|OS: Inter-Operator Scheduler
for CNN Acceleration

Yaoyao Ding'?, Ligeng Zhu3, Zhihao Jia%

Gennady Pekhimenko!?, Song Han3

% UNIVERSITY OF VECTOR I Cal'negle
3,{: TORONTO INSTITUTE Mellon
University

Executive Summary

Motivation

4 L)
[=]

CNN Model GPU

Sequential Execution
\

\Under-utilization Problem/

Inter-Operator Scheduler

~

Inter-Operator
Parallelization

Dynamic
Programming
i) Sl ¥

Optimal Schedule
{ter—Op Schedules /

1.1-1.5x speedup

Efficient Deployment of CNNs is Important

Motivation for Inter-Operator Parallelization

3. Intra- and Inter-operator Parallelization

1. More small convs in CNN design.

—e—Average Conv FLOPs Number of Convs
., 10000 600
Smaller & ’\._ 400 More
convs @ 100 — 200 €onvs
= 1 0
VGGNet Inception V3 NasNet
2013 2015 2018

2. GPU peak performance increased

—e—Peak Performance (GFLOPs/s)

., 20000

> 15000 More

& 10000 powerful
= 5000

5 GPUs

Tesla K40 Tesla M60 Tesla V100 Tesla A100
2013 2015 2018 2020

GPU

S

Kernel

Sequential Execution Device under-utilization

a: conv 768x384x3x3

b: conv 384x384x3x3

Input: 1x384x15x15
2 NVIDIA Tesla V100

Thread U
rea 33% Utilization

Intra-operator Parallelization

Small op &
Powerful GPU

GPU

& [

. .

L]
Y

Kernel
] Inter-operator Parallelization
Inter-Op Better device utilization

Parallel Execution

Background: Wavefront Schedule Policy

Wavefront Schedule Policy: Execute all available operators stage by stage

Conv [a] Conv [d]

Conv [a] f Conv [c] | Conv [d] 3x3x384 3x3x768
3x3x384 J| 3x3x384 | 3x3x768 Move Conv [c] from

Stage 1 to Stage 2

> Conv [b]
3x3x768 3x3x384

Conv [b]
3x3x768

Concat
1920

Wavefront Schedule A Better Schedule

Background: Wavefront Schedule Policy

Wavefront Schedule Policy: Execute all available operators stage by stage

0O ms
Conv [a] Conv [d]

Conv [a] [conv [c] [conv [d] 1. Put op to saturated 3x3x384 3x3x768
3x3x384]| 3x3x384] 3x3x768 stage: marginal benefit

0.24 ms Conv [b]
Conv [b .) 3x3x768 3x3x384
3X3X7[68] 2. Under-utilization problem

1920

Wavefront Schedule A Better Schedule

Wavefront schedule policy is sub-optimal

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.

Challenge: The number of schedules is exponential in the number of operators.

e.g., NASNet has more than 1012 schedules

\ ¢

Prohibitive to enumerate

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Optimal schedule |
can be reused — *

Incomplete Schedule Incomplete Schedule 9

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Key Idea: Dynamic Programming

10

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused
Key Idea: Dynamic Programming

Observation 2: The width of the computation graph is usually small
T

Maximum number of parallelizable operators

Pool 1x1 1x1
1x1

The width of Inception V3 is 6.

1x1) [1x1] [3x1] [3x3]

y
1x3||3x1

Inception Block

Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Key Idea: Dynamic Programming

Observation 2: The width of the computation graph is usually small

Key Result: Time complexity is only exponential in the width

12

Inter-Operator Scheduler (10S)

Latency| S| = min (Latency| S —S']| + StageLatency(S'))
l S’ can be a last stage of S

Best schedule’s

latency of S S — S’ are ops remaining to be

scheduled in a sub-problem

A

S isthe opsto
be scheduled

v

v

Latency of stage S’

S'is a candidate
for last stage of S

v

13

Parallelization Strategy Selection

Latency| S| = min (Latency| S — S’ | + StageLatency(S'))

S’ can be a last stage of S

Stream Multiprocessor

Time Concurrently /u‘ Stack Filters .

Sequential Execution Concurrent Execution Two Convolutions Merged Convolution
Concurrent Execution Operator Merge
General Profile & Select Specialized

Sub-optimal performance Usually better performance

14

Last Stage Candidates

Latency[S]| = min (Latency[S —S'] + StageLatency(S'))

S’ can be a last stage of S

S’ can be a last stage of S & There is no edge from S to S — S’

l Edge from S — S'to S’ l Edge from S"to § — S’

b a0 aan
S 4 Violates the
S’ ? S Y)Y dependency
SI
g QLQ éLa =

Operators S to be scheduled S’ can be a last stage of S S'" can NOT be a last stage of S

15

Transition Graph and Time Complexity

Latency| S| = o eany nllin o (Latency| S — S’ | + StageLatency(S’))
l\can e a last Stage (0] /
Vertices: all valid state S Edges: S — (§—S')

Transition Graph 16

Transition Graph and Time Complexity

Latency| S| = o eany rrlur% e of S (Latency| S —S']| + StageLatency(S'))
l\can € a last stage O /
Vertices: all valid state S Edges: S — (§—S')

|OS: Find the shortest path
5@ @)

Any path from S; to S is a schedule

L

A Simple Model

Transition Graph 17

Transition Graph and Time Complexity

Latency|S]| =) nllin) (Latency| S — S’ | + StageLatency(S’))
S’ can be a last stage of S L

l\

Vertices: all valid state S Edges: S —» (S —S")

|OS: Find the shortest path

Time Complexity of 10S:
0 ((n/d + 1)2d)

n: number of operators
d: max number of parallelizable ops

Transition Graph 18

Methodology

e Benchmarks Baselines
* Inception V3]—Expert Designed * State-of-the-art Frameworks (cuDNN-based)
* SqueezeNet -
e Randwire — . TASO
]-NeuraIArchitecture Search TensorFlow L -
* NasNet
e Different schedules on IOS Runtime
* Environment * 10S Implementation

* cuDNN kernels
R NVIDIA Tesla V100 e CUDA Stream

10.2 cuDNN 765

NVIDIA.

CUDA

Comparison of cuDNN-based Frameworks

Tensorflow:

Tensorflow-XLA:

TensorRT:
10S:

3 1.0

< 0.6
|_
§ 0.4
= 0.2
£
c 0.0

Inception V3

A popular machine learning framework.
TensorFlow with compilation optimization.
Transformation-based optimizer.

TVM backed with cuDNN convolution kernel.

NVIDIA high-performance inference engine. -

Our method

RandWire NasNet SqueezeNet GeoMean

Performance is normalized to the best framework

Under-utilization due to

sequential execution

——

10S outperforms all frameworks
“and achieves 1.1-1.5x speedup. |

20

Comparison of Different Schedules

Under-utilize Device

Unbalanced Schedule
(<]

Wavefront: Run all available ops stage by stage.- °

Sequential: Run each op sequentially.

I0S Runtime I0S with only “operator merge” policy. . , o
I0S-Parallel: 10S with only “parallel execution” policy.

I0S-Both: 10S with both policies

£06 10S-Both achieves the
g 0.4 best performance

© 0.0 o L L —
Inception V3 RandWire NasNet SqueezeNet GeoMean

Performance is normalized to the best schedule
21

More Active Warps Improve Utilization

—Sequential Schedule —I10S Schedule
9
N warps/ms
=)
i
=
8 > 1.58x
§ Active Warps
v 3.6
2
g
: 8
Concat ** . Seq: 1.7xX10° warps/ ms

1 10 19 28 37 46 55 64 73 82 91 100
Timestamp

NVIDIA CUPTI profile frequency is every 2.1 ms.

Sequential Schedule |0S Schedule

More eligible warps to

More active warps |
execute at each cycle

22

Conclusion

* Sequential execution suffers from under utilization problem.

* Inter-Operator Scheduler (10S):
* Utilize both intra- and inter-operator parallelism in CNNs.
* Dynamic-programming explores the schedule space exhaustively.

* Time Complexity: O ((n/d + 1)2d), d is usually small.
e Key Results: 1.1-1.5x speedup on diverse CNNSs.

https://github.com/mit-han-lab/inter-operator-scheduler
We provide scripts to reproduce results in every figure and table!

23

https://github.com/mit-han-lab/inter-operator-scheduler

