LightSecAgq: a Lightweight and Versatile Design for
Secure Aggregation in Federated Learning

Jinhyun So

University of Southern California

Joint work with

Chaoyang He(FedML), Chien-Sheng Yang (MediaTek), Songze Li (HKUST), Qian Yu (Princeton),
Ramy E. Ali (Samsung), Basak Guler (UCR), and Salman Avestimehr (USC, FedML)

Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices

%/4 Server\
— @3 g3 B3 Ha

User 1 User 2 User N

Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices

» Key Design Principles
1. Privacy
2. System Efficiency

y’/ Server\
N ERNCERTERNE

User 1 User 2 User N

Model Inversion Attack

Figure 1: Reconstruction of an input image = from the gradient Vg Ly (z,y). Left: Image from the
validation dataset. Middle: Reconstruction from a trained ResNet-18 trained on ImageNet. Right: .
Reconstruction from a trained ResNet-152. [Gelplng eta I]

User 1 User 2 User N

Problem: Individual model update can leak sensitive data.

Key component: Secure Aggregation

£ 12.50;
£10.00

]
o 7.501

N >
o B Server o g 2
x1(t) eo(1) ~ (1) & 2.50

2 0 10 20 30 40 50

| | Number of users
EERCERERE
N

User 1 User 2 User

Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with
Secure Aggregation Guarantee?. arXiv preprint arXiv:2208.02304.

Key component: Secure Aggregation

g§12.50~
£10.00 \@
= y
& Similar to blockchain systems,
Xl(t)

privacy/security of FL systems with T—

20 30 40 50
E %\/ secure aggregation grows linearly =~ [m¢"* e

with the number of users
User 1

/
USer 1V

Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with
Secure Aggregation Guarantee?. arXiv preprint arXiv:2208.02304.

6

Key component: Secure Aggregation

Practical Secure Aggregation
for Privacy-Preserving Machine Learning

Keith Bonawitz™, Vladimir Ivanov’, Ben Kreuter™,
Antonio Marcedone'? H. Brendan McMahan®, Sarvar Patel”,
Daniel Ramage”, Aaron Segal®, and Karn Seth’
"{bonawitz ,vlivan,benkreuter mcmahan,
sarvar,dramage ,asegal karn}@google.com
Google, Mountain View, CA 94043
‘marcedone@cs.cornell.edu
Cornell Tech, 2 West Loop Rd.. New York, NY 10044

State-of-the-Art: SecAgg

Y1 =Xx1+ PRG(Sl,z)/ . x?/_ PRG(5,.) +\
B2 83 - B3

2

User 1 User 2 User N
X1 X2 XN
LY J
Pairwise random seed S1,2 52,1 SN,1
mn 1]} SN
1

S1,N S2,N SN, N—-1

State-of-the-Art: SecAgg

IA: surviving / /] \ T : dropped

“Fa el 8o

2= 3 (vu— PRG(B) + Y (> ERG(u)- Z

ueU ueD \v:u<v VUS>V

The number of mask reconstructions at the server substantially grows
as more users are dropped, causing a major computational bottleneck.

State-of-the-Art: SecAgg

1607 @ Bonawitz, et. al.
__ 140 4 — = 10% dropout
—== 30% dropout
—— 50% dropout

sec

(

=

N

o
1

100 A

Total Running Time
»r o ©
0 © O
1 1 1

20 A

0 25 50 75 100 125 150 175 200
#Users

Individual model size of 100,000 with 32 bits entries- experiments over Amazon EC2

Key component: Secure Aggregation

® Aggregation complexity is the MAIN BOTTLENECK.

®* Some works reduce the complexity, but sacrifice the dropout/privacy guarantees.

SecAgg [Bonawitz, 17°]
SecAgg+ [Bell, 20°]
Turbo-Aggregate [So, 217]

FastSecAgg [Kadhe, 21’]

Complexity
0(N?)
O(NlogN)
O(NlogN)
O(NlogN)

Privacy/Dropout Guarantee
Strong (worst-case)
Weak (average-case)
Weak (average-case)

Weak (average-case)

11

New Perspective

State-of-the-art: | Z2= » _(yu — PRG(b,)) +) (Z- Z.)

ueU u€ED \v:u<v V:USV

Our focus
New Perspective: = ZX@>
ueU ueU

We turn the focus from “random-seed reconstruction of the dropped users”
to “one-shot aggregate-mask reconstruction of the surviving users”.

New Perspective

User N

XN Zn

I SI,N |
1 S |
Sy =i Z’I.Y. I
|

1
\ SN,N

N - -

Step 1.
Encoding

& Secret Sharing

13

New Perspective

S
“E'

User N
XN ZnN

Sn

Step 2.
Uploading shares

14

New Perspective

Step 3.
Reconstruction

15

New Perspective

2 z; = Rec(iiy, ..., Tiy)

LES

Three Objectives

1)Reconstruction of
Yies z; forany §

2)Compactness
in comm. & comp.

3)Privacy of z;'s

16

Example (LightSecAgg)

1) Offline encoding and sharing of local

masks

Encoding via MDS

User 1

Z; 1Im Zo 1Ny

—Z] + 1y
2Z1 + 1ny

Z1 + 1y

v/ﬁ Server

User 2 User 3

Z3 13

1) Zjiand I can be recovered by any 2 out of 3 encoded masks.
=> robustness against dropped users
2) N protectsZ1 => privacy against the other users

Example (LightSecAgg)

1) Offline encoding and sharing of local
masks

/ / Server \

Ué 1 Ué | Ué |
Z; Iy Zo Ny Z3 N3
—Z1 + 1Ny —Z9o + Ny —Z3 1+ ng
271 + ny 279 + Ny 273 + ng
Z1 + 1Ny Zo + Ny Z3 + g

Example (LightSecAgg)

1) Offline encoding and sharing of local

masks
/ / Server \
Ué 1 User 2 Ué 3
Z1 N Zo 1Ny Zz3 ng3
—Z1 + 1Ny - -—-Z2 “+ ny —Z3 + N3
—Zo + Nolg2ZT= 11 | 275+ 1, 274 + N3
—Z3 + Ny 71 - N Zo -+ o 73 + Ny

Example (LightSecAgg)

1) Offline encoding and sharing of local

masks

/

User 1

Z1 I

—Z9 + no
—Z3 + ns

—Z1 + 1Ny
2Z1 + 1ny

Z1 + ny

/ Server \

User 2

Zy Ny

2Z1 + 1ny
2Z3 + N3

—Z9 + No
2Z2 + Ny
Z9 + o

User 3

EE

Z3 13

Z1—|—1'11
22+n2

—Z3 + I3
2Z3 + gy
Z3 + s

Example (LightSecAgg)

2) Masking and uploading of local models

XH_/Y o 22/ Server w Zs

Ué 1 Ué 2 Ué 3

Z1 N Zo 1Ny Zz3 ng3

—Z1 + 1Ny —Z9o + Ny —Z3 1+ ng

—Zo + Ny 271+ 1y 271 +1my 275 + Ny Z1+n; 2Z3+ ng

—Z3 + 1y z1 +1n, 223 +n3 75+ ny Zy + 1o Z3 + N3

Example (LightSecAgg)

2) Masking and uploading of local models Xo -+ X3 = (Xo + 2) + (X3 + 23) — (22 + 23)

s

Server
X9 + z2/ w Z3

User 1 User 2 User 3
ak CHE E
Z1 N Zo 1Ny Zz3 ng3
—Z1 + 1Ny —Z9o + Ny —Z3 1+ ng
—Zy+ Ny 271 +1ny 271 + 1y 279 + Ny z1+n; 223+ ng3

—Z3 + 1y z1 +1n, 223 +n3 75+ ny Zy + 1o Z3 + N3

Example (LightSecAgg)

3) One-shot aggregate-model recovery

:2(zg+z3)—|—n2—|—n3—(z2+Z3+n2+n3)

Compute the aggregate of encoded

masks for the surviving users. Server
2(Z2+Z3)+H2—|—n3/ Z2+Z3—|—n2—|—1’l3

User 1 Ué 2 Ué 3
Z1 N Zo 1Ny Z3 1n3
LightSecAgg enables the server to recover the H 13
—Zz+ 1y aggregate-mask of all surviving users in one shot. t+ N3

—Z3 + N3 Z1 + 1y @) Zo + No @

Example (LightSecAgg)

Aggregate-model
3) One-shot aggregate-model recovery

—Z9 271 + 1ny 21+ 101 2z, + n, 71 +n; 2z3+ ng
—Z3 + N3 Z) + 1y 223 +M3 75+ ny Zy + Ny Z3 + n3

Theoretical Guarantees

* Complexity comparison between SecAgg, SecAgg+ and LightSecAgg:
* d: model size.
* s: length of the secret keys.

SecAgg SecAgg+ LightSecAgg
Offline communication per user O(sN) O(slog N) O(d)
Offline computation per user O(dN + sN?) | O(dlogN +slogZN) | O(dlogN)
Online communication per user O(d + sN) O(d+ slogN) O(d)
Online communication at server O(dN + sN?) O(dN + sN log N) O(dN)
Online computatjon peruser QL) Q(d) O(d)
TReconstruction complexity at server O(dN?) O(dN log N) O(d lo;\f')\

LightSecAgg significantly improves the computation efficiency
at the server during aggregation.

Experiments

® Experiment setup:

— Amazon EC2 cloud using m3.medium machine instances
— Four different machine learning tasks
— Communication using the MPI4Py message passing interface on Python

— Each user drops with a fixed dropout rate p=0.1, p=0.3,and p=0.5

Time (sec)

Experiments

Non-overlapped

2500
O SecAgg
V SecAgg+
20004 A LigthSecAgg
----- 10% dropout rate
=== 30% dropout rate 4
1500 1 —— 50% dropout rate =
1000 A
500 -
04 &
0 25 S50 75 100 125 150 175 200

Number of Users (=N)

Protocols Phase
p=10% | p=30% | p=50%

Offline 69.3 69.0 191.2

Training 22.8 22.8 22.8

LightSecAgg | Uploadin 12.4 12.2 21.6

l Recovery 40.9 40.7 64.5 l

Total 145.4 144.7 300.1

Offline 95.6 98.6 102.6

Training 22.8 22.8 22.8

SecAgg) UBloading 10.7 10.9 11.0
Recovery 911.4 1499.2 2087.0
Total 1047.5 1631.5 2216.4

Offline 67.9 68.1 69.2

Training 22.8 22.8 22.8

SecAgg+ | UEloading 10.7 10.8 10.7
Recovery 379.1 436.7 495.5

Total 470.5 538.4 608.2

LightSecAgg achieves a performance gain of up to 12.7x

Experiments

Table 2: Summary of four implemented machine learning tasks and performance gain of LightSecAgg with
respect to SecAgg [4] and SecAgg+ [2]. All learning tasks are for image classification. MNIST, FEMNIST and
CIFAR-100 are low-resolution datasets, while images in GLD-23K are high resolution, which cost much longer
training time for one mini-batch; LR and CNN are shallow models, but MobileNetV3 and EfficientNet-BO are
much larger models, but they are tailored for efficient edge training and inference.

No. Dataset Model Model Size (d) Galn
Non-overlapped | Overlapped
| MNIST [14] Logistic Regression 7,850 6.7x%, 2.5x% 8.0x,2.9x
2 FEMNIST [5] CNN [17] 1,206,590 1135 3.1 12.73¢,4.1%
3 CIFAR-100 [13] MobileNetV3 [11] 3,111,462 7:6%, 2.8 9.5%, 3.3x
4 GLD-23K [27] EfficientNet-B0 [24] 5,288,548 3.3x%, 1.6 3.4x, 1.7

LightSecAgg can survive and speedup the training of large deep
neural network models on high resolution image datasets.

Asynchronous Federated Learning

e There is a growing interest for using asynchronous FL to make the system
scalable

X(tl) x(tz)

(tx)
iy i X

i

Secure Buffer (size =K)

Challenge: mismatch in staleness!

Incompatibility of SecAgg with Asynchronous FL

Server
Buffer

~ (tl) 4 (tZ)

7 \\\2

ll 12

~(t) _ (1) (t1) ~(tz) (tz) (tz)
11 X ' +zl 1lz+ 12 2 l1lz

\ J
\

The masks do not cancel out due to the mismatch in staleness!

Asynchronous LightSecAgg

Server
Buffer

~(t ~(t2)
Xi - xiz2

Z ffl(ti) _ Z xlgti) n Z Zl(ti)
ies(® ies(®) ies(®)
Our focus
.

LightSecAgg is compatible as it enables one-shot recovery of sum of masks
by utilizing MDS structure, even though the masks are generated in different
training rounds!

Concluding Remarks

* We propose a new perspective for secure model aggregation in FL, by turning the
focus from “pairwise random-seed reconstruction of the dropped users” to
“one-shot aggregate-mask reconstruction of the surviving users”.

* We propose LightSecAgg that provides the same level of privacy and
dropout-resiliency guarantees as the state-of-the-art while substantially reducing
the aggregation complexity.

* LightSecAgg is the first secure aggregation protocol that can be applied to
asynchronous FL.

Appendix

Appendix 1. System-level Optimization

Secure Aggregation Protocol

@ offline phase - encoding
and sharing of local masks

@ masking and uploading —

of local models

Security Primitive APIs

"Key Agreemer.{_-:f- s :éecret Sharing’
'f_"-F-’seudo Random Generatc;rl",’:

Overview of the System Design

@ upload aggregate
of encoded masks

y : Design Goals:
Client MTanager c
1

SA/Security.

buffer for client ‘\

| Client Encoder 3 \ S5 Secure Aggregator | 1. Make the system API friendly to pure ML
/7 muttiprocessing (slave) ‘ @Reconstruction. : researchers who may not have expertise in
l ecoder 1
| Overlapping ’ i

O Training

@ Communication

A 3 / masked model |
1\ ini 1y \
ey @ s @ coge | | |
! \! \%9 abalioiel o cliots Maskedmods] 2. Reduce the cost of encoding and decoding at the
----------- i\\./ edge
Trainer \ﬂ Tensor-aware Communicator |f
oo ¥ 3. Optimize the communication backend, making it
n-device u .
training framework ’ Send Thread H Receive Thread ‘ Torch Tensor-aware
A%“;ngied S;??:rif : ‘ Abstrac; Communication Lazler ‘
xy ‘ PyTorch RPC ‘ ’ gRPC ‘

34

1. Parallelization of offline phase and model training

Secure Aggregation Protocol

@ offline phase - encoding
and sharing of local masks

@ masking and uploading
of local models

@ upload aggregate
of encoded masks

Security Primitive APIs

Client Encoder
multiprocessing (slave)

Overlapping

@ Model Training
multiprocessing (master)

Trainer

: ARM-based :

On-device
training framework

Standard

PyTorch PyTorch

"~ Secure Aggregator

Reconstruction
Decoder

buffer for client
masked model

@ Send the updated

@ Cache
global model to clients

masked model

__

Tensor-aware Communicator

! t

’ Send Thread H Receive Thread ’
v 3

’ Abstract Communication Layer ‘

v v
PyTorch RPC gRPC

O Training

g Communication

LightSecAgg

SecAgg+

LightSecAgg

SecAgg+

S Masking and Uploading

Aggregate-Model
i ~ Recovery

Time

(b) Overlapped

: i 77 Offline
m H £ Training
[: ‘ WY Masking and Uploading
] & Aggregate-Model
i Recovery
Time
(a) Non-overlapped
77z Offline
5] Training

35

2. Tensor-aware RPC (Remote Procedure Call)

Secure Aggregation Protocol

@

offline phase - encoding
and sharing of local masks

@ masking and uploading
of local models
@ upload aggregate
of encoded masks

Security Primitive APIs

Client Manager

Client Encoder
multiprocessing (slave)

@ Model Training
multiprocessing (master)

|
|
|
|
|
I
‘l
| Overlapping
|
1
|
|
|
|
|
|

Reconstruction
Decoder

@ Send the updated
global model to clients

buffer for client
masked model

@ Cache

masked model

Trainer

On-device
training framework

: ARM-based :
PyTorch

Standard
PyTorch

Tensor-aware Communicator

"

' 1

| Send Thread H Receive Thread ‘

v ¢

| Abstract Communication Layer ‘

v v

PyTorch RPC gRPC

g Communication

Receiver

Sender

CUDA

CPU

(@) PyTorch RPC

H2D, H2D,

TCP, TCP,

Alloc

HS

Optimizations

Computation

Communication

CUDA Memory

Allocation

Handshake

time

Receiver

Sender

(b) 3rd-Party RPC

HS

s

CUDA
CPU
N~
CUDA | opl | op2 |

TCP

H2D

Comparison with Third-Party RPC

36

Appendix 2.
LightSecAgg for Asynchronous Federated Learning

Asynchronous FL

® Synchronous FL suffers from stragglers!

% x(t) xy
"ENE; Eq - Ha

User 1 User 2 User N

— —

Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.

X x(t) ()
§: Bz Bz B

User 1 User 2 User N

Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.

E:; TE E::; e

User 1 User 2 User N

Not compatible with secure aggregation!

Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.

E:; TE E::; e

User 1 User 2 User N

Z) . .
X How we enable secure aggregation in asynchronous FL?

Asynchronous FL

e Updates are not synchronized.
® Each local model received updates the global model.

Server

L

Federated Learning with Buffered Asynchronous
Aggregation

John Nguyen Kshitiz Malik Hongyuan Zhan Ashkan Yousefpour

U Michael Rabbat Mani Malek Dzmitry Huba
S¢
Facebook
:"r‘\ {ngjhn,kmalik2,hyzhan,yousefpour,mikerabbat ,manimalek,huba}@fb.com
e HOW We enapie secure dgglregdlion Irn asyncnronous rLr

e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

Asynchronous FL

e Buffered Asynchronous FL (FedBuff): K>1

g3 Ba Ba-

User 1

User 2

i

Server

(tn)

(t1)

11

(tz)

2

(tK)
Xix

Secure Buffer (size =K)

“E

User N

Asynchronous FL

e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

e Buffered Asynchronous FL (FedBuff): K>1

(t1)

11

(tz)

2

(tK)
Xix

Secure Buffer (size =K)

x® Server
) x(t)\\ (tn)

"ER ER ERa E

User 1 User 2 User N

(K must be small!)

The TEE-enabled secure buffer, however, has limited memory.

e Typical Asynchronous FL: K=1 (not compatible with secure aggregation)

Asynchronous FL

e Buffered Asynchronous FL (FedBuff): K>1

g3 Ba Ba-

User 1

(t1)

11

(tz)

2

(tK)
Xix

S}ére Buffer (size =K)

Server
x(t)\\ (tn)

User 2 User N

“E.

LightSecAgg does not require a secure buffer!

Incompatibility of SecAgg with Asynchronous FL

Server
Buffer

S (t1) < (tz)

7 \\\2

ll 12

~(t) _ (1) (t1) ~(tz) (tz) (tz)
11 X ' +zl 1lz+ 12 2 l1lz

\ J
\

The masks do not cancel out due to the mismatch in

staleness!

Incompatibility of SecAgg with Asynchronous FL

Server
Buffer

~ (tl) S (tZ)

7 \\\2

l1 l2

) 9" ~(t1) _ X(tl) + z(tl) +. ~(t2) (tz) (tz)

' o 11 11,1l '-2 2 l1 12

L J
\

How to design the masks to cancel out even if they belong to different rounds?

Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.

x(E+D) = () — 1 g® where g® = Z »-ilgt;ti) _ 2 J_.Clgt;ti) n 2 Zlgti)
ies® ies® ies®

Our focus

LightSecAgg is compatible as it does not use pair-wise masking!

Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.

xEFD) = x(® —n, g® where g® = Z »xal(t;ti) _ z flgt;z:i) n z Zlgti)
ies® ies® ies®

Step 1. Offline encoding and sharing of local masks Ourffocus

User1E :1 USGFZE :i US€F3E ::;E

(t1) (t1) (tz) (tz) Z(tz) n(ts)
1 1
MDS Encodlng Sharmg

Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.

xEFD) = x(® — 1 g® where g® = Z »-il(t;ti) _ Z fgt;ti) n Z Zlgti)
ies® ies® ies®

Our focus

Step 2. Quantization & Masking

uSer1§ :i UserZE :4 USGI’3E :i

. , (t ~(f tz) _ =(t;t3) (t3)
%gt,tﬂ —(t t1) + zgtl) N(; it2) _ —'Z’ ;t2) + ZZ X3 = X5 + 2z,

Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to
different training rounds.

xEFD) = x(® —n, g® where g® = z »xal(t;ti) _ z flgt;z:i) n 2 Zlgti)
ies® ies® ies®

Our focus

Step 3. One-Shot Recovery of Aggregate Masks

Broadcast: S® = {1,3} & {tq,t3})

5(t1) | 53] [5t1) |, 5] [5E) | 5(t3)
%gt;tﬂ %;t;tg) [zl +Z3]1[21 +tZ3]2[21 T2z]3
MDS Decoding: z{"+) 4 z{+))

[+ 2],

User 1 E :i

[thﬂ + zgt3)]2J [2§t1) + 2?3)]3

User 2 E ;i User 3 E :i

Asynchronous LightSecAgg

Key objective: Design the masks such that they cancel out even if they belong to

different training rounds.

xEFD) = () _ Mg g® where g® = z »-il(t;ti) _ z flgt;ti) n
ies® ies®

Step 3. One-Shot Recovery of Aggregate Masks

~(t;t ~(t;t
ot | gt

=(t1)

42 [

User 1 E :i

"3 2§t3)]2J

User 2 E

—

=

(t)
>
ies(®)

Our focus

Broadcast: S® = {1,3} & {tq,t3})
[zgtl) 4 ths)]l[igtﬂ 4 z;(;t3)]2[§gt1) +th3)]3

MDS Decoding: z{"+) 4 z{+))

[2§t1) + 2?3)]3

User 3 E :i

Server can reconstruct the
aggregate-masks even if there is
mismatch in staleness !

