
GPU SEMIRING PRIMITIVES
FOR SPARSE
NEIGHBORHOOD METHODS
Corey J. Nolet, Divye Gala, Edward Raff, Joe Eaton, Brad Rees, John Zedlewski, Tim
Oates

AUGUST 2022Innovation center, Washington, D.C.

Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

• Computing distances between vectors is core to many machine learning
algorithms
- Computing them efficiently for sparse datasets can be very hard
- Little easier when it can computed with standard matrix multiplication (i.e.,

Euclidean)

• There are many distance metrics people want to use (see
scipy.spatial.distance) and a large variety of sparsity patterns and
interactions to contend with
- Consolidating commonalities in primitives where possible increases code

maintainability

1

Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

• We present a single unified framework for
computing several important sparse pairwise
distances
- Fast and memory efficient across many

different sparsity patterns.
- Provides reusable building blocks for

composing many different important metrics
in ML.

- Can be extended to different execution
patterns by optimizing specific sparsity
patterns.

- Already available to you in RAPIDS!

https://github.com/rapidsai/raft

2

https://github.com/rapidsai/raft

Semirings and Relation To Matrix Multiplication
• A monoid contains an associative binary relation, such as addition (⊕), and an identity element (id

⊕
)

• A semiring, denoted (S,R,{⊕,id
⊕
},{⊗,id

⊗
}), is a tuple containing additive (⊕) and multiplicative (⊗)

monoids where
1. ⊕ is commutative, distributive, and has an identity element 0
2. ⊗ distributes over ⊕

• Given two sparse vectors a,b ∈ Rk, a semiring with (S,R,{⊕,0},{⊗,1}) and annihilator
⊗ = 0 is a standard

sparse matrix multiplication (SpMM).

• Sparse Matrix-Vector multiplication (SPMV) is fundamental low-level BLAS routine in sparse matrix
multiplication. Our contribution is a CUDA-accelerated Sparse Matrix-Sparse Vector (SPSV)
multiplication primitive.

3

The Euclidean Semiring

• Let vector a = [1,0,1] and b = [0,1,0]
• Take the formula for computing Euclidean distance

• We can expand the squared difference to compute more efficiently in parallel:
- X2 - 2XY + Y2
- Can compute with a simple dot product (plus-times semiring) and L2 norms of X and Y.

4

The Manhattan Semiring and Non-Annihitilating Multiplicative Monoid (NAMM)

• Let vector a = [1,0,1] and b = [0,1,0]
• We take the sum of the absolute value of their

differences (eqs 4, 5, 6)
• Semiring libraries rely on the detail that the

multiplicative annihilator is equal to the additive
identity.
- If we follow this detail in our example, we end up

with the following result of Eqs. 7, 8, 9 (if any side
is 0, the arithmetic evaluates to 0).

• What we need here instead is for the multiplicative
identity to be non-annihilating, evaluating to the
other side when either side is zero and evaluating to
0 only in the case where both sides have the same
value. i.e., :

|1 − 0| = 1
|0 − 1| = 1
|0 − 0| = 0
|1 − 1| = 0

5

Semirings of Several Important Distances

6

SPSV CUDA Kernel: Load-Balanced Hybrid CSR+COO

1. Load-balancing using hash table
and a row index array in coordinate
format (COO) for B, coalescing the
loads from each vector from A

2. In-place transpose lowers memory
requirement for the matrix
multiplication

3. Two-pass execution to capture
multiplicative monoids which require
a full union of nonzeros

7

Implement NAMM with Two Passes of an SPMV

8

• First pass (SpMM) computes the
intersection a ∩ b between nonzero
columns from each vector a, and b so
long as ⊗ is applied to all nonzero
columns of b

• A second pass can compute the
remaining symmetric difference required
for the full union between non-zero
column

• id
⊗ in B is skipped in the second pass

since it’s already computed in the first
pass.

Performance- It’s Fast But Also Memory Efficient

• Benchmarks were performed on a DGX1 containing dual 20-core Intel
Xeon ES-2698 CPUs (80 total threads) at 2.20GHZ and a Volta V100
GPU running CUDA 11.0 for both the driver and toolkit.

• Each benchmark performs a k-nearest neighbors query to test our
primitives end-to-end and allow scaling to datasets where the dense
pairwise distance matrix may not otherwise fit in the memory of the GPU

• We used the brute-force NearestNeighbors estimator from RAPIDS
cuML for the GPU benchmarks since it makes direct use of our primitive

• We used Scikit-learn’s corresponding brute-force NearestNeighbors
estimator as a CPU baseline and configured it to use all the available
CPU cores

9

Performance- Fast And Memory Efficient

10

It Is Used In The RAPIDS cuML Library

• Enables several clustering and
manifold learning algorithms to
accept sparse inputs.

• Also being used in cuML’s Sparse
k-Nearest Neighbors estimator.

• Already available in current
RAPIDS, no hard work required.

https://github.com/rapidsai/cuml

11

https://github.com/rapidsai/cuml

RAFT Library Provides C++ API for Defining New Distance Semirings

Just define monoids!

12

Conclusion / Questions?

• Semirings provide us a framework for unifying many important
distances in ML applications.

• Our SPSV kernel is state of the art in performance, efficiency
and flexibility

13

Check out the paper for details!

@cjnolet

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuml

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuml

