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2

GPUCNN Model

Under-utilization Problem

Sequential Execution

Inter-Operator 
Parallelization

1.1-1.5x speedup

Inter-Op Schedules

Dynamic
Programming

Optimal Schedule



Efficient Deployment of CNNs is Important
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Face Recognition Self Driving Language Translation

Is CNN inference in current DL libraries well utilizing underlying hardware?



Motivation for Inter-Operator Parallelization

4

0
5000

10000
15000
20000

Tesla K40
2013

Tesla M60
2015

Tesla V100
2018

Tesla A100
2020

GF
LO

Ps
/s

Peak Performance (GFLOPs/s)

0
200
400
600

1

100

10000

VGGNet
2013

Inception V3
2015

NasNet
2018

M
FL

O
Ps

Average Conv FLOPs Number of Convs

1. More small convs in CNN design.

2. GPU peak performance increased
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Better device utilization

Small op & 
Powerful GPU

b: 
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a: conv 768x384x3x3
b: conv 384x384x3x3
Input: 1x384x15x15
NVIDIA Tesla V100



Background: Wavefront Schedule Policy
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Wavefront Schedule Policy: Execute all available operators stage by stage

A Better ScheduleWavefront Schedule
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Background: Wavefront Schedule Policy

6

Wavefront Schedule Policy: Execute all available operators stage by stage

A Better ScheduleWavefront Schedule

0 ms

0.17 ms

0.33 ms
Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768

0 ms

0.24 ms

0.37 ms

Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768Stage 1

Stage 2

1. Put op to saturated 
stage: marginal benefit

2. Under-utilization problem

Wavefront schedule policy is sub-optimal



Inter-Operator Scheduler (IOS)
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General Idea: Explore the schedule space exhaustively.
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Inter-Operator Scheduler (IOS)
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Challenge: The number of schedules is exponential in the number of operators.

e.g., NASNet has more than 10!" schedules

Prohibitive to enumerate



Inter-Operator Scheduler (IOS)
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Observation 1: Optimal schedule for a subgraph can be reused 
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Inter-Operator Scheduler (IOS)
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Observation 1: Optimal schedule for a subgraph can be reused 
Key Idea: Dynamic Programming



Inter-Operator Scheduler (IOS)
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The width of Inception V3 is 6.

Maximum number of parallelizable operators

1x1

1x1 1x1 3x1

1x3 3x1

Observation 2: The width of the computation graph is usually small

Pool 1x1 1x1

3x3

Inception Block



Inter-Operator Scheduler (IOS)
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Observation 2: The width of the computation graph is usually small
Key Result: Time complexity is only exponential in the width



𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

( 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆- )

Inter-Operator Scheduler (IOS)
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Best schedule’s 
latency of 𝑆

𝑆 is the ops to 
be scheduled

𝑆′ is a candidate 
for last stage of 𝑆

𝑆 − 𝑆′ are ops remaining to be 
scheduled in a sub-problem

Latency of stage 𝑆′
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Parallelization Strategy Selection
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𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
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Last Stage Candidates
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min

!! "#$ %& # '#() ()#*& +, !
( 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆- )
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Transition Graph and Time Complexity
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Transition Graph and Time Complexity
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IOS: Find the shortest path



Transition Graph and Time Complexity
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Time Complexity of IOS:

𝒪 𝑛/𝑑 + 1 ;<

𝒏: number of operators
𝒅: max number of parallelizable ops

IOS: Find the shortest path



Methodology
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• Benchmarks
• Inception V3
• SqueezeNet
• Randwire
• NasNet

• Environment • IOS Implementation
• cuDNN kernels
• CUDA StreamNVIDIA Tesla V100

10.2 7.6.5

Expert Designed

Neural Architecture Search

• Baselines
• State-of-the-art Frameworks (cuDNN-based)

• Different schedules on IOS Runtime

TASO



Comparison of cuDNN-based Frameworks
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IOS outperforms all frameworks 
and achieves 1.1-1.5x speedup.

TensorRT: NVIDIA high-performance inference engine.

TVM-cuDNN: TVM backed with cuDNN convolution kernel.

TASO: Transformation-based optimizer.

Tensorflow-XLA: TensorFlow with compilation optimization.

Tensorflow: A popular machine learning framework.
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IOS: Our method

Performance is normalized to the best framework

Under-utilization due to 
sequential execution



Comparison of Different Schedules
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IOS-Both achieves the 
best performance
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IOS-Both: IOS with both policies

IOS-Parallel: IOS with only “parallel execution” policy.

IOS-Merge: IOS with only “operator merge” policy.

Wavefront: Run all available ops stage by stage.

Sequential: Run each op sequentially.

Performance is normalized to the best schedule

Under-utilize Device

Unbalanced Schedule

No trade off between 
parallelization strategies

IOS Runtime



More Active Warps Improve Utilization
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More active warps More eligible warps to 
execute at each cycle Higher Device-Utilization
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NVIDIA CUPTI  profile frequency is every 2.1 ms.



Conclusion

• Sequential execution suffers from under utilization problem.
• Inter-Operator Scheduler (IOS):
• Utilize both intra- and inter-operator parallelism in CNNs.
• Dynamic-programming explores the schedule space exhaustively.

• Time Complexity: 𝒪 𝑛/𝑑 + 1 )* , 𝑑 is usually small.

• Key Results: 1.1-1.5x speedup on diverse CNNs.
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https://github.com/mit-han-lab/inter-operator-scheduler
We provide scripts to reproduce results in every figure and table!

https://github.com/mit-han-lab/inter-operator-scheduler

