Understanding and Improving Failure Tolerant Training for
Deep Learning Recommendation with Partial Recovery

Motivation

* Deep learning recommendation systems (RecSys) consumes significant
resources in real-world datacenters.
o 50% of all Al training cycles in Facebook
o 80% of all Al inference cycles in Facebook

« RecSys training involves training GBs-TBs sized embedding tables, requiring
several tens to hundreds of nodes.

 Failure handling for RecSys training incurs non-negligible overhead, ranging
from 13% on average to over 30% on P90 case.

* We designed CPR (Checkpointing with Partial recovery for Recommendation
model training), a training system that balances model quality and
checkpointing overhead using partial recovery.

« CPR removes over 90% of the failure-handling overhead on production-scale
cluster, while showing only negligible accuracy degradation.

Overhead of Failure Handling in RecSys Training

« Traditional system uses checkpointing with full recovery:
o all nodes periodically save checkpoints, and if at least one node fails,
o every nodes load the last checkpoint and re-execute from there.

« Full recovery has four major overheads, adding up to 13% on average:

checkpoint saving overhead,

checkpoint loading overhead,

re-execution of the lost computation after a failure,

and rescheduling the job running on the failed node.

« Checkpointing the embedding tables are the bottleneck in checkpointing.

==
M Rescheduling
Chkpt Load
® Chkpt Save
M Lost Time
B Useful Training
P90

O O O O

100%

I

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Mean P75

CPR Design Choice 1. Adopting Partial Recovery

» Partial recovery only loads the checkpoint for the failed node, incurring model
inconsistency to eliminate lost computation overhead.

« Unlike full recovery, partial recovery introduces an unexplored tradeoff between
the final model quality and checkpoint-related overheads.

Full recovery Partial recovery
© No re-execution of the
T :
] Chkptsave Chkptload Node . lost computation
- . rescheduling 7 - (-
o total total O Ozt 0 RoEasy
> oo ieai v load hed
o,

E .} f

P Chkpt saving interval Mean time between failures
>

fy

©

=

g Remains the same f (Teave: Traii) =2
L

ge.

O

<

CPR Design Choice 2. Using PLS Metric

« CPR uses a metric called PLS (Portion of Lost Samples) to predict the model
quality degradation if partial recovery is used.

 CPR selects the appropriate checkpoint saving interval to contain the accuracy
degradation to a user-specified level, while maximizing performance.

0.6

o
\n

Chkpt saving interval

/

05100

.O
IS

o
w

E|PLS| =
[] TfailNemb

<\

M ti bet
sl 'r.ne ki Number of Emb PS
failures

&
[HEN

Accuracy degradation (AUCdecrease)
o
NJ

-0.1

-0.2

PLS

CPR Design Choice 3. MFU/SSU Optimizations

« CPR prioritizes saving the more frequently updated vectors in the embedding table.

« MFU (Most Frequently Used): allocates a counter per row in the embedding tables to
track the Top-k most frequently accessed rows

« SSU (Sub-Sampled Used): randomly subsample inputs and select rows the inputs
access to proxy MFU efficiently

Kiwan Maeng'?, Shivam Bharuka', Isabel Gao', Mark C. Jeffrey', Vikram Saraph’, Bor-Yiing Su’,
Caroline Trippel®, Jiyan Yang', Mike Rabbat', Brandon Lucia?, Carole-Jean Wu'

' Facebook Al 2 Carnegie Mellon University

Evaluation 1. Open-source Emulation Setup

« Criteo Kaggle [1] and Terabyte [2] datasets, DLRM [3] model

« Trained on a single GPU, emulating multi-node failures by injecting random
failures that clears 12.5%, 25%, or 50% of the embedding tables.

« QOverhead numbers modeled after the production-scale statistics.

« CPR eliminated over 90% of the failure-related overheads, while sacrificing only
0.0001-0.0003 AUC.

0.7985
- ~0.0003 AUC decrease Improved AUC
A (corresponds to PLS=0.1) (¥0.0001 AUC decrease)
0)
al <o07975
S wm
gf @
20
=
0.7965
Full recovery CPR-vanilla CPR-MFU CPR-SSU
- e 15
@ 2 .y
1: £ > 90% of the overhead eliminated
Q 'B © 10 . . o
ﬁ rICo £ Overhead similar to CPR-vanilla
| 25 s
2| T2
ke = = — ——
v Full recovery CPR-vanilla CPR-MFU CPR-SSU

Evaluation 2. Production-scale Setup

« 20 MLP trainers, 18 embedding parameter servers: each Intel 20-core, 2GHz
processors, 25Gbit Ethernet.

« 50-hour training, injected 5 failures that failed randomly selected 4 embedding
parameter servers.

 CPR eliminated over 91% of the overheads, while sacrificing only 0.0008 loss.

0.787 -
) ~0.0008 loss increase
£l 2
Q
a| S 0.7865
(7] Qo
e £
g : l .
1 |
—d
¥ 0.7855
Full recovery CPR-vanilla CPR-vanilla CPR-vanilla CPR-vanilla
(PLS=0.025) (PLS=0.05) (PLS=0.075) (PLS=0.1)
10 :
= £ 91% overhead reduction
g E= ®
Q Qo X
0 £ = 6
P —_—
.- T @©
" c o 4
Q © =
$| t8 7] —
-‘v é © 0 — E— Y ______
O
a Full recovery CPR-vanilla CPR-vanilla CPR-vanilla CPR-vanilla
(PLS=0.025) (PLS=0.05) (PLS=0.075) (PLS=0.1)
References

[1] https://www.kaggle.com/c/criteo-display-ad-challenge

[2] https://labs.criteo.com/2013/12/download-terabyte-click-logs.

[3] Deep Learning Recommendation Model for Personalization and
Recommendation Systems. Naumov et al. CoRR-2019.

https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs

