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Efficient Deployment of CNNs is Important




Motivation for Inter-Operator Parallelization

3. Intra- and Inter-operator Parallelization

1. More small convs in CNN design.
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Background: Wavefront Schedule Policy

Wavefront Schedule Policy: Execute all available operators stage by stage
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Wavefront Schedule A Better Schedule



Background: Wavefront Schedule Policy

Wavefront Schedule Policy: Execute all available operators stage by stage

0O ms
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Conv [a] [ conv [c] [ conv [d] 1. Put op to saturated 3x3x384 3x3x768
3x3x384 ]| 3x3x384 ] 3x3x768 stage: marginal benefit
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Wavefront Schedule A Better Schedule

Wavefront schedule policy is sub-optimal



Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.




Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.

Challenge: The number of schedules is exponential in the number of operators.

e.g., NASNet has more than 1012 schedules

\ ¢

Prohibitive to enumerate



Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Optimal schedule |
can be reused — *

Incomplete Schedule Incomplete Schedule 9



Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Key Idea: Dynamic Programming
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Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused
Key Idea: Dynamic Programming

Observation 2: The width of the computation graph is usually small
T

Maximum number of parallelizable operators
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The width of Inception V3 is 6.
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Inter-Operator Scheduler (10S)

General Idea: Explore the schedule space exhaustively.
Challenge: The number of schedules is exponential in the number of operators.

Observation 1: Optimal schedule for a subgraph can be reused

Key Idea: Dynamic Programming

Observation 2: The width of the computation graph is usually small

Key Result: Time complexity is only exponential in the width
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Inter-Operator Scheduler (10S)

Latency| S| = min ( Latency| S —S' ]| + StageLatency(S'))
l S’ can be a last stage of S

Best schedule’s

latency of S S — S’ are ops remaining to be

scheduled in a sub-problem

A

S isthe opsto
be scheduled

v

v

Latency of stage S’

S'is a candidate
for last stage of S

v
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Parallelization Strategy Selection

Latency| S| = min ( Latency| S — S’ | + StageLatency(S'))

S’ can be a last stage of S

Stream Multiprocessor

Time Concurrently /u‘ Stack Filters .

Sequential Execution Concurrent Execution Two Convolutions Merged Convolution
Concurrent Execution Operator Merge
General Profile & Select Specialized

Sub-optimal performance Usually better performance
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Last Stage Candidates

Latency[ S ]| = min (Latency[ S —S'] + StageLatency(S'))

S’ can be a last stage of S

S’ can be a last stage of S & There is no edge from S to S — S’

l Edge from S — S'to S’ l Edge from S"to § — S’

b a0 aan
S 4 Violates the
S’ ? S Y)Y dependency
SI
g QLQ éLa =

Operators S to be scheduled S’ can be a last stage of S S'" can NOT be a last stage of S
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Transition Graph and Time Complexity

Latency| S| = o eany nllin o ( Latency| S — S’ | + StageLatency(S’))
l\can e a last Stage (0] /
Vertices: all valid state S Edges: S — (§—S')

Transition Graph 16



Transition Graph and Time Complexity

Latency| S| = o eany rrlur% e of S ( Latency| S —S' ]| + StageLatency(S'))
l\can € a last stage O /
Vertices: all valid state S Edges: S — (§—S')

|OS: Find the shortest path
5@ @)

Any path from S; to S is a schedule

L

A Simple Model

Transition Graph 17



Transition Graph and Time Complexity

Latency|S ]| = ) nllin ) ( Latency| S — S’ | + StageLatency(S’))
S’ can be a last stage of S L

l\

Vertices: all valid state S Edges: S —» (S —S")

|OS: Find the shortest path

Time Complexity of 10S:
0 ((n/d + 1)2d)

n: number of operators
d: max number of parallelizable ops

Transition Graph 18



Methodology

e Benchmarks  Baselines
* Inception V3]—Expert Designed * State-of-the-art Frameworks (cuDNN-based)
* SqueezeNet -
e Randwire — . TASO
]-NeuraIArchitecture Search TensorFlow L -
* NasNet
e Different schedules on IOS Runtime
* Environment * 10S Implementation

* cuDNN kernels
R NVIDIA Tesla V100 e CUDA Stream

10.2 cuDNN 765

NVIDIA.

CUDA



Comparison of cuDNN-based Frameworks

Tensorflow:

Tensorflow-XLA:

TensorRT:
10S:

3 1.0

< 0.6
|_
§ 0.4
= 0.2
£
c 0.0

Inception V3

A popular machine learning framework.
TensorFlow with compilation optimization.
Transformation-based optimizer.

TVM backed with cuDNN convolution kernel.

NVIDIA high-performance inference engine. -

Our method

RandWire NasNet SqueezeNet GeoMean

Performance is normalized to the best framework

Under-utilization due to

sequential execution

————————————————————————————————————————————————————————————————

10S outperforms all frameworks
“and achieves 1.1-1.5x speedup. |
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Comparison of Different Schedules

Under-utilize Device

Unbalanced Schedule
(<]

Wavefront: Run all available ops stage by stage.- °

Sequential: Run each op sequentially.

I0S Runtime I0S with only “operator merge” policy. . , o
I0S-Parallel: 10S with only “parallel execution” policy.

I0S-Both: 10S with both policies

£06 10S-Both achieves the
g 0.4  best performance

© 0.0 o L L —
Inception V3  RandWire NasNet SqueezeNet GeoMean

Performance is normalized to the best schedule
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More Active Warps Improve Utilization

—Sequential Schedule —I10S Schedule
9
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Concat ** . Seq: 1.7xX10° warps/ ms
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Timestamp

NVIDIA CUPTI profile frequency is every 2.1 ms.

Sequential Schedule |0S Schedule

More eligible warps to

More active warps |
execute at each cycle
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Conclusion

* Sequential execution suffers from under utilization problem.

* Inter-Operator Scheduler (10S):
* Utilize both intra- and inter-operator parallelism in CNNs.
* Dynamic-programming explores the schedule space exhaustively.

* Time Complexity: O ((n/d + 1)2d), d is usually small.
e Key Results: 1.1-1.5x speedup on diverse CNNSs.

https://github.com/mit-han-lab/inter-operator-scheduler
We provide scripts to reproduce results in every figure and table!
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