16) and large batch sizes (> 2k) are not studied
- Synthetic datasets do not include data infeed overhead

- Iterations of TPU loop is 100. Larger numbers can slightly increase the 
performance.



Questions?

ParaDnn
Available: github.com/Emma926/paradnn


