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Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices
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Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices

» Key Design Principles
1. Privacy
2. System Efficiency
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Model Inversion Attack

Figure 1: Reconstruction of an input image = from the gradient Vg Ly (z,y). Left: Image from the
validation dataset. Middle: Reconstruction from a trained ResNet-18 trained on ImageNet. Right: .
Reconstruction from a trained ResNet-152. [Gelplng eta I]
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Problem: Individual model update can leak sensitive data.




Key component: Secure Aggregation
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Key component: Secure Aggregation
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Key component: Secure Aggregation
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State-of-the-Art: SecAgg
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State-of-the-Art: SecAgg
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The number of mask reconstructions at the server substantially grows
as more users are dropped, causing a major computational bottleneck.




State-of-the-Art: SecAgg
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Key component: Secure Aggregation

® Aggregation complexity is the MAIN BOTTLENECK.

®* Some works reduce the complexity, but sacrifice the dropout/privacy guarantees.

SecAgg [Bonawitz, 17°]
SecAgg+ [Bell, 20°]
Turbo-Aggregate [So, 217]

FastSecAgg [Kadhe, 21’]

Complexity
0(N?)
O(NlogN)
O(NlogN)
O(NlogN)

Privacy/Dropout Guarantee
Strong (worst-case)
Weak (average-case)
Weak (average-case)

Weak (average-case)
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New Perspective

State-of-the-art: | Z2= » _(yu — PRG(b,)) + ) (Z- Z.)
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We turn the focus from “random-seed reconstruction of the dropped users”
to “one-shot aggregate-mask reconstruction of the surviving users”.




New Perspective
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New Perspective
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New Perspective

Step 3.
Reconstruction
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New Perspective
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Three Objectives

1)Reconstruction of
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2)Compactness
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3)Privacy of z;'s
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Example (LightSecAgg)

1) Offline encoding and sharing of local

masks

Encoding via MDS
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1) Zjiand I can be recovered by any 2 out of 3 encoded masks.
=> robustness against dropped users
2) N protectsZ1 => privacy against the other users



Example (LightSecAgg)

1) Offline encoding and sharing of local
masks
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Example (LightSecAgg)

1) Offline encoding and sharing of local

masks
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Example (LightSecAgg)

1) Offline encoding and sharing of local

masks
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Example (LightSecAgg)

2) Masking and uploading of local models
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Example (LightSecAgg)

2) Masking and uploading of local models Xo -+ X3 = (Xo + 2) + (X3 + 23) — (22 + 23)
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Example (LightSecAgg)

3) One-shot aggregate-model recovery
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Example (LightSecAgg)

Aggregate-model
3) One-shot aggregate-model recovery
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Theoretical Guarantees

* Complexity comparison between SecAgg, SecAgg+ and LightSecAgg:
* d: model size.
* s: length of the secret keys.

SecAgg SecAgg+ LightSecAgg
Offline communication per user O(sN) O(slog N) O(d)
Offline computation per user O(dN + sN?) | O(dlogN +slogZN) | O(dlogN)
Online communication per user O(d + sN) O(d+ slogN) O(d)
Online communication at server O(dN + sN?) O(dN + sN log N) O(dN)
Online computatjon peruser QL) Q(d) O(d)
TReconstruction complexity at server O(dN?) O(dN log N) O(d lo;\f')\

LightSecAgg significantly improves the computation efficiency
at the server during aggregation.




Experiments

® Experiment setup:

— Amazon EC2 cloud using m3.medium machine instances
— Four different machine learning tasks
— Communication using the MPI4Py message passing interface on Python

— Each user drops with a fixed dropout rate p=0.1, p=0.3,and p=0.5
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Number of Users (=N)

Protocols Phase
p=10% | p=30% | p=50%

Offline 69.3 69.0 191.2

Training 22.8 22.8 22.8

LightSecAgg | Uploadin 12.4 12.2 21.6

l Recovery 40.9 40.7 64.5 l

Total 145.4 144.7 300.1

Offline 95.6 98.6 102.6

Training 22.8 22.8 22.8

SecAgg ) UBloading 10.7 10.9 11.0
Recovery 911.4 1499.2 2087.0
Total 1047.5 1631.5 2216.4

Offline 67.9 68.1 69.2

Training 22.8 22.8 22.8

SecAgg+ | UEloading 10.7 10.8 10.7
Recovery 379.1 436.7 495.5

Total 470.5 538.4 608.2

LightSecAgg achieves a performance gain of up to 12.7x




Experiments

Table 2: Summary of four implemented machine learning tasks and performance gain of LightSecAgg with
respect to SecAgg [4] and SecAgg+ [2]. All learning tasks are for image classification. MNIST, FEMNIST and
CIFAR-100 are low-resolution datasets, while images in GLD-23K are high resolution, which cost much longer
training time for one mini-batch; LR and CNN are shallow models, but MobileNetV3 and EfficientNet-BO are
much larger models, but they are tailored for efficient edge training and inference.

No. Dataset Model Model Size (d) Galn
Non-overlapped | Overlapped
| MNIST [14] Logistic Regression 7,850 6.7x%, 2.5x% 8.0x,2.9x
2 FEMNIST [5] CNN [17] 1,206,590 1135 3.1 12.73¢,4.1%
3 CIFAR-100 [13] MobileNetV3 [11] 3,111,462 7:6%, 2.8 9.5%, 3.3x
4 GLD-23K [27] EfficientNet-B0 [24] 5,288,548 3.3x%, 1.6 3.4x, 1.7

LightSecAgg can survive and speedup the training of large deep
neural network models on high resolution image datasets.




Asynchronous Federated Learning

e There is a growing interest for using asynchronous FL to make the system
scalable
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Challenge: mismatch in staleness!




Incompatibility of SecAgg with Asynchronous FL
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The masks do not cancel out due to the mismatch in staleness!




Asynchronous LightSecAgg
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Buffer
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LightSecAgg is compatible as it enables one-shot recovery of sum of masks
by utilizing MDS structure, even though the masks are generated in different
training rounds!




Concluding Remarks

* We propose a new perspective for secure model aggregation in FL, by turning the
focus from “pairwise random-seed reconstruction of the dropped users” to
“one-shot aggregate-mask reconstruction of the surviving users”.

* We propose LightSecAgg that provides the same level of privacy and
dropout-resiliency guarantees as the state-of-the-art while substantially reducing
the aggregation complexity.

* LightSecAgg is the first secure aggregation protocol that can be applied to
asynchronous FL.



Appendix

Appendix 1. System-level Optimization
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1. Parallelization of offline phase and model training

Secure Aggregation Protocol
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2. Tensor-aware RPC (Remote Procedure Call)
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Appendix 2.
LightSecAgg for Asynchronous Federated Learning



Asynchronous FL

® Synchronous FL suffers from stragglers!
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Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.
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Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.
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Not compatible with secure aggregation!




Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.
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Z ) . .
X How we enable secure aggregation in asynchronous FL?




Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.

Server
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Federated Learning with Buffered Asynchronous
Aggregation
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e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

Asynchronous FL

e Buffered Asynchronous FL (FedBuff): K>1
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Asynchronous FL

e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

e Buffered Asynchronous FL (FedBuff): K>1
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(K must be small!)

The TEE-enabled secure buffer, however, has limited memory.




e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

Asynchronous FL

e Buffered Asynchronous FL (FedBuff): K>1
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LightSecAgg does not require a secure buffer!




Incompatibility of SecAgg with Asynchronous FL
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The masks do not cancel out due to the mismatch in

staleness!



Incompatibility of SecAgg with Asynchronous FL
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How to design the masks to cancel out even if they belong to different rounds?




Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.
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Our focus

LightSecAgg is compatible as it does not use pair-wise masking!




Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.
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Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.
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Step 2. Quantization & Masking
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Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.
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Our focus

Step 3. One-Shot Recovery of Aggregate Masks
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Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to

different training rounds.
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Server can reconstruct the
aggregate-masks even if there is
mismatch in staleness !




