@2 NVIDIA UMBC Booz | Allen | Hamilton
. GPUSEMIRING PRIMITIVES

.. FOR SPARSE
'p . NEIGHBORHOOD METHODS

AUGUST 2022

Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

« Computing distances between vectors is core to many machine learning
algorithms
- Computing them efficiently for sparse datasets can be very hard
- Little easier when it can computed with standard matrix multiplication (i.e.,
Euclidean)

* There are many distance metrics people want to use and a large variety of
sparsity patterns and interactions to contend with

Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

» We present a single unified framework for
computing several important sparse pairwise
distances

Fast and memory efficient across many
different sparsity patterns.

Provides reusable building blocks for
composing many different important metrics
in ML.

Can be extended to different execution
patterns by optimizing specific sparsity
patterns.

Already available to you in RAPIDS!

https://github.com/rapidsai/raft

RAPIDS | RAFT: Reusable Accelerated Functions and Tools

RAFT contains fundamental widely-used algorithms and primitives for data science and machine learning. The
algorithms are CUDA-accelerated and form building-blocks for rapidly composing analytics.

By taking a primitives-based approach to algorithm development, RAFT

« accelerates algorithm construction time
« reduces the maintenance burden by maximizing reuse across projects, and

» centralizes core reusable computations, allowing future optimizations to benefit all algorithms that use them.

While not exhaustive, the following general categories help summarize the accelerated functions in RAFT:

Category Examples
Data Formats sparse & dense, conversions, data generation
Dense Linear Algebra = matrix arithmetic, norms, factorization, least squares, svd & eigenvalue problems
Spatial pairwise distances, nearest neighbors, neighborhood graph construction
Sparse Operations linear algebra, eigenvalue problems, slicing, symmetrization, labeling
Basic Clustering spectral clustering, hierarchical clustering, k-means
Solvers combinatorial optimization, iterative solvers
Statistics sampling, moments and summary statistics, metrics

Distributed Tools multi-node multi-gpu infrastructure

RAFT provides a header-only C++ library and pre-compiled shared libraries that can 1) speed up compile times
and 2) enable the APIs to be used without CUDA-enabled compilers.

RAFT also provides 2 Python libraries:

e pylibraft - low-level Python wrappers around RAFT algorithms and primitives.

* pyraft - reusable infrastructure for building analytics, including tools for building both single-GPU and multi-
node multi-GPU algorithms.

https://github.com/rapidsai/raft

Semirings and Relation To Matrix Multiplication

A monoid contains an associative binary relation, such as addition (¢), and an identity element (id.)

A semiring, denoted (S,R,{®,id },{®,id }), is a tuple containing additive (®) and multiplicative (®)
monoids where

1. @is commutative, distributive, and has an identity element 0

2. @ distributes over @

- Given two sparse vectors a,b € R¥, a semiring with (S,R,{®,0},{¢,1}) and annihilator_= 0 is a standard
matrix multiplication.

» Sparse Matrix-Vector multiplication (SPMV) is fundamental low-level BLAS routine in sparse matrix
multiplication. Our contribution is a CUDA-accelerated Sparse Matrix-Sparse Vector (SPSV)
multiplication primitive.

The Euclidean Semiring

» Let vector a=[1,0,1 and b =[0,1,0]

« Take the formula for computing Euclidean
distance

n

2
D 1xi = i
i=1

* We can use the distributive property to compute
more efficiently in parallel:

- - 2<xy> +)

- Can compute with a simple dot product
(plus-times semiring) and L2 norms of x and

Y.

> (Jla—b
> ([I1—=0[,10 —1],]1 - 0]]

> ([1,1,1]

S (la—b
S ({1t —0},0 - 1],[1 0]

> ([0,0,0]

4)
)
(6)

(7)
(8)
©)

The Manhattan Semiring and Non-Annihitilating Multiplicative Monoid (NAMM)

 Letvectora=[1,0,1and b =[0,1,0] Z(W‘ b)
 We take the sum of the absolute value of their
differences (egs 4, 5, 6)

« Semiring libraries rely on the detail that the E (Hl — O|7 |0 — 1|7 ‘1 — O|)
multiplicative annihilator is equal to the additive
- If we follow this detail in our example, we end up Z([»)
with the following result of Egs. 7, 8, 9 (if any side
is 0, the arithmetic evaluates to 0).

 What we need here instead is for the multiplicative
identity to be non-annihilating, evaluating to the Z(|a, —)
other side when either side is zero and evaluating to
0 only in the case where both sides have the same

value. i.e.,: Z([|1—0|710_1|7|1_0|:)
> ([0,0,0))

4)
)
(6)

|
v

(7)
(8)
©®)

N—"

O
|
-

00O

L,

Semirings of Several Important Distances

(Zf o T; +Zf Oyz Zf szyz

Distance Formula NAMM Norm Expansion

= -
Correlation BV > e > Oyy),-—3722 Lily 1= it i il
Cosine NG > = 2V v B il 37
Dice-Sorensen > 52‘2 g; f(gy’_ln ME Lo %
Dot Product SoF 0wy (- y)
Euclidean \/Zfzo lzs — ys2 Lo lzll3 — 2(z - u) + llylI3
Canberra >0 TiThaT {et=tur O3
Chebyshev Zf:o max(x; — Y;) {max(x — y),0}
Hamming 23’“:0# {z # vy, 0}
Hellinger %\/Zf:o (VT — /T3) 1—\/{Vz-/7)
Jaccard o Lo ! — (Eriylew

Jensen-Shannon

\/Zl o Ti log +y.L log

{zlog {; + ylog £, 0}

KL -Divergence Zf:o L log(%) (z -log Z)
Manhattan SoF o |z — yil {|lz — yl|, 0}

Minkowski CoF o lzs — walP)V/P Ll — g|¥, 0}

Russel-Rao k_z% e w

SPSV CUDA Kernel: Load-Balanced Hybrid CSR+CO0

Algorithm 3 Load-balanced Hybrid CSR+COO SPMV.

1' _Load-balan_c"‘g USI_ng a row Input: A;, B, product_op, reduce_op
index array in coordinate format Result: C;; = d(4A;, B))

read A; into shared memory

(COQ,) for B, coalescing the loads . ;ow=rowidx(ind]

ind = idx of first elem to be processed by this thread
from eaCh VeCtor from A ¢ = product_op(A[ind], x[colidx[ind]])

for i < 1 to nz_per_chunk; by warp_size do
next_row = Cur_row + warp _size

2 . Lowe red memOry fOOtp Il nt by if next_row != cur_row —— is_final _iter? then
= v = segmented_scan(cur_row, ¢, product_op)
removing the need to transpose if is_segment_leader? then
B | atomic_reduce(v, reduce_op)
' end
c=0
. end

3. Two-pass execution -

ind += warp_size
¢ = product_op(A[ind], x[colidx[ind]])

end

Implement NAMM with Mutliple Passes of an SPMV

* Asingle pass computes the
intersection a N b between nonzero
columns from each vector a, and b so
long as @ is applied to all nonzero
columns of b

* A second pass can compute the
remaining symmetric difference
required for the full union between
non-zero column

alUb= {a N b} U {5 N b} U {a N 5} * id_in B is skipped in the second pass.

Performance- It’s Fast But Also Memory Efficient

« Benchmarks were performed on a DGX1 containing dual 20-core Intel
Xeon ES-2698 CPUs (80 total threads) at 2.20GHZ and a Volta V100
GPU running CUDA 11.0 for both the driver and toolkit.

« Each benchmark performs a k-nearest neighbors query to test our
primitives end-to-end and allow scaling to datasets where the dense
pairwise distance matrix may not otherwise fit in the memory of the GPU

« We used the brute-force NearestNeighbors estimator from RAPIDS
cuML for the GPU benchmarks since it makes direct use of our primitive

* We used Scikit-learn’s corresponding brute-force NearestNeighbors
estimator as a CPU baseline and configured it to use all the available

CPU cores

Performance- Fast And Memory Efficient

Table 3: Benchmark Results for all datasets under consideration. All times are in seconds, best result in bold. The first
italicized set of distances can all be computed as dot products, which are already highly optimized for sparse comparisons
today. This easier case we are still competitive, and sometimes faster, than the dot-product based metrics. The Non-trivial
set of distances that are not well supported by existing software are below, and our approach dominates amongst all these

metrics.
MovieLens scRNA NY Times Bag of Words SEC Edgar
Distance Baseline RAFT Baseline RAFT Baseline RAFT Baseline RAFT

s Correlation 130.57 111.20 207.00 235.00 257.36 337.11 134.79 87.99
& Cosine 131.39 110.01 206.00 233.00 257.73 334.86 127.63 87.96
@ Dice 130.52 110.94 206.00 233.00 130.35 335.49 134.36 88.19
2 Euclidean 131.93 111.38 206.00 233.00 258.38 336.63 134.75 87.77
E Hellinger 129.79 110.82 205.00 232.00 258.22 334.80 134.11 87.83
2 Jaccard 130.51 110.67 206.00 233.00 258.24 336.01 134.55 87.73
A Russel-Rao 130.35 109.68 206.00 232.00 257.58 332.93 134.31 87.94
§ Canberra 3014.34 268.11 4027.00 598.00 4164.98 819.80 505.71 102.79
% Chebyshev 1621.00 336.05 3907.00 546.00 2709.30 1072.35 253.00 146.41
> Hamming 1635.30 229.59 3902.00 481.00 2724 .86 728.05 258.27 97.65
.E‘ Jensen-Shannon 7187.27 415.12 4257.00 1052.00 10869.32 1331.37 1248.83 142.96
E KL Divergence 5013.65 170.06 4117.00 409.00 7099.08 525.32 753.56 87.72
~ Manhattan 1632.05 227.98 3904.00 477.00 2699.91 715.78 254.69 98.05
2 Minkowski 1632.05 367.17 4051.00 838.00 5855.79 1161.31 646.71 129.47

10

It Is Used In The RAPIDS cuML Library

from cuml.neighbors import

. Enal?les severgl clusterlng and . NearestNeighbors
manifold learning algorithms to nn = NearestNeighbors () .fit (X)
accept Sparse inputS. diStS, inds = nn.kneighbors (X)

from cuml.metrics import
— Ppalrwise_distances

* Also being used in cuML’'s Sparse dists = pairwise_distances (X,

k-Nearest Neighbors estimator. ~ metrle=TEeRinet)

Figure 2: Excluding data loading and logging, all the code

o Ah-eady available in current needed to perform the same GPU accelerated sparse dis-
tance calculations done in this paper are contained within

RAPIDS, no hard work required. these two snippets. Top shows k-NN search, bottom all

pairwise distance matrix construction. These are the APIs
that most would use.

https://github.com/rapidsai/cuml

11

https://github.com/rapidsai/cuml

RAFT Library Provides C++ API for Defining New Distance Semirings

Just define monoids!

#include
— <raft/sparse/distance/coo_spmv.cuh>
#include <raft/sparse/distance/operators.h>

using namespace raft::sparse::distance
distances_config t<int, float> conf;
// Use conf to set input data arguments...
balanced_coo_pairwise_generalized_spmv (
out_dists, conf, coo_rows_a,
AbsDiff (), Sum(), AtomicSum());
balanced_coo_pairwise_generalized_spmv_rev (

out_dists, conf, coo_rows_b,
AbsDiff (), Sum(), AtomicSum());

12

Conclusion / Questions?

« Semirings provide us a framework for unifying many important E] E]
distances in ML applications. RS 3 DCARR D ot
« Our SPSV kernel is state of the art in performance, efficiency sifis 3858, dan® S o
and flexibility ik B .; g 3 e tes

Check out the paper for details!
@cjnolet y

% https://github.com/rapidsai/raft
b https://qithub.com/rapidsai/cuml

13

https://github.com/rapidsai/raft
https://github.com/rapidsai/raft

