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Motivation

Researchers rely on parallelism to accelerate deep learning training

workloads

Data (batch) parallelism can scale training to large batch sizes but has
considerable overheads which limit overall hardware utilization.

NETWORK SYSTEM #GPUS | UTILIZATION
RESNET50 | A100 DGX 1 16.4%
RESNET50 | A100 DGX 8 15.9%
BERT A rce | A100 DGX 8 36.8%

Based on max advertised FLOPS in mixed precision
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Parallel Training

Goal: Parallelize training of a neural network with
operations A, B, C, D

Data Parallelism (standard; maps well to GPU)
* Layer Sequential training

* All workers compute the same transformation on
different data at a given time

Fine-Grained Pipeline Parallelism

* Layer Parallel training

e Each worker performs a single transformation on
sequentially incoming data

* Enables worker specialization
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Pipelined Processing on a CGRA

Coarse-Grained Reconfigurable Array (CGRA)
* Mesh of locally connected workers (w)
* Distributed high bandwidth, low latency memory architecture

Spatially distributing network layers
* Near optimal resource allocation

e Persistent kernel execution wiwiwiwiw iw iw iw w iw Ew T
* Local weight and gradient storage wiw i iw iw Ew fw iw Ew w w
° P|pe||ned Training can result in improved throughput and ........................................................ x
energy efficiency Wiw W Ew w tw fw iw w iw Ew

° Dense training: up to a 35)( (Zhang et a|_’ 2019(:’ L| & Pedram’ 2017’ ........................................................ x
Chen et al., 2016) wiw Ew Ew iw iw fw fw w Ew iw |

e Sparse training: 42.5x improvement in throughput and a 11.3x | WV iV W iw W iw i iviwivs o
improvement in energy efficiency (Chen et al., 2019) BB R R R MR B RS D R

Activation memory complexity: O(pipeline depth”2)
@erebras * Use small micro batch processing to compensate 4



Deep Network Training

SGD:
Wiyl = Wt — ﬂthL = Wt — NGt

SGDM:
Vir1 = MU + G

Wil = Wg — MU
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Backpropagation

Efficient way to calculate gradients

* Forward Pass
* Calculates through a series
of operations (A,B,C,D)
* Backward Pass

e Calculates
and

* Need to use the same parameters

* Update parameters based on gradient
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Fill and Drain SGD PB
Small Batch Large Batch

Pipeline Parallel Training

Fill and Drain SGD
* Empty the pipeline before updating the weights

* Lowers Utilization: =
N+2S
* Batch size: N; Number of pipeline stages: S

Pipelined Backpropagation (PB)
* Introduced by Pétrowski et al. (1993)
* Update weights without draining pipeline
* High utilization
* |Inexact gradients

Pipeline Step
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Inexact Gradients in PB

Weights are updated during gradient computation

Weight Inconsistency
 Different weights used on the fwd and bwd passes

Gradient Delay
* Weights used to calculate a gradient are old when
the resulting gradient is used to update the weights
Impacts training
* Loss of final accuracy
e Potential training instability
 Effect depends on the number of stages
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Mitigation Methods

Our work focuses on mitigating the effects of Pipelined Backpropogation

* Linear Weight Prediction
e Changes how the gradient is computed

* Spike Compensation
* Changes how the gradient is applied

e Delayed SGDM:

gt — G (wt—D)
Vir1 = MU + Gy
Wil = W — NV1
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Workers

Linear Weight Prediction (LWP)

Approximates the future backwards pass
weights for use in the forward pass

* Assumes weight updates are roughly constant

Time

over the delay
* Holds well with large momentum or small delays

gt — G (’wt—D — "7T’Ut—D)
Vty1 = My + gy
Wi41 = Wi — NUt41

Pipeline St
ipeline Stage

Pipeline Step
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Spike Compensation (SC)

* Momentum in SGDM

* Exponentially smoothed gradients used for weight
updates

* “Impulse response” is exponential

* Spike Compensation
* Apply “missing” weight updates immediately (spike)
* Match no-delay impulse response afterwards

g = G (wi_p)
Vir1 = MUt + G4

D 1—mP
Wiyl = W — 1N (m Vg1 + 7~ gt)
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WP + SC

Combining our methods overcompensates for delay

gt = G (wi_p —nTvi_p)
V41 = MU + G4

o D | 1—mP
Wil = Wy — N \M Vg1 — 7,79t
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Delayed Quadratic Optimization
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Delayed Quadratic Optimization

Analyze the characteristic polynomial of the linear recurrence relation of
the state transition equations.
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PB Training of Neural Networks
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PB Training of Neural Networks

Table 3. CIFAR-10 validation accuracy (mean=std.dev of 5 runs)
when tuning the learning rate (LR) for ResNet-20 with GN training.

The learning rate shown is used for batch size 128 SGDM training = 5050 [ 0.060
and is adjusted for batch size one PB training. > 2025 0.055
co - 0.050 S
LR SGDM PB PB+LWP,+SCp = r0.045 £
D > 5 89.75 [ 0.040 G
0.0125| 88.76+£0.45  88.7740.22 89.324+0.26 3 £0.50 0035 =
0.025 89.884+0.32  89.55+0.35 90.061+0.23 = [ 0.030 &
0.05 90.47+0.22  90.1040.40 90.80+0.37 g 89.23 [ 0.025
0.1 90.63+0.31 90.4440.24 90.92+0.25 " 89,001 ! , , , 1
0.2 90.69+0.25  90.22+0.11  90.89+0.28 ° ? o diction Sene ° 0
0.4 89.544+0.32  88.82+0.32 89.931+0.20

0.8 69.16+£33.08 2 83.53+1.39 88.01+0.56
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Mitigation Strategies

Table 2. CIFAR-10 final validation accuracy (mean=+tstd.dev of 5 runs) for ResNet (RN) with group normalization and VGG training.

NETWORK | STAGES | SGDM PB PIPEDREAM PB+LWPp PB+SCp PB+LWP}+SCp
VGGI11 29 91.16+0.19 90.8340.20 90.9340.12 91.05+0.11 91.08+0.19 91.12+0.18
VGGI3 33 92.57+£0.15 92.59+0.15 92.30+0.24 92.514+0.11 92.3840.27 92.56+0.14
VGG16 39 92.2440.19 92.06+0.21 59.314+45.01° 92.224+0.24 92.45+0.30 92.38+0.27
RN20 34 90.63+£0.31 90.44+0.24  90.36+0.06  90.684+0.30 90.80+0.29 90.92+0.25
RN32 52 91.68+£0.23 91.46+0.09 91.4040.28 91.66+0.10 91.55+0.14 92.04+0.13
RN44 70 92.194+0.14 91.71+£0.25 91.7240.14 92.00+£0.14 92.1340.16 92.16+0.26
RN56 88 92.39+0.20 91.8940.40 91.8240.19 92.31£0.14 92.3340.16 92.48+0.11
RNI110 169 92.77+0.22 91.81+£0.15 91.9240.33 92.76+0.05 92.28+0.29 92.4140.16
A S S B R B
9\390—
C g8
<E 86
® 84
Esz— -—- SGDM
—e— PB+GS
80 . . . .
PB  0.99 0.97 0.95 0.9 19
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Mitigation Strategies

Table 4. CIFAR-10 (C10) validation accuracy (mean-+tstd.dev of five runs) and ImageNet (I1k) validation accuracy (single run) comparing
SpecTrain and our methods for ResNet (RN) and VGG training.

NETWORKS(DATASET) | SGDM PB | PB+LWPL,+SCp  SPECTRAIN
VGG13 (C10) 92.57+0.15 92.59+0.15 92.56+0.14 92.49+0.12
RN20 (C10) 90.634+0.31 90.4440.24 90.92+0.25 90.93+0.09
RN56 (C10) 92.3940.20 91.8940.40 92.4840.11 92.72+0.10
RN50 (I1K) | 757 75.1 | 75.8 75.3
75 1
S 90 9
> 70
% 881 Training Method Val Accuracy % 65 - Training Method Val Accuracy
i —— SGDM 90.6% é‘; —— SGDM 75.7%
2 —— PB 90.4% 2 60 1 —— PB 75.1%
g PB+LWPp 90.7% ;8 PB+LWPp 75.2%
§ —— PB+S(Cp 90.8% ;c 55 A :@g —— PB+SCp 75.6%
—— PB+LWP}+SCp 90.9% —— PB+LWPY+SCp 75.8%
. . 50 . A "/\/ . . . . .
150 200 250 0 10 20 30 40 50 60 70 80 90

Epoch Epoch
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Summary

Pipelined Backpropagation
* Avoid the Fill & Drain overhead of pipeline parallel training

* Causes inconsistent weights and delayed gradients
* Loss of final accuracy, potential instability

* LWP+SC mitigates for these issues and outperforms existing methods
In our setting
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