

Introduction

- Engineering a Deep Neural Network (DNN) is a costly procedure.
- DNNs are valuable Intellectual Property (IP) of model vendors.
- Reliable commercialization of DNNs is threatened by IP infringement activities.

Core Concepts

- DNNs should be protected against IP infringements.
- Digital watermarking can be a viable solution for Digital Right Managements (DRM) of DNNs.

Must Haves

- An ideal watermark should be a meaningful multi-bit signature.
- An ideal watermark should be robust to watermark removal attempts.
- An ideal watermark must be verifiable in a black-box setting.

Problem

> The properties above are hard to achieve together.

Our Solution

> GradSigns. A Novel Watermarking Framework for DNNs.

Don't Forget to Sign the Gradients!

Omid Aramoon¹, Pin-Yu Chen², Gang Qu¹ University of Maryland¹, IBM Research²

GradSigns Watermarking Framework:

Embedding the watermark on the gradient of crossentropy cost function with respect to model's input.

Watermark Embedding

- 1. Generating embedding prerequisites b, K, C, T.
 - Generating an N-bit vector b to be used as the watermark.
 - Selecting a set C of input neurons to carry the watermark.
 - Generate an Embedding key K.
 - Select a random target class T from the dataset.
- Training the model to optimize both the original training cost function, i.e. cross-entropy function, and GradSigns' embedding regularizer term which penalizes the divergence from the desired watermark value.

$$J_{training} = J_{cross-entropy} + \lambda J_{GradSigns-Embedding}$$

Watermark Verification

1. The vendor queries the model with samples from class T.

2. The model reports the prediction scores.

3. The vendor computes the gradient of cross-entropy function w.r.t carrier nodes using a zeroth-order estimation method.

 $ar{G} \in \mathbb{R}^{|\mathcal{C}| imes 1}$

4. The vendor transforms the computed gradient vector $\overline{\bf G}$ to the watermark space using the **embedding key K**.

$$\mathbf{K} \times \overline{\mathbf{G}} = \boldsymbol{\chi}$$

 $\chi \in \mathbb{R}^{N \times 1}$

- 5. The vendor extracts the embedded watermark $y \in \{0,1\}^{N \times 1}$ by binarizing χ using the sign function.
- 6. If the extracted watermark \mathbf{y} matches the signature \mathbf{b} , the model belongs to the vendor.

MLSys

Fourth Conference on Machine Learning and Systems

Experiments and Results

- Watermarks of varying sizes (16,32 and 64 bits) were embedded into DNNs targeting classification tasks of CIFAR10. SVHN, and YouTubeFaces.
- GradSigns has minimal overhead (on average, less than 1%) on performance of the host model.

Dataset	Baseline Accuracy	GS-16	GS-32	GS-64
CIFAR10	91.2%	90.1%	90.4%	90.5%
SVHN	96.1%	95.5%	95.7%	95.3%
YTF	99.6%	99.6%	99.6%	98.6%

Unlike existing black-box watermarking methods, GradSigns is robust to watermark removal attacks such as model pruning and fine-tuning.

Number of samples available for each classification label in adversary's fine-tuning dataset.

GradSigns is also robust against a large array of known and adaptive watermark removal attacks, listed below.

Counter Watermark Attacks	Description		
Query Invalidation	Adversary checks and sanitizes model queries using auto encoders.		
Input Noise Injection	Adversary corrupts model queries using a random Gaussian noise.		
Model Quantization	Adversary compresses the model.		
Adversarial Fine-tuning	Adversary fine-tunes the model using adversarial examples.		
Score Rounding	Adversary reports the rounded prediction scores.		
Score Perturbation	Adversary corrupts reported prediction scores using a random noise.		

Conclusion

- ✓ GradSigns enables model vendors to protect their IP by embedding robust multi-bit signatures.
- ✓ GradSigns is applicable to black-box verification scenario.
- ✓ GradSigns has negligible impact on accuracy of the model.

