
LightSecAgg: a Lightweight and Versatile Design for 
Secure Aggregation in Federated Learning

Jinhyun So

University of Southern California

Joint work with 

Chaoyang He(FedML), Chien-Sheng Yang (MediaTek), Songze Li (HKUST), Qian Yu (Princeton), 
Ramy E. Ali (Samsung), Basak Guler (UCR), and Salman Avestimehr (USC, FedML)



2

Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices



3

Federated Learning

• Key Design Principles
1. Privacy
2. System Efficiency

Machine learning on massive amount of data collected on many users/mobile devices



Model Inversion Attack

[Geiping et al] 

Problem: Individual model update can leak sensitive data.



5

Key component: Secure Aggregation

Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with 
Secure Aggregation Guarantee?. arXiv preprint arXiv:2208.02304.



6

Key component: Secure Aggregation

Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with 
Secure Aggregation Guarantee?. arXiv preprint arXiv:2208.02304.

Similar to blockchain systems, 
privacy/security of FL systems with 
secure aggregation grows linearly 

with the number of users



7

Key component: Secure Aggregation



8

State-of-the-Art: SecAgg

User NUser 2User 1
   

Pairwise random seed  

 

 

 

 
 

 

 
 

  

 



server

: surviving 
users

: dropped 
users

State-of-the-Art: SecAgg

The number of mask reconstructions at the server substantially grows 
as more users are dropped, causing a major computational bottleneck.



10
Individual model size of 100,000 with 32 bits entries- experiments over Amazon EC2

State-of-the-Art: SecAgg



11

Key component: Secure Aggregation

• Aggregation complexity is the MAIN BOTTLENECK.

• Some works reduce the complexity, but sacrifice the dropout/privacy guarantees.

 

Complexity Privacy/Dropout Guarantee

SecAgg [Bonawitz, 17’] Strong (worst-case)

SecAgg+ [Bell, 20’] Weak (average-case)

Turbo-Aggregate [So, 21’] Weak (average-case)

FastSecAgg [Kadhe, 21’] Weak (average-case)



New Perspective

We turn the focus from “random-seed reconstruction of the dropped users” 
to “one-shot aggregate-mask reconstruction of the surviving users”. 

State-of-the-art:

New Perspective:
Our focus



13

New Perspective

 

User 1 User 2 User N

…

     

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Step 1.
  Encoding 
  & Secret Sharing



14

New Perspective

 
User 1 User 2 User N

…

     

 

   

   Step 2.
  Uploading shares

Step 1.
  Encoding 
  & Secret Sharing



15

New Perspective

 
User 1 User 2 User N

…

     

   

  Step 2.
  Uploading shares

Step 1.
  Encoding 
  & Secret Sharing

 

Step 3.
  Reconstruction

 



16

New Perspective

 
User 1 User 2 User N

…

     

   

   Step 2.
  Uploading shares

Step 1.
  Encoding 
  & Secret Sharing

 

Step 3.
  Reconstruction

Three Objectives

 



Example (LightSecAgg) 

1) Offline encoding and sharing of local 
masks

1)     and        can be recovered by any 2 out of 3 encoded masks. 
=> robustness against dropped users

2)        protects        => privacy against the other users

Encoding via MDS



Example (LightSecAgg) 

1) Offline encoding and sharing of local 
masks



Example (LightSecAgg) 

1) Offline encoding and sharing of local 
masks



Example (LightSecAgg) 

1) Offline encoding and sharing of local 
masks



Example (LightSecAgg) 

2) Masking and uploading of local models



Example (LightSecAgg) 

2) Masking and uploading of local models

Drop !!



Example (LightSecAgg) 

3) One-shot aggregate-model recovery

Compute the aggregate of encoded 
masks for the surviving users.

LightSecAgg enables the server to recover the 
aggregate-mask of all surviving users in one shot.



Example (LightSecAgg)  

3) One-shot aggregate-model recovery
Aggregate-model



Theoretical Guarantees

LightSecAgg significantly improves the computation efficiency 
at the server during aggregation.

• Complexity comparison between SecAgg, SecAgg+ and LightSecAgg:
• d: model size.
• s:  length of the secret keys.



Experiments

• Experiment setup: 

– Amazon EC2 cloud using m3.medium machine instances

– Four different machine learning tasks

– Communication using the MPI4Py message passing interface on Python

– Each user drops with a fixed dropout rate p = 0.1, p = 0.3, and p = 0.5



Experiments

LightSecAgg achieves a performance gain of up to 12.7x 
!!



Experiments

LightSecAgg can survive and speedup the training of large deep 
neural network models on high resolution image datasets.



Asynchronous Federated Learning

● There is a growing interest for using asynchronous FL to make the system 
scalable 

Challenge: mismatch in staleness!



Incompatibility of SecAgg with Asynchronous FL

The masks do not cancel out due to the mismatch in staleness!



Asynchronous LightSecAgg

LightSecAgg is compatible as it enables one-shot recovery of sum of masks 
by utilizing MDS structure, even though the masks are generated in different 
training rounds!

Our focus



Concluding Remarks

• We propose a new perspective for secure model aggregation in FL, by turning the 
focus from “pairwise random-seed reconstruction of the dropped users” to 
“one-shot aggregate-mask reconstruction of the surviving users”.

• We propose LightSecAgg that provides the same level of privacy and 
dropout-resiliency guarantees as the state-of-the-art while substantially reducing 
the aggregation complexity.

• LightSecAgg is the first secure aggregation protocol that can be applied to 
asynchronous FL.



Appendix

Appendix 1. System-level Optimization



34

Overview of the System Design

Design Goals:

1. Make the system API friendly to pure ML 
researchers who may not have expertise in 
SA/Security.

2. Reduce the cost of encoding and decoding at the 
edge

3. Optimize the communication backend, making it 
Torch Tensor-aware



35

1. Parallelization of offline phase and model training



36

2. Tensor-aware RPC (Remote Procedure Call)



37

Appendix 2. 
LightSecAgg for Asynchronous Federated Learning



Asynchronous FL

● Synchronous FL suffers from stragglers!



Asynchronous FL

● Updates are not synchronized.
● Each local model received updates the global model.



Asynchronous FL

● Updates are not synchronized.
● Each local model received updates the global model.

          Not compatible with secure aggregation!



Asynchronous FL

● Updates are not synchronized.
● Each local model received updates the global model.

  How we enable secure aggregation in asynchronous FL?



Asynchronous FL

● Updates are not synchronized.
● Each local model received updates the global model.

  How we enable secure aggregation in asynchronous FL?



Asynchronous FL

● Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
● Buffered Asynchronous FL (FedBuff): K>1



Asynchronous FL

The TEE-enabled secure buffer, however, has limited memory. 
(K must be small!)

● Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
● Buffered Asynchronous FL (FedBuff): K>1



Asynchronous FL

LightSecAgg does not require a secure buffer!

● Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
● Buffered Asynchronous FL (FedBuff): K>1



Incompatibility of SecAgg with Asynchronous FL

The masks do not cancel out due to the mismatch in 
staleness!



Incompatibility of SecAgg with Asynchronous FL

How to design the masks to cancel out even if they belong to different rounds?



Asynchronous LightSecAgg
Key objective: Design the masks such that they cancel out even if they belong to 

different training rounds.

LightSecAgg is compatible as it does not use pair-wise masking!



Asynchronous LightSecAgg
Key objective: Design the masks such that they cancel out even if they belong to 

different training rounds.

Step 1. Offline encoding and sharing of local masks



Asynchronous LightSecAgg
Key objective: Design the masks such that they cancel out even if they belong to 

different training rounds.

Step 2. Quantization & Masking



Asynchronous LightSecAgg
Key objective: Design the masks such that they cancel out even if they belong to 

different training rounds.

Step 3. One-Shot Recovery of Aggregate Masks



Asynchronous LightSecAgg
Key objective: Design the masks such that they cancel out even if they belong to 

different training rounds.

Step 3. One-Shot Recovery of Aggregate Masks

Server can reconstruct the 
aggregate-masks even if there is 
mismatch in staleness !


