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Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

• Computing distances between vectors is core to many machine learning 
algorithms
- Computing them efficiently for sparse datasets can be very hard
- Little easier when it can computed with standard matrix multiplication (i.e., 

Euclidean)

• There are many distance metrics people want to use (see 
scipy.spatial.distance) and a large variety of sparsity patterns and 
interactions to contend with
- Consolidating commonalities in primitives where possible increases code 

maintainability
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Publicly Available Libraries for Computing Sparse Distances are Inflexible & Inefficient

• We present a single unified framework for 
computing several important sparse pairwise 
distances
- Fast and memory efficient across many 

different sparsity patterns.
- Provides reusable building blocks for 

composing many different important metrics 
in ML.

- Can be extended to different execution 
patterns by optimizing specific sparsity 
patterns.

- Already available to you in RAPIDS!

https://github.com/rapidsai/raft
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Semirings and Relation To Matrix Multiplication
• A monoid contains an associative binary relation, such as addition (⊕), and an identity element (id

⊕
) 

• A semiring, denoted (S,R,{⊕,id
⊕
},{⊗,id

⊗
}), is a tuple containing additive (⊕) and multiplicative (⊗) 

monoids where 
1. ⊕ is commutative, distributive, and has an identity element 0
2. ⊗ distributes over ⊕

• Given two sparse vectors a,b ∈ Rk, a semiring with (S,R,{⊕,0},{⊗,1}) and annihilator
⊗ = 0 is a standard 

sparse matrix multiplication (SpMM).

• Sparse Matrix-Vector multiplication (SPMV) is fundamental low-level BLAS routine in sparse matrix 
multiplication. Our contribution is a CUDA-accelerated Sparse Matrix-Sparse Vector (SPSV) 
multiplication primitive.
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The Euclidean Semiring

• Let vector a = [1,0,1] and b = [0,1,0]
• Take the formula for computing Euclidean distance

• We can expand the squared difference to compute more efficiently in parallel:
- X2 - 2XY + Y2 
- Can compute with a simple dot product (plus-times semiring) and L2 norms of X and Y.
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The Manhattan Semiring and Non-Annihitilating Multiplicative Monoid (NAMM)

• Let vector a = [1,0,1] and b = [0,1,0]
• We take the sum of the absolute value of their 

differences (eqs 4, 5, 6)
• Semiring libraries rely on the detail that the 

multiplicative annihilator is equal to the additive 
identity. 
- If we follow this detail in our example, we end up 

with the following result of  Eqs. 7, 8, 9 (if any side 
is 0, the arithmetic evaluates to 0).

• What we need here instead is for the multiplicative 
identity to be non-annihilating, evaluating to the 
other side when either side is zero and evaluating to 
0 only in the case where both sides have the same 
value.  i.e., : 

|1 − 0| = 1 
|0 − 1| = 1 
|0 − 0| = 0 
|1 − 1| = 0
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Semirings of Several Important Distances
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SPSV CUDA Kernel: Load-Balanced Hybrid CSR+COO

1. Load-balancing using hash table 
and a row index array in coordinate 
format (COO) for B, coalescing the 
loads from each vector from A

2. In-place transpose lowers memory 
requirement for the matrix 
multiplication

3. Two-pass execution to capture 
multiplicative monoids which require 
a full union of nonzeros
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Implement NAMM with Two Passes of an SPMV

8

• First pass (SpMM) computes the 
intersection a ∩ b between nonzero 
columns from each vector a, and b so 
long as ⊗ is applied to all nonzero 
columns of b
 

• A second pass can compute the 
remaining symmetric difference required 
for the full union between non-zero 
column 

• id
⊗ in B is skipped in the second pass 

since it’s already computed in the first 
pass.



 

Performance- It’s Fast But Also Memory Efficient

• Benchmarks were performed on a DGX1 containing dual 20-core Intel 
Xeon ES-2698 CPUs (80 total threads) at 2.20GHZ and a Volta V100 
GPU running CUDA 11.0 for both the driver and toolkit. 

• Each benchmark performs a k-nearest neighbors query to test our 
primitives end-to-end and allow scaling to datasets where the dense 
pairwise distance matrix may not otherwise fit in the memory of the GPU 

• We used the brute-force NearestNeighbors estimator from RAPIDS 
cuML for the GPU benchmarks since it makes direct use of our primitive 

• We used Scikit-learn’s corresponding brute-force NearestNeighbors 
estimator as a CPU baseline and configured it to use all the available 
CPU cores 
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Performance- Fast And Memory Efficient
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It Is Used In The RAPIDS cuML Library

• Enables several clustering and 
manifold learning algorithms to 
accept sparse inputs.

• Also being used in cuML’s Sparse 
k-Nearest Neighbors estimator.

• Already available in current 
RAPIDS, no hard work required.

https://github.com/rapidsai/cuml
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RAFT Library Provides C++ API for Defining New Distance Semirings

Just define monoids!
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Conclusion / Questions?

• Semirings provide us a framework for unifying many important 
distances in ML applications.

• Our SPSV kernel is state of the art in performance, efficiency 
and flexibility
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Check out the paper for details!

@cjnolet

https://github.com/rapidsai/raft
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