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Overview

Motivations

= DNN models can be deployed for inference in lower precisions to maximize
hardware performance and efficiency.

= Quantized inference accelerates compute-bound operations, conserve memory
bandwidth for memory-bound operations, and reduce on-chip storage size.

Challenge

= Conventional per-channel scaled quantization results in severe accuracy loss,
especially at low bitwidths and without quantization-aware training.

= The number of efficient design points with acceptable accuracy is limited.

e Opportunities

= To improve accuracy, we can leverage fine-grained scaling to mitigate accuracy
loss typical in existing quantized models.

= To maximize hardware efficiency, we can co-design the quantization algorithm
around the vector MAC unit ubiquitous in DNN hardware.

= Per-vector scaled quantization technique to mitigate accuracy loss.
= Two-level scaling algorithm to realize efficient per-vector scaled hardware.

= Explored tradeoffs between accuracy and hardware efficiency on a range of
hardware implementations and DNN models.

= Achieves higher accuracy and/or hardware efficiency while enabling a rich design
space
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* VS-Quant extensions highlighted in gray.

= With VS-Quant, we see energy overhead
over corresponding per-channel scaled
configuration due to additional
multipliers and wider accumulation.

= When the scale factors product is
rounded, the energy overheads of
adding VS-Quant support can be
substantially reduced.
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Post-training quantization accuracy for various per-vector scaled configurations
(Rows represent weight/activation bitwidths. Columns represent weight/activation scale bitwidths.)
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BERT-base on SQUAD
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ResNet50 on ImageNet
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Model Size vs. Efficiency
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OBERT-Base BERT-Large

= Use BERT-large if accuracy target is
higher than best BERT-base accuracy

= QOtherwise go with BERT-base for
consistently better efficiency

= Configure size of the model based on
the desired accuracy target to realize
best hardware efficiency
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= 4/4/8/8: 69% energy saving, 36% area saving, >75.0% accuracy for ResNet50 on ImageNet.
= 4/8/8/10: 28% area saving, 3% energy saving, near full-precision accuracy for BERT on SQUAD.
= Qverall better accuracy, energy, and area tradeoffs for low-precision inference.

Quantization-aware Training

= VS-Quant is not limited to post-training quantization.

= VS-Quant models can be finetuned with quantization-aware training to get even better accuracy or

achieve lower precision.

ResNet50 Wt=3, Act=3U 75.5% @20 72.0% @20
BERT-base Wt=4, Act=4 86.2% @5 7/3.3% @20
BERT-large Wt=3, Act=4 89.2% @2 21.6% @2




