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Motivation

Researchers rely on parallelism to accelerate deep learning training 
workloads

Data (batch) parallelism can scale training to large batch sizes but has 
considerable overheads which limit overall hardware utilization.
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Parallel Training

Goal: Parallelize training of a neural network with 
operations A, B, C, D
Data Parallelism (standard; maps well to GPU)

• Layer Sequential training
• All workers compute the same transformation on 

different data at a given time
Fine-Grained Pipeline Parallelism

• Layer Parallel training
• Each worker performs a single transformation on 

sequentially incoming data
• Enables worker specialization
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Pipelined Processing on a CGRA
Coarse-Grained Reconfigurable Array (CGRA)
• Mesh of locally connected workers (w)
• Distributed high bandwidth, low latency memory architecture

Spatially distributing network layers
• Near optimal resource allocation
• Persistent kernel execution
• Local weight and gradient storage
• Pipelined Training can result in improved throughput and 

energy efficiency 
• Dense training: up to a 3.5x (Zhang et al., 2019c; Li & Pedram, 2017; 

Chen et al., 2016)
• Sparse training: 42.5x improvement in throughput and a 11.3x 

improvement in energy efficiency (Chen et al., 2019)
• Activation memory complexity: O(pipeline depth^2)

• Use small micro batch processing to compensate
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Deep Network Training

SGDM:

SGD:
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Backpropagation

Efficient way to calculate gradients
• Forward Pass
• Calculates activations through a series 

of operations (A,B,C,D)

• Backward Pass
• Calculates deltas (activation gradients)

and parameter gradients
• Need to use the same parameters

• Update parameters based on gradient
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Pipeline Parallel Training

Fill and Drain SGD
• Empty the pipeline before updating the weights
• Lowers Utilization: ≈ !

!"#$
• Batch size: 𝑁; Number of pipeline stages: 𝑆

Pipelined Backpropagation (PB)
• Introduced by Pétrowski et al. (1993)
• Update weights without draining pipeline
• High utilization
• Inexact gradients
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Inexact Gradients in PB

Weights are updated during gradient computation
Weight Inconsistency
• Different weights used on the fwd and bwd passes

Gradient Delay
• Weights used to calculate a gradient are old when 

the resulting gradient is used to update the weights

Impacts training
• Loss of final accuracy
• Potential training instability
• Effect depends on the number of stages
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Mitigation Methods

Our work focuses on mitigating the effects of Pipelined Backpropogation
• Linear Weight Prediction
• Changes how the gradient is computed

• Spike Compensation
• Changes how the gradient is applied

• Delayed SGDM:
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Linear Weight Prediction (LWP)

Approximates the future backwards pass 
weights for use in the forward pass
• Assumes weight updates are roughly constant 

over the delay
• Holds well with large momentum or small delays
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Spike Compensation (SC)

• Momentum in SGDM
• Exponentially smoothed gradients used for weight 

updates
• “Impulse response” is exponential

• Spike Compensation
• Apply “missing” weight updates immediately (spike)
• Match no-delay impulse response afterwards

No Delay

Delay

Spike Compensation
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LWP + SC

Combining our methods overcompensates for delay
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Delayed Quadratic Optimization
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Delayed Quadratic Optimization
Analyze the characteristic polynomial of the linear recurrence relation of 
the state transition equations.
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Delayed Quadratic Optimization
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PB Training of Neural Networks
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PB Training of Neural Networks
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Mitigation Strategies
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Mitigation Strategies
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Summary

Pipelined Backpropagation 
• Avoid the Fill & Drain overhead of pipeline parallel training
• Causes inconsistent weights and delayed gradients
• Loss of final accuracy, potential instability

• LWP+SC mitigates for these issues and outperforms existing methods 
in our setting
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