
Revelio: ML-Generated Debugging Queries for
Finding Root Causes in Distributed Systems

Pradeep Dogga

Karthik
Narasimhan†

Anirudh
Sivaraman‡

Shiv Kumar
Saini*

George
Vargheseδ

Ravi
Netravali†

† ‡ * δ

Collaborators

• Problem: Difficult to understand which debugging tool to use, when
and how (i.e, which debugging query?)

• Solution: Leverage patterns in historical debugging data to auto
generate debugging queries using ML

• Ideas: Leverage unstructured reports and structured logs, modularity
and abstraction (e.g., stability in rank ordering)

• Opensource Testbed: Enables debugging experiments and data
collection by others

What Revelio is about

Developer

Ticket
Application is not loading
some content!

Corrupt key-value
store?

Investigate logs
from key-value

store

Wrong hypothesis!

Congestion at
switch

Investigate logs
from switches

Correct hypothesis!

Largely manual and error-prone

Query Generation

Today’s Root Cause Diagnosis – Painful and buggy

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjZzduexMflAhWSoJ4KHVKwDF8QjRx6BAgBEAQ&url=http%3A%2F%2Fclipart-library.com%2Fuser.html&psig=AOvVaw1sX1BhqT0g8jfAZYd2UCkV&ust=1572646837289267

SELECT

Queue
depth

switch ID1

==

switch ID2

==

OR

Query issued on logs to validate root cause hypothesis for debugging.

Example hypothesis: “Congestion at switches causing drops”

Debugging Query:
SELECT * FROM Queue_depth
WHERE
switch = ID1 OR
switch = ID2

Debugging Query

• Not lack of tools
• Too many! - Modularity, features, expenses, etc.
• Painful to learn using all these tools.

• Large search space of hypotheses
• Which subsystem and which metrics to investigate?

Debugging remains difficult

Tons of logs everywhere!

Developer Survey

• Scope: 7 services, serve 83 million requests per day.

• Multiple Tools used: Splunk, Datadog, CloudWatch,
Lightstep, New Relic, Pingdom, Icinga, etc.

• Alerting Monitors: Hard to maintain, neglected due
to false alerts.

Manual Ticket Analysis

• Scope: 176 tickets (4-month period).

• 94% of the root-causes could be clustered to 7
categories

• Resource under-provisioning
• Component failures
• Subsystem misconfigurations
• Network-level misconfigurations
• Network congestion
• Source-code bugs
• Incorrect data exchange

Did I debug
this scenario

before?
• Hard-won debugging intuitions guide

developers.
• Debugging queries are used to

interface with multiple tools.
• But bottleneck remains which tool

and which query parameters to use.
• But, root-causes of several bugs

share common characteristics.
Leverage?

Takeaways

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjRr_L6l-XlAhVzCjQIHRQ7C50QjRx6BAgBEAQ&url=https%3A%2F%2Fwww.pinterest.co.uk%2Fpin%2F301319031297113162%2F&psig=AOvVaw1tleXWO-xNOQPr9Pj7E3Gm&ust=1573665686743614

User Issue
(Natural Language)

Query suggestions
for finding root
cause of issue

RevelioSwitch

Database

Server

Load Reddit Homepage

You broke Reddit

System Logs

Network Logs

Application Logs

Revelio: ML-Generated Debugging Queries

• Highly structured output space.

• Solution: Leverage the inherent tree structure of queries using GCNs.

Challenges – Predicting Queries

GCN

Query AST Query Vector

• Large search space of queries.

• Solution: Leverage Modularity – decompose query to a template and parameters
that fill the template.

Challenges – Scaling

SELECT

Queue
depth

switch b1

==

switch b2

==

OR

Debugging Query:
SELECT * FROM Queue_depth
WHERE
switch = ID1 OR
switch = ID2

Template:
SELECT * FROM Queue_depth
WHERE
switch = b1 OR
switch = b2

Modularity – Template and Parameters

Parameters: ID1, ID2

• Template Prediction:
• Motivated by repetitiveness of bugs – small number of templates.
• Use User reports and system logs.
• Shrinks output space regardless of scale!

• Parameter Prediction:
• Use system logs – Shrinks input space!
• User reports rarely contain mentions of specific components.

Challenges – Scaling

• Infeasible to gather training data capturing all faulty locations in the system.

• Solution: Abstraction – Rank Ordering of components based on their features
better than ordering by IDs.

Challenges – Generalization to new fault locations

Unordered
Feature
vectors

Ordered
Feature
vectors

Parameter list Avg. Queue depth (Training sample 1) Avg. Queue depth (Training sample 2) Avg. Queue depth (Test sample)

Switch 1 4.75 0.21 0.16

Switch 2 0.18 3.85 0.23

Switch 3 0.21 0.17 5.6

… … … …

4.75 0.18 0.21 …

0.21 3.85 0.17 …

0.16 0.23 5.6 …

4.75 0.21 0.18 …

3.85 0.21 0.17 …

5.6 0.23 0.16 …

0

10
Queue depths

0

10
Queue depths

Queue depth order statistics from train set
correlate with those from the test set

Queue depths from train set don’t correlate with
those from the test set

Training sample 1 =
Training sample 2 =

Testing sample =

Training sample 1

Training sample 2

Testing sample

Training sample 1 =
Training sample 2 =

Testing sample =

Training sample 1

Training sample 2

Testing sample

Stability in Feature Rank Ordering – Better Predictability

GCN

Trans-
former

FFN

FFN

FFN

Template

T1

T2

…

Historical
Debugging
Templates

Template
Likelihood
P1(T|R,L)

T*=0.93

T2=0.12

…

Network

Application

System

Logs

User

User Report

(L)

(R)

vT

(Ti)

Distributed System

vR

vL

Design - Template Prediction

FFN
Parameter
Likelihood
P2(U|T,L)

U1=0.34

U*=0.89
…

Component
Features

vB

LU

Top
Query

Q=(T*,U*)

(L) (T*)

Logs Template

Design - Parameter Prediction

Design - Debugging Query Generation

Distributed Systems Debugging Testbed – Open Source
https://github.com/debugging-assistant/Debugging-Testbed

• Real-World Applications: Reddit, Sock Shop, Hipster Shop.

• Logging Frameworks: Jaeger (OpenTracing), cAdvisor, Marple, TCPDump.

• Fault Injector: Motivated by production study and primed with faults.

• Mturk Interface: Expose your testbed to real users.

• Virtualized Topology: Deployed on a single machine.

Testbed - Enabling Debugging Experiments
https://github.com/debugging-assistant/Debugging-Testbed

Fault Injector
(primed)

Testbed
(Instrumented)

AWS
MTurk

Researcher

Inject Fault

Data Collection

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjZzduexMflAhWSoJ4KHVKwDF8QjRx6BAgBEAQ&url=http%3A%2F%2Fclipart-library.com%2Fuser.html&psig=AOvVaw1sX1BhqT0g8jfAZYd2UCkV&ust=1572646837289267

Testbed – Logging Metrics

• Marple[1]: Programs P4 switches in the network and collects queue depth, packet
metadata.

• Jaeger: Collects application function execution times, tags and exceptions.

• cAdvisor: Reports CPU, memory, disk and network utilization metrics for each
host in the testbed.

[1] Language-Directed Hardware Design for Network Performance Monitoring – SIGCOMM ’17

https://github.com/debugging-assistant/Debugging-Testbed

Dataset – Evaluating Revelio

Dataset Split Percentage

Training 53%

Validation 13%

Test_repeat 17%

Test_generalize 17%

App Dataset Size

Reddit 694

Sockshop 346

Metric Reddit Sock Shop

Unique Faults 76 102

Unique Queries 118 320

• Revelio’s performance on ‘repeat’ faults

• Revelio’s performance on ‘unseen’ manifestations of faults

Evaluation – Revelio’s Performance

Evaluation – Impact of design choices

Evaluation – Impact of available training data

test_unseentest_repeat

• Problem: Difficult to understand which debugging tool to use, when
and how (i.e, which debugging query?)

• Solution: Leverage patterns in historical debugging data to auto
generate debugging queries using ML

• Ideas: Leverage unstructured reports and structured logs, modularity
and abstraction (stability in rank ordering)

• Opensource Testbed: Enables debugging experiments and data
collection by others

Summary

Thank you!

Contact: dogga@cs.ucla.edu
http://web.cs.ucla.edu/~dogga

Join Us: https://github.com/debugging-assistant

mailto:dogga@cs.ucla.edu
http://web.cs.ucla.edu/~dogga

