
Understanding and Improving Failure Tolerant Training for
Deep Learning Recommendation with Partial Recovery

Motivation
• Deep learning recommendation systems (RecSys) consumes significant

resources in real-world datacenters.
○ 50% of all AI training cycles in Facebook
○ 80% of all AI inference cycles in Facebook

• RecSys training involves training GBs-TBs sized embedding tables, requiring
several tens to hundreds of nodes.

• Failure handling for RecSys training incurs non-negligible overhead, ranging
from 13% on average to over 30% on P90 case.

• We designed CPR (Checkpointing with Partial recovery for Recommendation
model training), a training system that balances model quality and
checkpointing overhead using partial recovery.

• CPR removes over 90% of the failure-handling overhead on production-scale
cluster, while showing only negligible accuracy degradation.

CPR Design Choice 1. Adopting Partial Recovery

Overhead of Failure Handling in RecSys Training

References
[1] https://www.kaggle.com/c/criteo-display-ad-challenge

[2] https://labs.criteo.com/2013/12/download-terabyte-click-logs.

[3] Deep Learning Recommendation Model for Personalization and

Recommendation Systems. Naumov et al. CoRR-2019.

Kiwan Maeng1 2, Shivam Bharuka1, Isabel Gao1, Mark C. Jeffrey1, Vikram Saraph1, Bor-Yiing Su1,
Caroline Trippel1, Jiyan Yang1, Mike Rabbat1, Brandon Lucia2, Carole-Jean Wu1

• Traditional system uses checkpointing with full recovery:
○ all nodes periodically save checkpoints, and if at least one node fails,
○ every nodes load the last checkpoint and re-execute from there.

• Full recovery has four major overheads, adding up to 13% on average:
○ checkpoint saving overhead,
○ checkpoint loading overhead,
○ re-execution of the lost computation after a failure,
○ and rescheduling the job running on the failed node.

• Checkpointing the embedding tables are the bottleneck in checkpointing.

• Partial recovery only loads the checkpoint for the failed node, incurring model
inconsistency to eliminate lost computation overhead.

• Unlike full recovery, partial recovery introduces an unexplored tradeoff between
the final model quality and checkpoint-related overheads.

CPR Design Choice 2. Using PLS Metric
• CPR uses a metric called PLS (Portion of Lost Samples) to predict the model

quality degradation if partial recovery is used.
• CPR selects the appropriate checkpoint saving interval to contain the accuracy

degradation to a user-specified level, while maximizing performance.

CPR Design Choice 3. MFU/SSU Optimizations
• CPR prioritizes saving the more frequently updated vectors in the embedding table.
• MFU (Most Frequently Used): allocates a counter per row in the embedding tables to

track the Top-k most frequently accessed rows
• SSU (Sub-Sampled Used): randomly subsample inputs and select rows the inputs

access to proxy MFU efficiently

Evaluation 1. Open-source Emulation Setup
• Criteo Kaggle [1] and Terabyte [2] datasets, DLRM [3] model
• Trained on a single GPU, emulating multi-node failures by injecting random

failures that clears 12.5%, 25%, or 50% of the embedding tables.
• Overhead numbers modeled after the production-scale statistics.
• CPR eliminated over 90% of the failure-related overheads, while sacrificing only

0.0001-0.0003 AUC.

Evaluation 2. Production-scale Setup
• 20 MLP trainers, 18 embedding parameter servers: each Intel 20-core, 2GHz

processors, 25Gbit Ethernet.
• 50-hour training, injected 5 failures that failed randomly selected 4 embedding

parameter servers.
• CPR eliminated over 91% of the overheads, while sacrificing only 0.0008 loss.

1 Facebook AI 2 Carnegie Mellon University

https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs

