
Apollo: Automatic Partition-based Operator Fusion
through Layer by Layer Optimization

Presenter: Bojian Zheng
EcoSystem Research Group, University of Toronto, Toronto

presenting on behalf of

Jie Zhao1 Xiong Gao2 Ruijie Xia2

Zhaochuang Zhang2 Deshi Chen2 Lei Chen3

Renwei Zhang2 Zhen Geng2† Bin Cheng2 Xuefeng Jin2

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou
2Huawei Technologies Co. Ltd., Hangzhou, Beijing and Shenzhen

3Hong Kong University of Science and Technology, Hong Kong
†Now is with the Parallel Computing Software Team at Alibaba, Hangzhou

Fifth Conference on Machine Learning and Systems (MLSys’22)

2022.08.29, Santa Clara, CA, USA

2022.08.29, Santa Clara 1 / 21

Outline

1 Introduction

2 Partition Phase

3 Fusion Phase

4 Putting It All Together

5 Results

6 Conclusion

2022.08.29, Santa Clara 2 / 21

Fusion in Deep Learning Compilers

fusion is an important transformation for making use of faster local
memory, but it was NOT exploited by deep learning frameworks like
TensorFlow [1] and Pytorch [10].

In recent years, fusion has fascinated massive attentions in deep
learning compilers.

fusion

XLA [5]

DLVM [12]

TVM [3]

TC [11]

Rammer [8]

TASO [6]

While extensively investigated, fusion in these deep learning compilers
can be inspected in different ways.

Introduction Fusion in Deep Learning Compilers 2022.08.29, Santa Clara 3 / 21

Fusion in Deep Learning Compilers

fusion is an important transformation for making use of faster local
memory, but it was NOT exploited by deep learning frameworks like
TensorFlow [1] and Pytorch [10].

In recent years, fusion has fascinated massive attentions in deep
learning compilers.

fusion

XLA [5]

DLVM [12]

TVM [3]

TC [11]

Rammer [8]

TASO [6]

While extensively investigated, fusion in these deep learning compilers
can be inspected in different ways.

Introduction Fusion in Deep Learning Compilers 2022.08.29, Santa Clara 3 / 21

Fusion in Deep Learning Compilers

fusion is an important transformation for making use of faster local
memory, but it was NOT exploited by deep learning frameworks like
TensorFlow [1] and Pytorch [10].

In recent years, fusion has fascinated massive attentions in deep
learning compilers.

fusion

XLA [5]

DLVM [12]

TVM [3]

TC [11]

Rammer [8]

TASO [6]

While extensively investigated, fusion in these deep learning compilers
can be inspected in different ways.

Introduction Fusion in Deep Learning Compilers 2022.08.29, Santa Clara 3 / 21

Limitations of Prior Fusion Compilers

A primitive/compound operator is denoted using a circle or a box. A compond operator is
composed of multiple primitive operators. These operators consititute two sub-graphs.

Graph compilers like XLA [5] and DLVM [12] did not consider
compute-intensive operators (op3 or op5), isolating each of the two
sub-graphs into multiple components.

Tensor compilers including TVM [3], TC [11] and Tiramisu [2]
execute a routine transformation orchestration (first node grouping
and next loop fusion), subject to the scalability issue [15, 9] caused by
the constraints from the upstream graph engine.

More recent works [6, 8, 17] investigated horizontal fusion between
independent operators, e.g., (op1 and op2), but training workloads
and dedicated chips were rarely considered.

Introduction Limitations of Prior Work 2022.08.29, Santa Clara 4 / 21

Limitations of Prior Fusion Compilers

A primitive/compound operator is denoted using a circle or a box. A compond operator is
composed of multiple primitive operators. These operators consititute two sub-graphs.

Graph compilers like XLA [5] and DLVM [12] did not consider
compute-intensive operators (op3 or op5), isolating each of the two
sub-graphs into multiple components.

Tensor compilers including TVM [3], TC [11] and Tiramisu [2]
execute a routine transformation orchestration (first node grouping
and next loop fusion), subject to the scalability issue [15, 9] caused by
the constraints from the upstream graph engine.

More recent works [6, 8, 17] investigated horizontal fusion between
independent operators, e.g., (op1 and op2), but training workloads
and dedicated chips were rarely considered.

Introduction Limitations of Prior Work 2022.08.29, Santa Clara 4 / 21

Limitations of Prior Fusion Compilers

A primitive/compound operator is denoted using a circle or a box. A compond operator is
composed of multiple primitive operators. These operators consititute two sub-graphs.

Graph compilers like XLA [5] and DLVM [12] did not consider
compute-intensive operators (op3 or op5), isolating each of the two
sub-graphs into multiple components.

Tensor compilers including TVM [3], TC [11] and Tiramisu [2]
execute a routine transformation orchestration (first node grouping
and next loop fusion), subject to the scalability issue [15, 9] caused by
the constraints from the upstream graph engine.

More recent works [6, 8, 17] investigated horizontal fusion between
independent operators, e.g., (op1 and op2), but training workloads
and dedicated chips were rarely considered.

Introduction Limitations of Prior Work 2022.08.29, Santa Clara 4 / 21

Limitations of Prior Fusion Compilers

A primitive/compound operator is denoted using a circle or a box. A compond operator is
composed of multiple primitive operators. These operators consititute two sub-graphs.

Graph compilers like XLA [5] and DLVM [12] did not consider
compute-intensive operators (op3 or op5), isolating each of the two
sub-graphs into multiple components.

Tensor compilers including TVM [3], TC [11] and Tiramisu [2]
execute a routine transformation orchestration (first node grouping
and next loop fusion), subject to the scalability issue [15, 9] caused by
the constraints from the upstream graph engine.

More recent works [6, 8, 17] investigated horizontal fusion between
independent operators, e.g., (op1 and op2), but training workloads
and dedicated chips were rarely considered.

Introduction Limitations of Prior Work 2022.08.29, Santa Clara 4 / 21

Architecture of Apollo

The partition phase

considers compute-intensive operators (missed by XLA [5]);
defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase

addresses the scalability issue of existing polyhedral compilers [16, 11];
goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Architecture of Apollo

The partition phase

considers compute-intensive operators (missed by XLA [5]);
defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase

addresses the scalability issue of existing polyhedral compilers [16, 11];
goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Architecture of Apollo

The partition phase
considers compute-intensive operators (missed by XLA [5]);

defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase

addresses the scalability issue of existing polyhedral compilers [16, 11];
goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Architecture of Apollo

The partition phase
considers compute-intensive operators (missed by XLA [5]);
defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase

addresses the scalability issue of existing polyhedral compilers [16, 11];
goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Architecture of Apollo

The partition phase
considers compute-intensive operators (missed by XLA [5]);
defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase
addresses the scalability issue of existing polyhedral compilers [16, 11];

goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Architecture of Apollo

The partition phase
considers compute-intensive operators (missed by XLA [5]);
defines rules with the awareness of its loop optimizer’s requirements
(not investigated by TVM [3]).

The fusion phase
addresses the scalability issue of existing polyhedral compilers [16, 11];
goes beyond the recent works [8, 17] by enabling memory and
parallelism stitching for training workloads on a dedicated accelerator.

Introduction Overview of Apollo 2022.08.29, Santa Clara 5 / 21

Graph Simplification and Extracting Sub-graph Cluster P

A graph is first simplified through

algebraic simplification (also used by [5])
data-flow optimization (also considered by nGraph [4])
control-flow optimization
data layout transformation

A sub-graph cluster P (i.e., the set of colored operators) is next
extracted with two kinds of operators excluded

user-defined and/or extraordinary operators with complex
computational logic, e.g., all-reduce used in training speech
recognition.
control flow operators like TensorFlow’s RefSwitch.

Partition Phase Extracting Sub-graph Cluster 2022.08.29, Santa Clara 6 / 21

Graph Simplification and Extracting Sub-graph Cluster P

A graph is first simplified through

algebraic simplification (also used by [5])
data-flow optimization (also considered by nGraph [4])
control-flow optimization
data layout transformation

A sub-graph cluster P (i.e., the set of colored operators) is next
extracted with two kinds of operators excluded

user-defined and/or extraordinary operators with complex
computational logic, e.g., all-reduce used in training speech
recognition.
control flow operators like TensorFlow’s RefSwitch.

Partition Phase Extracting Sub-graph Cluster 2022.08.29, Santa Clara 6 / 21

Graph Simplification and Extracting Sub-graph Cluster P

A graph is first simplified through

algebraic simplification (also used by [5])
data-flow optimization (also considered by nGraph [4])
control-flow optimization
data layout transformation

A sub-graph cluster P (i.e., the set of colored operators) is next
extracted with two kinds of operators excluded

user-defined and/or extraordinary operators with complex
computational logic, e.g., all-reduce used in training speech
recognition.
control flow operators like TensorFlow’s RefSwitch.

Partition Phase Extracting Sub-graph Cluster 2022.08.29, Santa Clara 6 / 21

Graph Simplification and Extracting Sub-graph Cluster P

A graph is first simplified through

algebraic simplification (also used by [5])
data-flow optimization (also considered by nGraph [4])
control-flow optimization
data layout transformation

A sub-graph cluster P (i.e., the set of colored operators) is next
extracted with two kinds of operators excluded

user-defined and/or extraordinary operators with complex
computational logic, e.g., all-reduce used in training speech
recognition.
control flow operators like TensorFlow’s RefSwitch.

Partition Phase Extracting Sub-graph Cluster 2022.08.29, Santa Clara 6 / 21

Graph Simplification and Extracting Sub-graph Cluster P

A graph is first simplified through

algebraic simplification (also used by [5])
data-flow optimization (also considered by nGraph [4])
control-flow optimization
data layout transformation

A sub-graph cluster P (i.e., the set of colored operators) is next
extracted with two kinds of operators excluded

user-defined and/or extraordinary operators with complex
computational logic, e.g., all-reduce used in training speech
recognition.
control flow operators like TensorFlow’s RefSwitch.

Partition Phase Extracting Sub-graph Cluster 2022.08.29, Santa Clara 6 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Opening Compound Operators within each Sub-graph Fx

The use of activation functions is one of the major reasons that result
in the complex dependence patterns of compound operators in an Fx .

S(ti) = ti − ln(
N∑
j=1

etj)

It requires two operations, one computing the logarithm and the other
performing the subtraction.

When tiled, the subtraction must wait for the completion of all
simultaneously executed tiles of the reduction, preventing the fusion
between the two tiled operations.

We open a compound operator by removing its operator boundary.

Partition Phase Opening Compound Operators 2022.08.29, Santa Clara 7 / 21

Merging Primitive Operators within each Micro-graph Gy
A micro-graph Gy is built by merging primitive operators using rules.

Rules Gp Gc Ga
1 element-wise element-wise element-wise
2 broadcast element-wise broadcast
3 broadcast broadcast broadcast
4 element-wise reduction reduction
5 broadcast reduction reduction

6 -transpose element-wise/broadcast transpose transpose
6 -matmul matmul element-wise matmul
6 -matmul element-wise matmul matmul

6 -conv conv element-wise conv
6 -conv element-wise conv conv

Gp and Gc hold a producer-consumer relation; Ga is the merged
micro-graph.

How Gp and Gc are classified are defined in the paper.

In particular, the definition classifies reshaping operations, (batched)
matrix multiplication and convolution as opaque operators.

These rules do not need to cover all composition patterns of
operators, since some pair of operators should not be fused.

Partition Phase Merging Primitive Operators 2022.08.29, Santa Clara 8 / 21

Merging Primitive Operators within each Micro-graph Gy
A micro-graph Gy is built by merging primitive operators using rules.

Rules Gp Gc Ga
1 element-wise element-wise element-wise
2 broadcast element-wise broadcast
3 broadcast broadcast broadcast
4 element-wise reduction reduction
5 broadcast reduction reduction

6 -transpose element-wise/broadcast transpose transpose
6 -matmul matmul element-wise matmul
6 -matmul element-wise matmul matmul

6 -conv conv element-wise conv
6 -conv element-wise conv conv

Gp and Gc hold a producer-consumer relation; Ga is the merged
micro-graph.

How Gp and Gc are classified are defined in the paper.

In particular, the definition classifies reshaping operations, (batched)
matrix multiplication and convolution as opaque operators.

These rules do not need to cover all composition patterns of
operators, since some pair of operators should not be fused.

Partition Phase Merging Primitive Operators 2022.08.29, Santa Clara 8 / 21

Merging Primitive Operators within each Micro-graph Gy
A micro-graph Gy is built by merging primitive operators using rules.

Rules Gp Gc Ga
1 element-wise element-wise element-wise
2 broadcast element-wise broadcast
3 broadcast broadcast broadcast
4 element-wise reduction reduction
5 broadcast reduction reduction

6 -transpose element-wise/broadcast transpose transpose
6 -matmul matmul element-wise matmul
6 -matmul element-wise matmul matmul

6 -conv conv element-wise conv
6 -conv element-wise conv conv

Gp and Gc hold a producer-consumer relation; Ga is the merged
micro-graph.

How Gp and Gc are classified are defined in the paper.

In particular, the definition classifies reshaping operations, (batched)
matrix multiplication and convolution as opaque operators.

These rules do not need to cover all composition patterns of
operators, since some pair of operators should not be fused.

Partition Phase Merging Primitive Operators 2022.08.29, Santa Clara 8 / 21

Polyhedral Loop Fusion and its Scalability within a Gy

A Gy is converted into a sequence of loop nests and used to produce
a single kernel through our prior polyhedral loop optimizer AKG [16].

for i in [0,M)

for j in [0,N)

a(i,j)=a(i,j)+bias; // S_1
for i in [0,M/2)

for j in [0,N/2)

pool(i,j)=max(a(2i,2j),

a(2i,2j+1), a(2i+1,2j),

a(2i+1,2j+1)); // S_2

for i in [0,M)

for j in [0,N){

a(i,j)=a(i,j)+bias; // S_1
if(i+1) mod 2 = 0 and (j+1) mod 2 = 0

pool((i-1)/2,(j-1) /2)=

max(a(i-1,j-1),a(i,j-1),

a(i-1,j),a(i,j)); //S_2
}

But AKG’s fusion algorithm still suffers from the scalability issue
caused by (automatically computed) large loop shifting factors.

Apollo considers this when defining rules for building a Gy .

As the loop nest composition of a Gy is always predictable thanks to
our aggregation rules, polyhedral loop fusion heurstics are not
challenged by the scalability issue in our framework.

We design and implement a framework called Panamera [14] to
optimize a reduction not fused with its follow-up elementwise
operators.

Fusion Phase Layer I: Polyhedral Loop Fusion 2022.08.29, Santa Clara 9 / 21

Polyhedral Loop Fusion and its Scalability within a Gy

A Gy is converted into a sequence of loop nests and used to produce
a single kernel through our prior polyhedral loop optimizer AKG [16].

for i in [0,M)

for j in [0,N)

a(i,j)=a(i,j)+bias; // S_1
for i in [0,M/2)

for j in [0,N/2)

pool(i,j)=max(a(2i,2j),

a(2i,2j+1), a(2i+1,2j),

a(2i+1,2j+1)); // S_2

for i in [0,M)

for j in [0,N){

a(i,j)=a(i,j)+bias; // S_1
if(i+1) mod 2 = 0 and (j+1) mod 2 = 0

pool((i-1)/2,(j-1) /2)=

max(a(i-1,j-1),a(i,j-1),

a(i-1,j),a(i,j)); //S_2
}

But AKG’s fusion algorithm still suffers from the scalability issue
caused by (automatically computed) large loop shifting factors.

Apollo considers this when defining rules for building a Gy .

As the loop nest composition of a Gy is always predictable thanks to
our aggregation rules, polyhedral loop fusion heurstics are not
challenged by the scalability issue in our framework.

We design and implement a framework called Panamera [14] to
optimize a reduction not fused with its follow-up elementwise
operators.

Fusion Phase Layer I: Polyhedral Loop Fusion 2022.08.29, Santa Clara 9 / 21

Polyhedral Loop Fusion and its Scalability within a Gy

A Gy is converted into a sequence of loop nests and used to produce
a single kernel through our prior polyhedral loop optimizer AKG [16].

for i in [0,M)

for j in [0,N)

a(i,j)=a(i,j)+bias; // S_1
for i in [0,M/2)

for j in [0,N/2)

pool(i,j)=max(a(2i,2j),

a(2i,2j+1), a(2i+1,2j),

a(2i+1,2j+1)); // S_2

for i in [0,M)

for j in [0,N){

a(i,j)=a(i,j)+bias; // S_1
if(i+1) mod 2 = 0 and (j+1) mod 2 = 0

pool((i-1)/2,(j-1) /2)=

max(a(i-1,j-1),a(i,j-1),

a(i-1,j),a(i,j)); //S_2
}

But AKG’s fusion algorithm still suffers from the scalability issue
caused by (automatically computed) large loop shifting factors.

Apollo considers this when defining rules for building a Gy .

As the loop nest composition of a Gy is always predictable thanks to
our aggregation rules, polyhedral loop fusion heurstics are not
challenged by the scalability issue in our framework.

We design and implement a framework called Panamera [14] to
optimize a reduction not fused with its follow-up elementwise
operators.

Fusion Phase Layer I: Polyhedral Loop Fusion 2022.08.29, Santa Clara 9 / 21

Polyhedral Loop Fusion and its Scalability within a Gy

A Gy is converted into a sequence of loop nests and used to produce
a single kernel through our prior polyhedral loop optimizer AKG [16].

for i in [0,M)

for j in [0,N)

a(i,j)=a(i,j)+bias; // S_1
for i in [0,M/2)

for j in [0,N/2)

pool(i,j)=max(a(2i,2j),

a(2i,2j+1), a(2i+1,2j),

a(2i+1,2j+1)); // S_2

for i in [0,M)

for j in [0,N){

a(i,j)=a(i,j)+bias; // S_1
if(i+1) mod 2 = 0 and (j+1) mod 2 = 0

pool((i-1)/2,(j-1) /2)=

max(a(i-1,j-1),a(i,j-1),

a(i-1,j),a(i,j)); //S_2
}

But AKG’s fusion algorithm still suffers from the scalability issue
caused by (automatically computed) large loop shifting factors.

Apollo considers this when defining rules for building a Gy .

As the loop nest composition of a Gy is always predictable thanks to
our aggregation rules, polyhedral loop fusion heurstics are not
challenged by the scalability issue in our framework.

We design and implement a framework called Panamera [14] to
optimize a reduction not fused with its follow-up elementwise
operators.

Fusion Phase Layer I: Polyhedral Loop Fusion 2022.08.29, Santa Clara 9 / 21

Polyhedral Loop Fusion and its Scalability within a Gy

A Gy is converted into a sequence of loop nests and used to produce
a single kernel through our prior polyhedral loop optimizer AKG [16].

for i in [0,M)

for j in [0,N)

a(i,j)=a(i,j)+bias; // S_1
for i in [0,M/2)

for j in [0,N/2)

pool(i,j)=max(a(2i,2j),

a(2i,2j+1), a(2i+1,2j),

a(2i+1,2j+1)); // S_2

for i in [0,M)

for j in [0,N){

a(i,j)=a(i,j)+bias; // S_1
if(i+1) mod 2 = 0 and (j+1) mod 2 = 0

pool((i-1)/2,(j-1) /2)=

max(a(i-1,j-1),a(i,j-1),

a(i-1,j),a(i,j)); //S_2
}

But AKG’s fusion algorithm still suffers from the scalability issue
caused by (automatically computed) large loop shifting factors.

Apollo considers this when defining rules for building a Gy .

As the loop nest composition of a Gy is always predictable thanks to
our aggregation rules, polyhedral loop fusion heurstics are not
challenged by the scalability issue in our framework.

We design and implement a framework called Panamera [14] to
optimize a reduction not fused with its follow-up elementwise
operators.

Fusion Phase Layer I: Polyhedral Loop Fusion 2022.08.29, Santa Clara 9 / 21

Memory Stitching between multiple Gy ’s

Micro-graphs often end with reductions. We define complementary
rules to exploit the stitching possibilities between them.

Rules Gp Gc Ga
7 reduction element-wise/broadcast reduction
8 reduction reduction reduction

When performing memory stitching between Gy ’s, the complexity of
an ending reduction can complicate Layer II.

We rely on Panamera [14] to convert all reductions into three
canonical forms all-reduce, x-reduce and y -reduce.

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

a(i,j,k,l) = a(i,j,k,l) + bias

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

b(i,k) += a(i,j,k,l)

for x in [0,M*P) and y in [0,N*Q)

a(x/P,y/Q,x%P,y%Q) = a(x/P,y/Q,x%P,y%Q) + bias

for x in [0,M*P) and y in [0,N*Q)

b(x/P,x%P) += a(x/P,y/Q,x%P,y%Q)

for x in [0,M*P) and y in [0,N*Q){

a(x/P,y/Q,x%P,y%Q) = ...

b(x/P,x%P) += ...

}

Canonicalizing reductions guarantees the matching between the loop
dimensions of two Gy ’s that are to be stitched in faster memory.

Fusion Phase Layer II: Memory Stitching 2022.08.29, Santa Clara 10 / 21

Memory Stitching between multiple Gy ’s

Micro-graphs often end with reductions. We define complementary
rules to exploit the stitching possibilities between them.

Rules Gp Gc Ga
7 reduction element-wise/broadcast reduction
8 reduction reduction reduction

When performing memory stitching between Gy ’s, the complexity of
an ending reduction can complicate Layer II.

We rely on Panamera [14] to convert all reductions into three
canonical forms all-reduce, x-reduce and y -reduce.

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

a(i,j,k,l) = a(i,j,k,l) + bias

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

b(i,k) += a(i,j,k,l)

for x in [0,M*P) and y in [0,N*Q)

a(x/P,y/Q,x%P,y%Q) = a(x/P,y/Q,x%P,y%Q) + bias

for x in [0,M*P) and y in [0,N*Q)

b(x/P,x%P) += a(x/P,y/Q,x%P,y%Q)

for x in [0,M*P) and y in [0,N*Q){

a(x/P,y/Q,x%P,y%Q) = ...

b(x/P,x%P) += ...

}

Canonicalizing reductions guarantees the matching between the loop
dimensions of two Gy ’s that are to be stitched in faster memory.

Fusion Phase Layer II: Memory Stitching 2022.08.29, Santa Clara 10 / 21

Memory Stitching between multiple Gy ’s

Micro-graphs often end with reductions. We define complementary
rules to exploit the stitching possibilities between them.

Rules Gp Gc Ga
7 reduction element-wise/broadcast reduction
8 reduction reduction reduction

When performing memory stitching between Gy ’s, the complexity of
an ending reduction can complicate Layer II.

We rely on Panamera [14] to convert all reductions into three
canonical forms all-reduce, x-reduce and y -reduce.

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

a(i,j,k,l) = a(i,j,k,l) + bias

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

b(i,k) += a(i,j,k,l)

for x in [0,M*P) and y in [0,N*Q)

a(x/P,y/Q,x%P,y%Q) = a(x/P,y/Q,x%P,y%Q) + bias

for x in [0,M*P) and y in [0,N*Q)

b(x/P,x%P) += a(x/P,y/Q,x%P,y%Q)

for x in [0,M*P) and y in [0,N*Q){

a(x/P,y/Q,x%P,y%Q) = ...

b(x/P,x%P) += ...

}

Canonicalizing reductions guarantees the matching between the loop
dimensions of two Gy ’s that are to be stitched in faster memory.

Fusion Phase Layer II: Memory Stitching 2022.08.29, Santa Clara 10 / 21

Memory Stitching between multiple Gy ’s

Micro-graphs often end with reductions. We define complementary
rules to exploit the stitching possibilities between them.

Rules Gp Gc Ga
7 reduction element-wise/broadcast reduction
8 reduction reduction reduction

When performing memory stitching between Gy ’s, the complexity of
an ending reduction can complicate Layer II.

We rely on Panamera [14] to convert all reductions into three
canonical forms all-reduce, x-reduce and y -reduce.

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

a(i,j,k,l) = a(i,j,k,l) + bias

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)

b(i,k) += a(i,j,k,l)

for x in [0,M*P) and y in [0,N*Q)

a(x/P,y/Q,x%P,y%Q) = a(x/P,y/Q,x%P,y%Q) + bias

for x in [0,M*P) and y in [0,N*Q)

b(x/P,x%P) += a(x/P,y/Q,x%P,y%Q)

for x in [0,M*P) and y in [0,N*Q){

a(x/P,y/Q,x%P,y%Q) = ...

b(x/P,x%P) += ...

}

Canonicalizing reductions guarantees the matching between the loop
dimensions of two Gy ’s that are to be stitched in faster memory.

Fusion Phase Layer II: Memory Stitching 2022.08.29, Santa Clara 10 / 21

Parallelism Stitching independent Gy ’s or Fx ’s

Layer I & II did not consider the parallelism between Gy ’s or Fx ’s.

Such parallelism mainly exists between the branches of a
multi-head/-tail operator.

Layer III detects such parallelism by traversing backward/forward
along a branch and terminating until another multi-head/-tail
operator is reached.

The independent operators that belong to different branches can be
stitched, with a cost model

gain =
k∑

op=m

costop − max
m≤op≤k

(costop)

used to determine the number of stitched operators.

A compute-intensive operator is excluded in such a traverse, since its
huge amount of data usually consumes up the hardware resources.

Fusion Phase Layer III: Parallelism Stitching 2022.08.29, Santa Clara 11 / 21

Parallelism Stitching independent Gy ’s or Fx ’s

Layer I & II did not consider the parallelism between Gy ’s or Fx ’s.

Such parallelism mainly exists between the branches of a
multi-head/-tail operator.

Layer III detects such parallelism by traversing backward/forward
along a branch and terminating until another multi-head/-tail
operator is reached.

The independent operators that belong to different branches can be
stitched, with a cost model

gain =
k∑

op=m

costop − max
m≤op≤k

(costop)

used to determine the number of stitched operators.

A compute-intensive operator is excluded in such a traverse, since its
huge amount of data usually consumes up the hardware resources.

Fusion Phase Layer III: Parallelism Stitching 2022.08.29, Santa Clara 11 / 21

Parallelism Stitching independent Gy ’s or Fx ’s

Layer I & II did not consider the parallelism between Gy ’s or Fx ’s.

Such parallelism mainly exists between the branches of a
multi-head/-tail operator.

Layer III detects such parallelism by traversing backward/forward
along a branch and terminating until another multi-head/-tail
operator is reached.

The independent operators that belong to different branches can be
stitched, with a cost model

gain =
k∑

op=m

costop − max
m≤op≤k

(costop)

used to determine the number of stitched operators.

A compute-intensive operator is excluded in such a traverse, since its
huge amount of data usually consumes up the hardware resources.

Fusion Phase Layer III: Parallelism Stitching 2022.08.29, Santa Clara 11 / 21

Parallelism Stitching independent Gy ’s or Fx ’s

Layer I & II did not consider the parallelism between Gy ’s or Fx ’s.

Such parallelism mainly exists between the branches of a
multi-head/-tail operator.

Layer III detects such parallelism by traversing backward/forward
along a branch and terminating until another multi-head/-tail
operator is reached.

The independent operators that belong to different branches can be
stitched, with a cost model

gain =
k∑

op=m

costop − max
m≤op≤k

(costop)

used to determine the number of stitched operators.

A compute-intensive operator is excluded in such a traverse, since its
huge amount of data usually consumes up the hardware resources.

Fusion Phase Layer III: Parallelism Stitching 2022.08.29, Santa Clara 11 / 21

Parallelism Stitching independent Gy ’s or Fx ’s

Layer I & II did not consider the parallelism between Gy ’s or Fx ’s.

Such parallelism mainly exists between the branches of a
multi-head/-tail operator.

Layer III detects such parallelism by traversing backward/forward
along a branch and terminating until another multi-head/-tail
operator is reached.

The independent operators that belong to different branches can be
stitched, with a cost model

gain =
k∑

op=m

costop − max
m≤op≤k

(costop)

used to determine the number of stitched operators.

A compute-intensive operator is excluded in such a traverse, since its
huge amount of data usually consumes up the hardware resources.

Fusion Phase Layer III: Parallelism Stitching 2022.08.29, Santa Clara 11 / 21

Putting It All Together

To make Apollo applicable to both training and inference workloads,
Apollo is also complemented through the following steps.

Auto-tuning: Apollo captures the loop composition of a Gx that
are prevented from parallelization by Cost Model (3) of the paper.

Piecewise compilation is performed alongthe red/violet arrows,
further reducing compilation overhead.

Code generation supports both GPUs and Huawei Ascend 910
chips [7].

Putting It All Together Putting It All Together 2022.08.29, Santa Clara 12 / 21

Putting It All Together

To make Apollo applicable to both training and inference workloads,
Apollo is also complemented through the following steps.

Auto-tuning: Apollo captures the loop composition of a Gx that
are prevented from parallelization by Cost Model (3) of the paper.

Piecewise compilation is performed alongthe red/violet arrows,
further reducing compilation overhead.

Code generation supports both GPUs and Huawei Ascend 910
chips [7].

Putting It All Together Putting It All Together 2022.08.29, Santa Clara 12 / 21

Putting It All Together

To make Apollo applicable to both training and inference workloads,
Apollo is also complemented through the following steps.

Auto-tuning: Apollo captures the loop composition of a Gx that
are prevented from parallelization by Cost Model (3) of the paper.

Piecewise compilation is performed alongthe red/violet arrows,
further reducing compilation overhead.

Code generation supports both GPUs and Huawei Ascend 910
chips [7].

Putting It All Together Putting It All Together 2022.08.29, Santa Clara 12 / 21

Putting It All Together

To make Apollo applicable to both training and inference workloads,
Apollo is also complemented through the following steps.

Auto-tuning: Apollo captures the loop composition of a Gx that
are prevented from parallelization by Cost Model (3) of the paper.

Piecewise compilation is performed alongthe red/violet arrows,
further reducing compilation overhead.

Code generation supports both GPUs and Huawei Ascend 910
chips [7].

Putting It All Together Putting It All Together 2022.08.29, Santa Clara 12 / 21

Results on Single GPU

Experiments are conducted using five training workloads.

Generated CUDA code on GPUs is executed using CUDA Toolkit 10.1
with -O3 enabled.

Generated CCE code on Ascend 910 is executed using the later’s
native compiler.

The geometric mean of 10 executions is reported.

Case study on sub-graphs, results of inference workloads and
compilation overhead are reported in the paper.

Results Experimental Setups 2022.08.29, Santa Clara 13 / 21

Results on Single GPU

BT: BERT; TR: Transformer; WD: Wide&Deep; YO: Yolo-v3; FM: DeepFM; b.s.:
batch sizes; TF: TensorFlow; MS: MindSpore; imp.: improvements

models b.s. TF XLA/TF MS Apollo/MS imp.

BT-base
32
64

167
200.8

105%
129%

135
183.6

252%
212%

39%
23%

TR
8

16
6750
9500

16%
11%

5122
10868

84%
59%

20%
64%

WD
16000
32000

1133696
1470221

15%
5%

762086
836820

123%
121%

48%
20%

YO
4
8

33.11
56.00

15%
12%

39.48
75.01

46%
10%

51%
31%

FM
8192

16384
26117
30279

-1%
-2%

479744
543024

151%
167%

-
-

Apollo helps MindSpore outperforms TensorFlow and XLA by
1.86× and 1.37×, respectively.

MobileNet-v
2

MobileNet-v
3

ResN
et101

ResN
et50

Resnext50

LeNet

GoogleNet

AlexNet

VGG16

EfficientN
et

WarpCTC

TinyBERT

LSTM
NASNet

100
101
102

MindSpore MindSpore + Apollo

Execution times of MindSpore’s model zoo (y axis: log scaled time in ms; lower is
better). On average, Apollo improves MindSpore by 29.6%.

Results Results on Single GPU 2022.08.29, Santa Clara 14 / 21

Results on Single GPU

BT: BERT; TR: Transformer; WD: Wide&Deep; YO: Yolo-v3; FM: DeepFM; b.s.:
batch sizes; TF: TensorFlow; MS: MindSpore; imp.: improvements

models b.s. TF XLA/TF MS Apollo/MS imp.

BT-base
32
64

167
200.8

105%
129%

135
183.6

252%
212%

39%
23%

TR
8

16
6750
9500

16%
11%

5122
10868

84%
59%

20%
64%

WD
16000
32000

1133696
1470221

15%
5%

762086
836820

123%
121%

48%
20%

YO
4
8

33.11
56.00

15%
12%

39.48
75.01

46%
10%

51%
31%

FM
8192

16384
26117
30279

-1%
-2%

479744
543024

151%
167%

-
-

Apollo helps MindSpore outperforms TensorFlow and XLA by
1.86× and 1.37×, respectively.

MobileNet-v
2

MobileNet-v
3

ResN
et101

ResN
et50

Resnext50

LeNet

GoogleNet

AlexNet

VGG16

EfficientN
et

WarpCTC

TinyBERT

LSTM
NASNet

100
101
102

MindSpore MindSpore + Apollo

Execution times of MindSpore’s model zoo (y axis: log scaled time in ms; lower is
better). On average, Apollo improves MindSpore by 29.6%.

Results Results on Single GPU 2022.08.29, Santa Clara 14 / 21

Results on Single GPU

BT: BERT; TR: Transformer; WD: Wide&Deep; YO: Yolo-v3; FM: DeepFM; b.s.:
batch sizes; TF: TensorFlow; MS: MindSpore; imp.: improvements

models b.s. TF XLA/TF MS Apollo/MS imp.

BT-base
32
64

167
200.8

105%
129%

135
183.6

252%
212%

39%
23%

TR
8

16
6750
9500

16%
11%

5122
10868

84%
59%

20%
64%

WD
16000
32000

1133696
1470221

15%
5%

762086
836820

123%
121%

48%
20%

YO
4
8

33.11
56.00

15%
12%

39.48
75.01

46%
10%

51%
31%

FM
8192

16384
26117
30279

-1%
-2%

479744
543024

151%
167%

-
-

Apollo helps MindSpore outperforms TensorFlow and XLA by
1.86× and 1.37×, respectively.

MobileNet-v
2

MobileNet-v
3

ResN
et101

ResN
et50

Resnext50

LeNet

GoogleNet

AlexNet

VGG16

EfficientN
et

WarpCTC

TinyBERT

LSTM
NASNet

100
101
102

MindSpore MindSpore + Apollo

Execution times of MindSpore’s model zoo (y axis: log scaled time in ms; lower is
better). On average, Apollo improves MindSpore by 29.6%.

Results Results on Single GPU 2022.08.29, Santa Clara 14 / 21

Results on Multiple GPUs

BT: BERT; WD: Wide&Deep; FM: DeepFM; batch sizes in parenthesis; TF:
TensorFlow; MS: MindSpore; imp.: improvements

models GPUs TF XLA/TF MS Apollo/MS imp.
BT-base(32) 8 1244.9 96% 944.4 247% 34%
BT-base(64) 8 1555.4 117% 1333.1 222% 27%
BT-large(4) 4 66.94 33% 37.62 133% -2%
WD(16000) 8 8086178 1% 4964319 87% 13%
FM(16384) 4 31767 -7% 2117685 130% -

The throughput of MindSpore falls behind, sometimes significantly,
than those of TensorFlow and XLA, but it outperforms the latter two
by 1.96× and 1.18×, respectively.

Results Results on Multiple GPUs 2022.08.29, Santa Clara 15 / 21

Results on Multiple GPUs

BT: BERT; WD: Wide&Deep; FM: DeepFM; batch sizes in parenthesis; TF:
TensorFlow; MS: MindSpore; imp.: improvements

models GPUs TF XLA/TF MS Apollo/MS imp.
BT-base(32) 8 1244.9 96% 944.4 247% 34%
BT-base(64) 8 1555.4 117% 1333.1 222% 27%
BT-large(4) 4 66.94 33% 37.62 133% -2%
WD(16000) 8 8086178 1% 4964319 87% 13%
FM(16384) 4 31767 -7% 2117685 130% -

The throughput of MindSpore falls behind, sometimes significantly,
than those of TensorFlow and XLA, but it outperforms the latter two
by 1.96× and 1.18×, respectively.

Results Results on Multiple GPUs 2022.08.29, Santa Clara 15 / 21

Results on Ascend 910 chips

BERT (24)/ 1 chip PanGU-α (1)/ 64 chips PanGU-α (16)/ 128 chips

100

102

104
MindSpore MindSpore + Apollo

1.09×
1.26×

1.24×

Throughput of BERT and PanGu-α [13] (examples/s) on Ascend. Batch sizes are
in parentheses. Higher is better.

Apollo brings about a mean improvement of 19.7% over MindSpore
when targeting Ascend 910 chips.

Results Results on Ascend 910 2022.08.29, Santa Clara 16 / 21

Results on Ascend 910 chips

BERT (24)/ 1 chip PanGU-α (1)/ 64 chips PanGU-α (16)/ 128 chips

100

102

104
MindSpore MindSpore + Apollo

1.09×
1.26×

1.24×

Throughput of BERT and PanGu-α [13] (examples/s) on Ascend. Batch sizes are
in parentheses. Higher is better.

Apollo brings about a mean improvement of 19.7% over MindSpore
when targeting Ascend 910 chips.

Results Results on Ascend 910 2022.08.29, Santa Clara 16 / 21

Summary of the Contributions

Apollo extends the search space of fusion by considering more
operator types, generating more profitable across-layer schedules
originally hindered by operator boundaries;

Apollo addresses the scalability issue of fusion by allowing reverse
feedback from the operator-level optimizer, achieving a fully
automatic fusion framework;

Apollo enhances the performance of deep learning workloads by
modeling both data locality and parallelism, producing more efficient
code than the state of the art;

Apollo exhibits reasonable JIT compilation overhead, demonstrating
its effectiveness using rather difficult real-life training workloads.

Conclusion Contributions 2022.08.29, Santa Clara 17 / 21

Summary of the Contributions

Apollo extends the search space of fusion by considering more
operator types, generating more profitable across-layer schedules
originally hindered by operator boundaries;

Apollo addresses the scalability issue of fusion by allowing reverse
feedback from the operator-level optimizer, achieving a fully
automatic fusion framework;

Apollo enhances the performance of deep learning workloads by
modeling both data locality and parallelism, producing more efficient
code than the state of the art;

Apollo exhibits reasonable JIT compilation overhead, demonstrating
its effectiveness using rather difficult real-life training workloads.

Conclusion Contributions 2022.08.29, Santa Clara 17 / 21

Summary of the Contributions

Apollo extends the search space of fusion by considering more
operator types, generating more profitable across-layer schedules
originally hindered by operator boundaries;

Apollo addresses the scalability issue of fusion by allowing reverse
feedback from the operator-level optimizer, achieving a fully
automatic fusion framework;

Apollo enhances the performance of deep learning workloads by
modeling both data locality and parallelism, producing more efficient
code than the state of the art;

Apollo exhibits reasonable JIT compilation overhead, demonstrating
its effectiveness using rather difficult real-life training workloads.

Conclusion Contributions 2022.08.29, Santa Clara 17 / 21

Summary of the Contributions

Apollo extends the search space of fusion by considering more
operator types, generating more profitable across-layer schedules
originally hindered by operator boundaries;

Apollo addresses the scalability issue of fusion by allowing reverse
feedback from the operator-level optimizer, achieving a fully
automatic fusion framework;

Apollo enhances the performance of deep learning workloads by
modeling both data locality and parallelism, producing more efficient
code than the state of the art;

Apollo exhibits reasonable JIT compilation overhead, demonstrating
its effectiveness using rather difficult real-life training workloads.

Conclusion Contributions 2022.08.29, Santa Clara 17 / 21

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA,
2016), OSDI’16, USENIX Association, pp. 265–283.

[2] Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E., Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and
Amarasinghe, S.
Tiramisu: A polyhedral compiler for expressing fast and portable code.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (Piscataway, NJ,
USA, 2019), CGO 2019, IEEE Press, pp. 193–205.

[3] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., and Krishnamurthy, A.
Tvm: An automated end-to-end optimizing compiler for deep learning.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA,
2018), OSDI’18, USENIX Association, pp. 579–594.

[4] Cyphers, S., Bansal, A. K., Bhiwandiwalla, A., Bobba, J., Brookhart, M., Chakraborty, A., Constable,
W., Convey, C., Cook, L., Kanawi, O., Kimball, R., Knight, J., Korovaiko, N., Kumar, V., Lao, Y., Lishka,
C. R., Menon, J., Myers, J., Narayana, S. A., Procter, A., and Webb, T. J.
Intel ngraph: An intermediate representation, compiler, and executor for deep learning, 2018.

[5] Google.
Xla: Optimizing compiler for machine learning, 2017.

[6] Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M., and Aiken, A.
Taso: Optimizing deep learning computation with automatic generation of graph substitutions.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles (New York, NY, USA, 2019), SOSP’19,
ACM, pp. 47–62.

Conclusion References 2022.08.29, Santa Clara 18 / 21

References

[7] Liao, H., Tu, J., Xia, J., Liu, H., Zhou, X., Yuan, H., and Hu, Y.
Ascend: a scalable and unified architecture for ubiquitous deep neural network computing : Industry track paper.
In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (2021), pp. 789–801.

[8] Ma, L., Xie, Z., Yang, Z., Xue, J., Miao, Y., Cui, W., Hu, W., Yang, F., Zhang, L., and Zhou, L.
Rammer: Enabling holistic deep learning compiler optimizations with rtasks.
In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20) (Nov. 2020), USENIX
Association, pp. 881–897.

[9] Mehta, S., Lin, P.-H., and Yew, P.-C.
Revisiting loop fusion in the polyhedral framework.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (New York,
NY, USA, 2014), PPoPP’14, ACM, pp. 233–246.

[10] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning library.
In Advances in neural information processing systems (2019), pp. 8026–8037.

[11] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., Devito, Z., Moses, W. S., Verdoolaege, S., Adams,
A., and Cohen, A.
The next 700 accelerated layers: From mathematical expressions of network computation graphs to accelerated gpu
kernels, automatically.
ACM Trans. Archit. Code Optim. 16, 4 (Oct. 2019).

[12] Wei, R., Schwartz, L., and Adve, V.
Dlvm: A modern compiler infrastructure for deep learning systems, 2018.

Conclusion References 2022.08.29, Santa Clara 19 / 21

References

[13] Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X., Li, C.,
Gong, Z., Yao, Y., Huang, X., Wang, J., Yu, J., Guo, Q., Yu, Y., Zhang, Y., Wang, J., Tao, H., Yan, D., Yi,
Z., Peng, F., Jiang, F., Zhang, H., Deng, L., Zhang, Y., Lin, Z., Zhang, C., Zhang, S., Guo, M., Gu, S., Fan,
G., Wang, Y., Jin, X., Liu, Q., and Tian, Y.
Pangu-α: Large-scale autoregressive pretrained chinese language models with auto-parallel computation, 2021.

[14] Zhao, J., Bastoul, C., Yi, Y., Hu, J., Nie, W., Zhang, R., Geng, Z., Li, C., Tachon, T., and Gan, Z.
Parallelizing neural network models effectively on gpu by implementing reductions atomically.
In Proceedings of the 31st International Conference on Parallel Architectures and Compilation Techniques (2022),
PACT’22, ACM.

[15] Zhao, J., and Di, P.
Optimizing the memory hierarchy by compositing automatic transformations on computations and data.
In Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture (Piscataway, NJ, USA, 2020),
MICRO-53, IEEE Press, pp. 427–441.

[16] Zhao, J., Li, B., Nie, W., Geng, Z., Zhang, R., Gao, X., Cheng, B., Wu, C., Cheng, Y., Li, Z., Di, P., Zhang,
K., and Jin, X.
Akg: Automatic kernel generation for neural processing units using polyhedral transformations.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (New York, NY, USA, 2021), PLDI 2021, Association for Computing Machinery, pp. 1233–1248.

[17] Zheng, Z., Zhao, P., Long, G., Zhu, F., Zhu, K., Zhao, W., Diao, L., Yang, J., and Lin, W.
Fusionstitching: Boosting memory intensive computations for deep learning workloads, 2020.

Conclusion References 2022.08.29, Santa Clara 20 / 21

Questions & Answers

Scan the QR code to obtain the paper/code repository/artifact.

Conclusion Q&A 2022.08.29, Santa Clara 21 / 21

	Introduction
	Fusion in Deep Learning Compilers
	Limitations of Prior Work
	Overview of Apollo

	Partition Phase
	Extracting Sub-graph Cluster
	Opening Compound Operators
	Merging Primitive Operators

	Fusion Phase
	Layer I: Polyhedral Loop Fusion
	Layer II: Memory Stitching
	Layer III: Parallelism Stitching

	Putting It All Together
	Putting It All Together

	Results
	Experimental Setups
	Results on Single GPU
	Results on Multiple GPUs
	Results on Ascend 910

	Conclusion
	Contributions
	References
	Q&A

