
IOS: Inter-Operator Scheduler
for CNN Acceleration

Yaoyao Ding1 2, Ligeng Zhu3, Zhihao Jia4,
Gennady Pekhimenko1 2, Song Han3

1 2 3 4

1

Inter-Operator SchedulerMotivation

Executive Summary

2

GPUCNN Model

Under-utilization Problem

Sequential Execution

Inter-Operator
Parallelization

1.1-1.5x speedup

Inter-Op Schedules

Dynamic
Programming

Optimal Schedule

Efficient Deployment of CNNs is Important

3

Face Recognition Self Driving Language Translation

Is CNN inference in current DL libraries well utilizing underlying hardware?

Motivation for Inter-Operator Parallelization

4

0
5000

10000
15000
20000

Tesla K40
2013

Tesla M60
2015

Tesla V100
2018

Tesla A100
2020

GF
LO

Ps
/s

Peak Performance (GFLOPs/s)

0
200
400
600

1

100

10000

VGGNet
2013

Inception V3
2015

NasNet
2018

M
FL

O
Ps

Average Conv FLOPs Number of Convs

1. More small convs in CNN design.

2. GPU peak performance increased

More
convs

Smaller
convs

3. Intra- and Inter-operator Parallelization

Intra-operator Parallelization

More
powerful
GPUs

ThreadKernel

Sequential Execution

c

d

a

b

Inter-operator Parallelization

Kernel Kernel

GPU

GPU

c d

a b

Inter-Op
Parallel Execution

Device under-utilization

Better device utilization

Small op &
Powerful GPU

b:
33% Utilization

a+b:
71% Utilization

a: conv 768x384x3x3
b: conv 384x384x3x3
Input: 1x384x15x15
NVIDIA Tesla V100

Background: Wavefront Schedule Policy

5

Wavefront Schedule Policy: Execute all available operators stage by stage

A Better ScheduleWavefront Schedule

0 ms

0.17 ms

0.33 ms
Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768

0 ms

0.24 ms

0.37 ms

Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768Stage 1

Stage 2

Move Conv [c] from
Stage 1 to Stage 2

Background: Wavefront Schedule Policy

6

Wavefront Schedule Policy: Execute all available operators stage by stage

A Better ScheduleWavefront Schedule

0 ms

0.17 ms

0.33 ms
Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768

0 ms

0.24 ms

0.37 ms

Concat
1920

Input
384

Conv [a]
3x3x384

Conv [b]
3x3x768

Conv [c]
3x3x384

Conv [d]
3x3x768Stage 1

Stage 2

1. Put op to saturated
stage: marginal benefit

2. Under-utilization problem

Wavefront schedule policy is sub-optimal

Inter-Operator Scheduler (IOS)

7

General Idea: Explore the schedule space exhaustively.

c

d
e

a

bc

de

a

bc
d

e

a b

c
d

e

a

b ...

1.2 ms 0.9 ms 0.8 ms0.7 ms

Inter-Operator Scheduler (IOS)

8

Challenge: The number of schedules is exponential in the number of operators.

e.g., NASNet has more than 10!" schedules

Prohibitive to enumerate

Inter-Operator Scheduler (IOS)

9

Observation 1: Optimal schedule for a subgraph can be reused

a b

c

f

g

e

d

Incomplete Schedule

a b

c

f ge

d

Incomplete Schedule

a b

c

f ge

d

Model

Optimal schedule
can be reused

Inter-Operator Scheduler (IOS)

10

Observation 1: Optimal schedule for a subgraph can be reused
Key Idea: Dynamic Programming

Inter-Operator Scheduler (IOS)

11

The width of Inception V3 is 6.

Maximum number of parallelizable operators

1x1

1x1 1x1 3x1

1x3 3x1

Observation 2: The width of the computation graph is usually small

Pool 1x1 1x1

3x3

Inception Block

Inter-Operator Scheduler (IOS)

12

Observation 2: The width of the computation graph is usually small
Key Result: Time complexity is only exponential in the width

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

Inter-Operator Scheduler (IOS)

a b

c

f ge

d

Best schedule’s
latency of 𝑆

𝑆 is the ops to
be scheduled

𝑆′ is a candidate
for last stage of 𝑆

𝑆 − 𝑆′ are ops remaining to be
scheduled in a sub-problem

Latency of stage 𝑆′

13

Parallelization Strategy Selection

14

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

conv

conv

Sequential Execution

conv conv

Concurrent Execution

Concurrently
Executed

Concurrent Execution

Stack Filtersconv

conv

Two Convolutions Merged Convolution

Operator Merge

SM Stream Multiprocessor

General
Sub-optimal performance

Specialized
Usually better performance

SM SM SM SM SM SM

Time

GPU SM SM SM SM SM SM

Profile & Select

a b

c

f ge

d
𝑆

Operators 𝑆 to be scheduled

15

Last Stage Candidates
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min

!! "#$ %& # '#() ()#*& +, !
(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

𝑆! can be a last stage of 𝑆

a b

c

f ge

d
𝑆′

a b

c

f ge

d

𝑆′

𝑆′ can be a last stage of 𝑆 ⟺ There is no edge from 𝑆′ to 𝑆 − 𝑆′

𝑆′′ can NOT be a last stage of 𝑆

a b

c

f ge

d
𝑆!!

Violates the
dependency

Edge from 𝑆 − 𝑆′ to 𝑆′ Edge from 𝑆′ to 𝑆 − 𝑆′

Transition Graph and Time Complexity

16

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

Vertices: all valid state 𝑆 Edges: 𝑆 → (𝑆 − 𝑆!)

a
c

b

A Simple Model

S! = {}

a
c

b
S" = {𝑎, 𝑏, 𝑐}a c

S# = {𝑎, 𝑐}

a
S$ = {𝑎} c

S% = {𝑐}

a

b
S& = {𝑎, 𝑏}

Transition Graph

S! = {𝑏}

𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆′ = 0.2 𝑚𝑠

𝑆" = 𝑆# − 𝑆′

Transition Graph and Time Complexity

17

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

Vertices: all valid state 𝑆 Edges: 𝑆 → (𝑆 − 𝑆!)

a
c

b

A Simple Model

S! = {}

a
c

b
S" = {𝑎, 𝑏, 𝑐}a c

S# = {𝑎, 𝑐}

a
S$ = {𝑎} c

S% = {𝑐}

a

b
S& = {𝑎, 𝑏}

Transition Graph

Any path from 𝑆" to 𝑆# is a schedule

𝑆"! = {𝑏, 𝑐}

𝑆$! = {𝑎}

a

cb𝑆"! = {𝑏, 𝑐}

𝑆$! = {𝑎}

IOS: Find the shortest path

Transition Graph and Time Complexity

18

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆-)

Vertices: all valid state 𝑆 Edges: 𝑆 → (𝑆 − 𝑆!)

a
c

b

A Simple Model

S! = {}

a
c

b
S" = {𝑎, 𝑏, 𝑐}a c

S# = {𝑎, 𝑐}

a
S$ = {𝑎} c

S% = {𝑐}

a

b
S& = {𝑎, 𝑏}

Transition Graph

Time Complexity of IOS:

𝒪 𝑛/𝑑 + 1 ;<

𝒏: number of operators
𝒅: max number of parallelizable ops

IOS: Find the shortest path

Methodology

19

• Benchmarks
• Inception V3
• SqueezeNet
• Randwire
• NasNet

• Environment • IOS Implementation
• cuDNN kernels
• CUDA StreamNVIDIA Tesla V100

10.2 7.6.5

Expert Designed

Neural Architecture Search

• Baselines
• State-of-the-art Frameworks (cuDNN-based)

• Different schedules on IOS Runtime

TASO

Comparison of cuDNN-based Frameworks

20

IOS outperforms all frameworks
and achieves 1.1-1.5x speedup.

TensorRT: NVIDIA high-performance inference engine.

TVM-cuDNN: TVM backed with cuDNN convolution kernel.

TASO: Transformation-based optimizer.

Tensorflow-XLA: TensorFlow with compilation optimization.

Tensorflow: A popular machine learning framework.

0.0
0.2
0.4
0.6
0.8

1.0

Inception V3 RandWire NasNet SqueezeNet GeoMeanN
or

m
al

ize
d

Th
ro

ug
hp

ut

IOS: Our method

Performance is normalized to the best framework

Under-utilization due to
sequential execution

Comparison of Different Schedules

21

IOS-Both achieves the
best performance

0.0

0.2
0.4

0.6

0.8

1.0

Inception V3 RandWire NasNet SqueezeNet GeoMean

N
or

m
al

ize
d

Th
ro

ug
hp

ut

IOS-Both: IOS with both policies

IOS-Parallel: IOS with only “parallel execution” policy.

IOS-Merge: IOS with only “operator merge” policy.

Wavefront: Run all available ops stage by stage.

Sequential: Run each op sequentially.

Performance is normalized to the best schedule

Under-utilize Device

Unbalanced Schedule

No trade off between
parallelization strategies

IOS Runtime

More Active Warps Improve Utilization

22

More active warps More eligible warps to
execute at each cycle Higher Device-Utilization

0

9

1 10 19 28 37 46 55 64 73 82 91 100

#A
ct

iv
e

W
ar

ps
 (x

10
8)

Timestamp

Sequential Schedule IOS Schedule

1.58x
Active Warps

IOS: 2.7×10$warps/ms

5.7

Seq: 1.7×10$warps/ms

3.6

Sequential Schedule

Concat

Input

Conv [a]

Conv [b]

Conv [c]

Conv [d]

0 ms

0.48 ms
Concat

Input

Conv [a]

Conv [b] Conv [c]

Conv [d]

0 ms

0.33 ms

IOS Schedule
NVIDIA CUPTI profile frequency is every 2.1 ms.

Conclusion

• Sequential execution suffers from under utilization problem.
• Inter-Operator Scheduler (IOS):
• Utilize both intra- and inter-operator parallelism in CNNs.
• Dynamic-programming explores the schedule space exhaustively.

• Time Complexity: 𝒪 𝑛/𝑑 + 1)* , 𝑑 is usually small.

• Key Results: 1.1-1.5x speedup on diverse CNNs.

23

https://github.com/mit-han-lab/inter-operator-scheduler
We provide scripts to reproduce results in every figure and table!

https://github.com/mit-han-lab/inter-operator-scheduler

