

LightSecAgg: a Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Jinhyun So

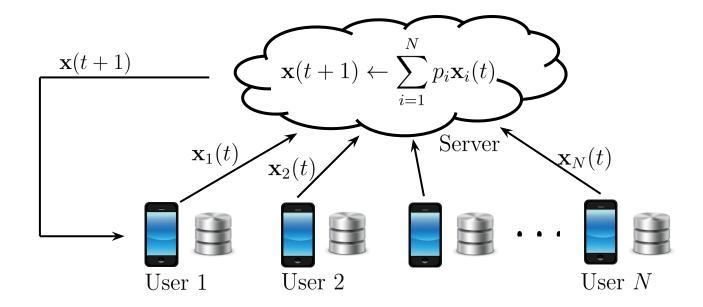
University of Southern California

Joint work with

Chaoyang He(FedML), Chien-Sheng Yang (MediaTek), Songze Li (HKUST), Qian Yu (Princeton), Ramy E. Ali (Samsung), Basak Guler (UCR), and Salman Avestimehr (USC, FedML)

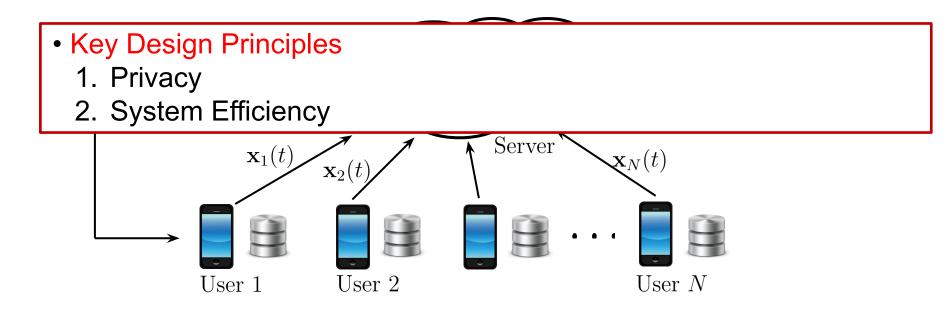
Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices

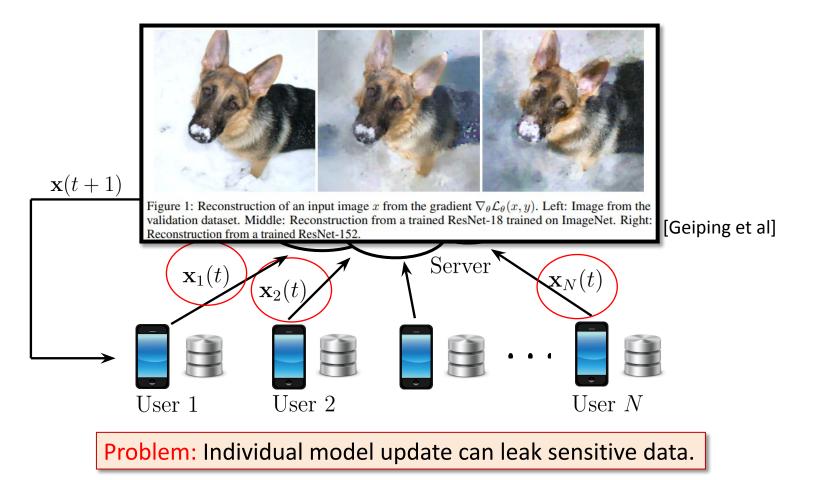


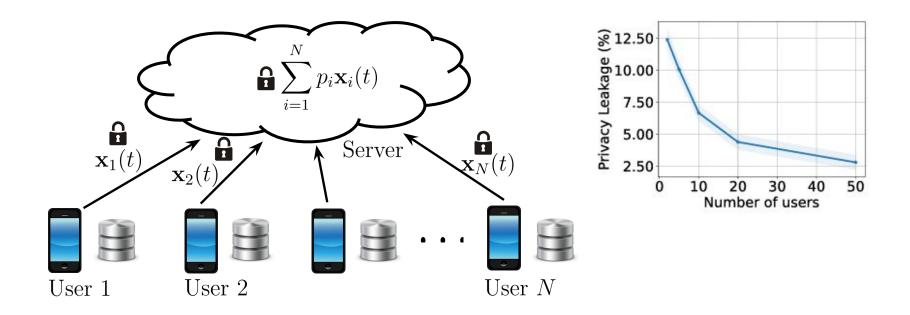
Federated Learning

Machine learning on massive amount of data collected on many users/mobile devices

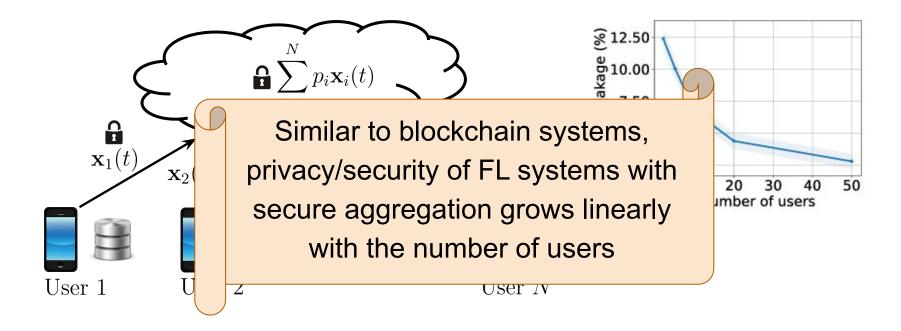


Model Inversion Attack





Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?. *arXiv preprint arXiv:2208.02304*.

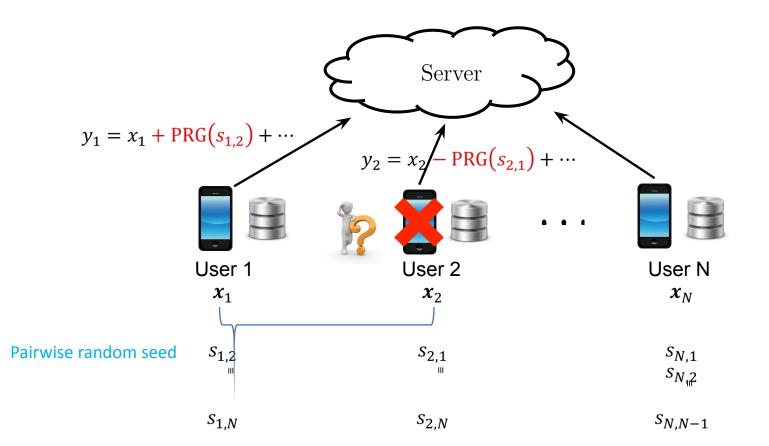


Elkordy, A. R., Zhang, J., Ezzeldin, Y. H., Psounis, K., & Avestimehr, S. (2022). How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?. arXiv preprint arXiv:2208.02304.

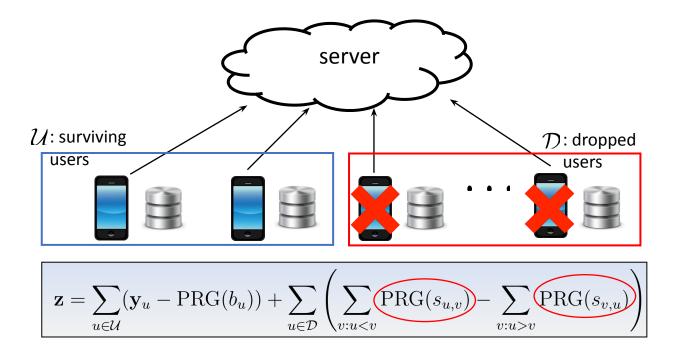
Practical Secure Aggregation for Privacy-Preserving Machine Learning

Keith Bonawitz^{*}, Vladimir Ivanov^{*}, Ben Kreuter^{*}, Antonio Marcedone^{†‡},H. Brendan McMahan^{*}, Sarvar Patel^{*}, Daniel Ramage^{*}, Aaron Segal^{*}, and Karn Seth^{*} ^{*}{bonawitz,vlivan,benkreuter,mcmahan, sarvar,dramage,asegal,karn}@google.com Google, Mountain View, CA 94043 [†]marcedone@cs.cornell.edu Cornell Tech, 2 West Loop Rd., New York, NY 10044

State-of-the-Art: SecAgg

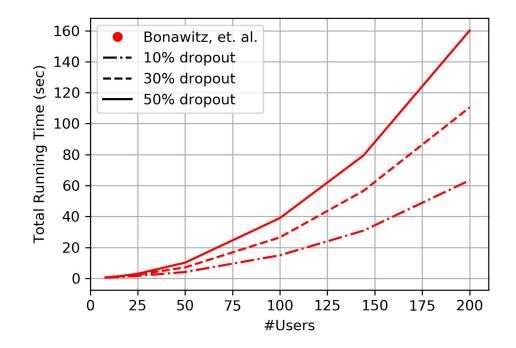


State-of-the-Art: SecAgg



The number of mask reconstructions at the server substantially grows as more users are dropped, causing a major computational bottleneck.

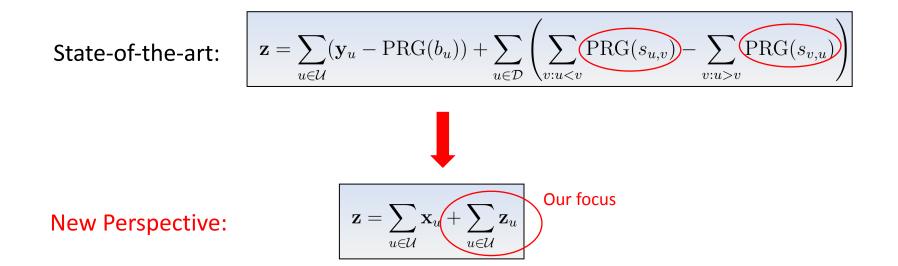
State-of-the-Art: SecAgg



Individual model size of 100,000 with 32 bits entries- experiments over Amazon EC2

- Aggregation complexity is the **MAIN BOTTLENECK**.
- Some works reduce the complexity, but sacrifice the dropout/privacy guarantees.

	Complexity	Privacy/Dropout Guarantee	
SecAgg [Bonawitz, 17']	$O(N^2)$	Strong (worst-case)	
SecAgg+ [Bell, 20']	$O(N \log N)$	Weak (average-case)	
Turbo-Aggregate [So, 21']	$O(N \log N)$	Weak (average-case)	
FastSecAgg [Kadhe, 21']	$O(N \log N)$	Weak (average-case)	

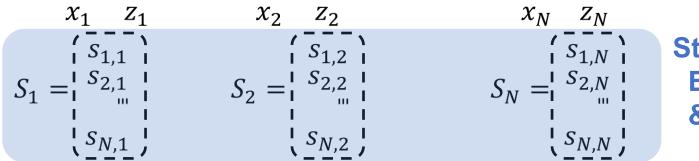


We turn the focus from "random-seed reconstruction of the dropped users" to "one-shot aggregate-mask reconstruction of the surviving users".

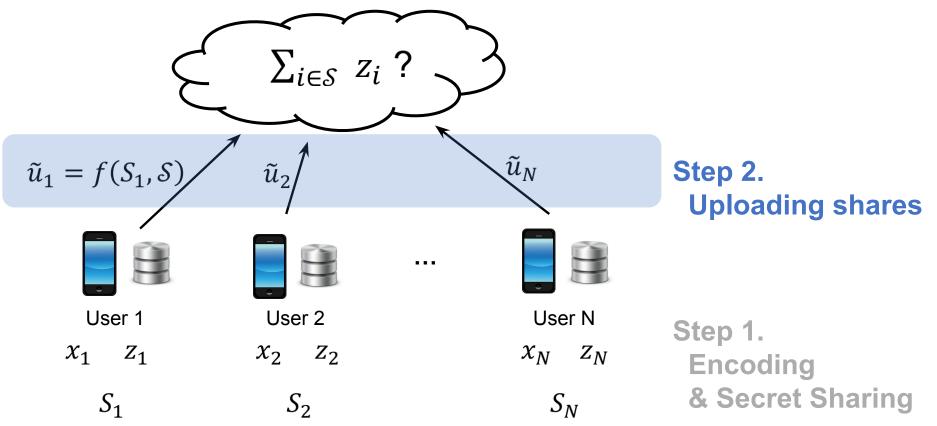
. . .

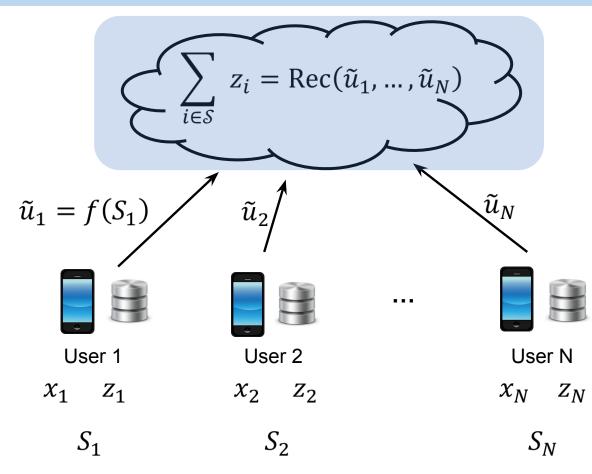
User 1

User N



Step 1. Encoding & Secret Sharing

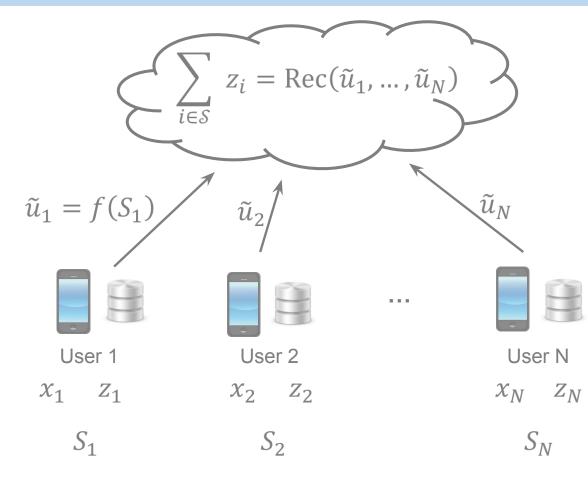




Step 3. Reconstruction

Step 2. Uploading shares

Step 1. Encoding & Secret Sharing

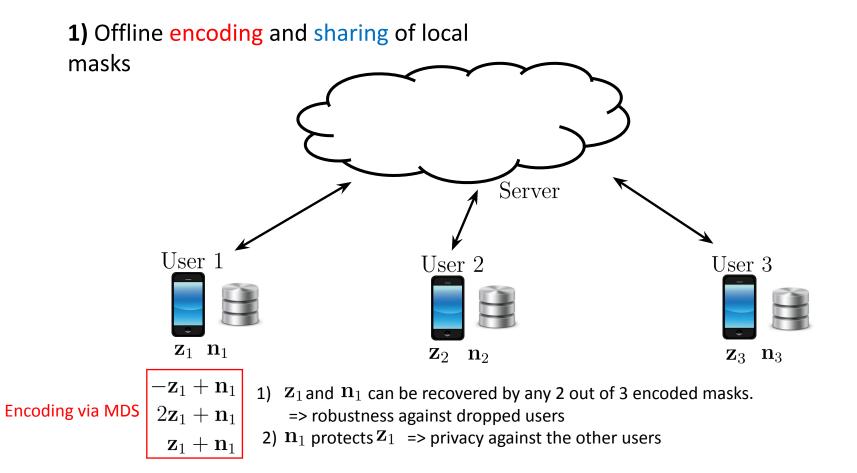


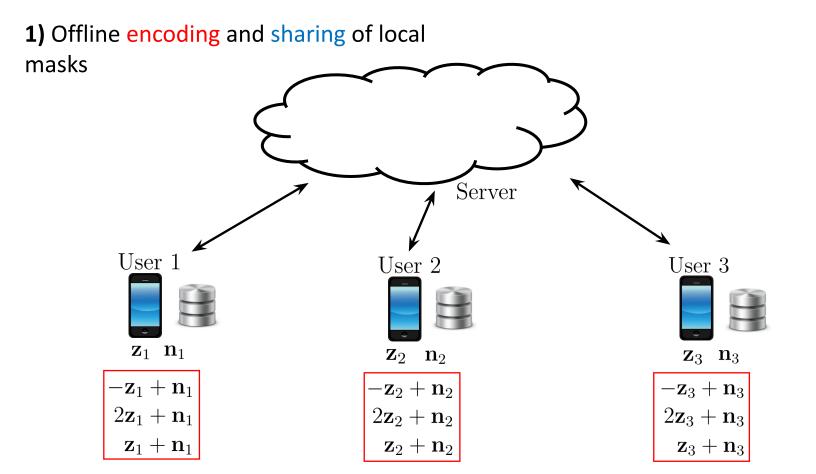
Three Objectives

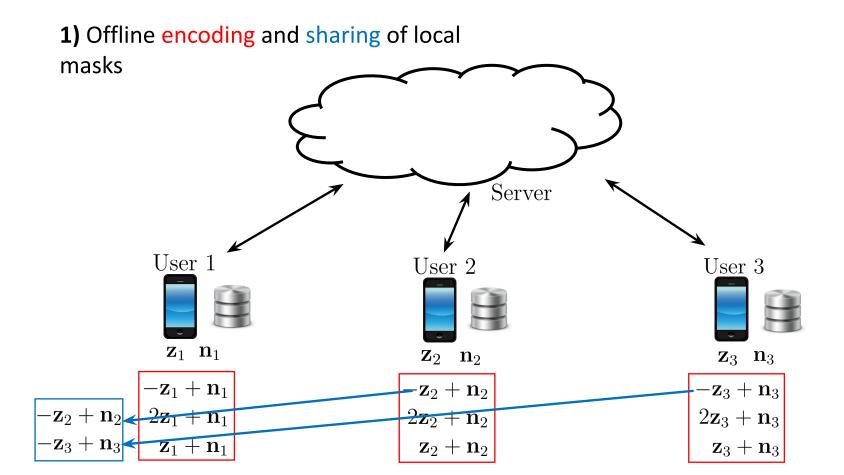
1) Reconstruction of $\sum_{i \in S} z_i$ for any S

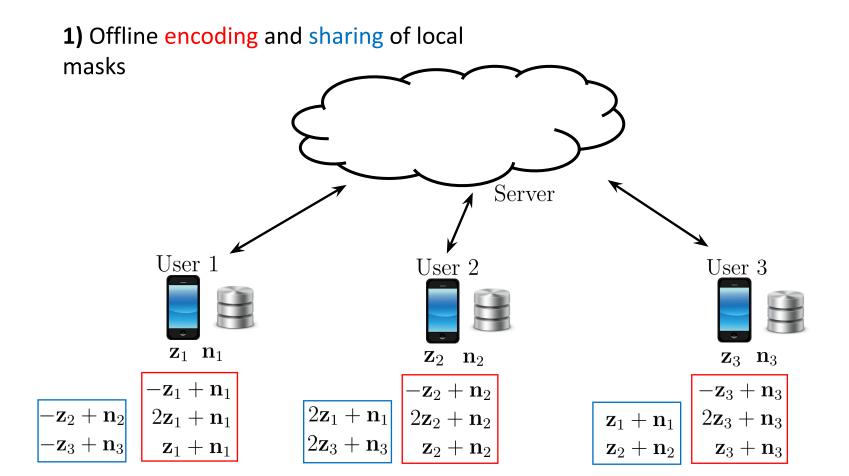
2)Compactness in comm. & comp.

3) Privacy of zi's

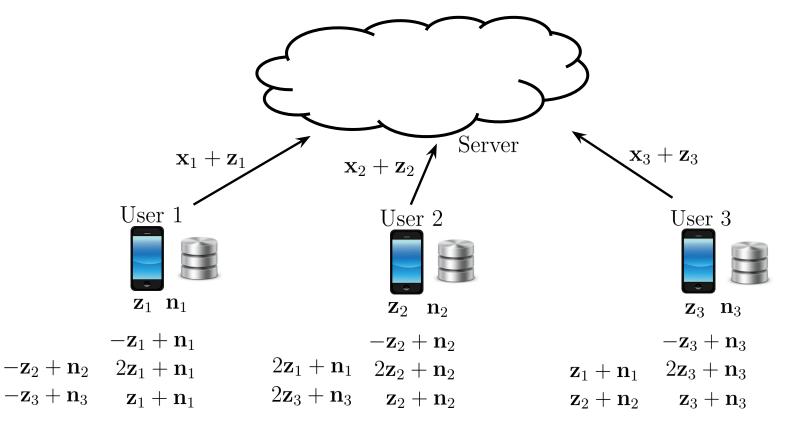


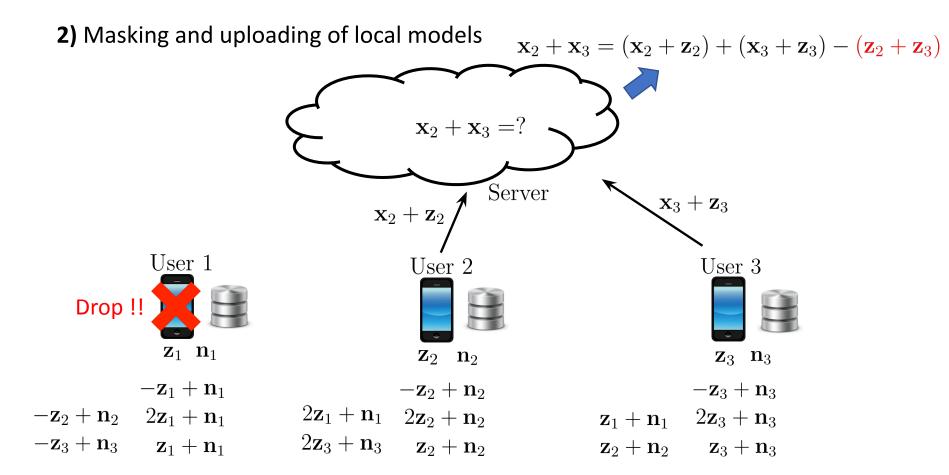




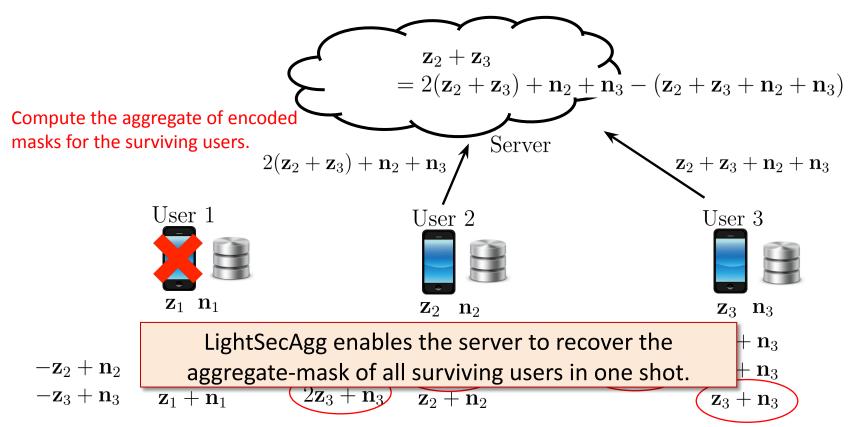


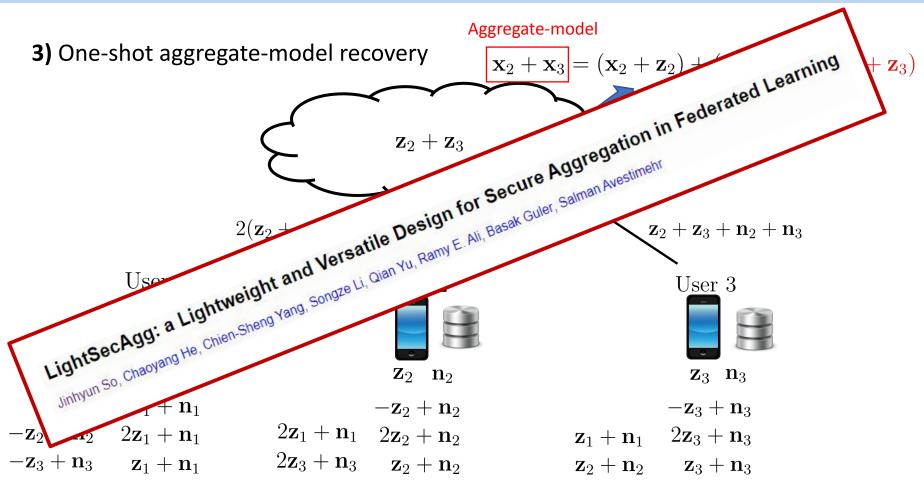
2) Masking and uploading of local models





3) One-shot aggregate-model recovery





Theoretical Guarantees

- Complexity comparison between SecAgg, SecAgg+ and LightSecAgg:
 - d: model size.
 - s: length of the secret keys.

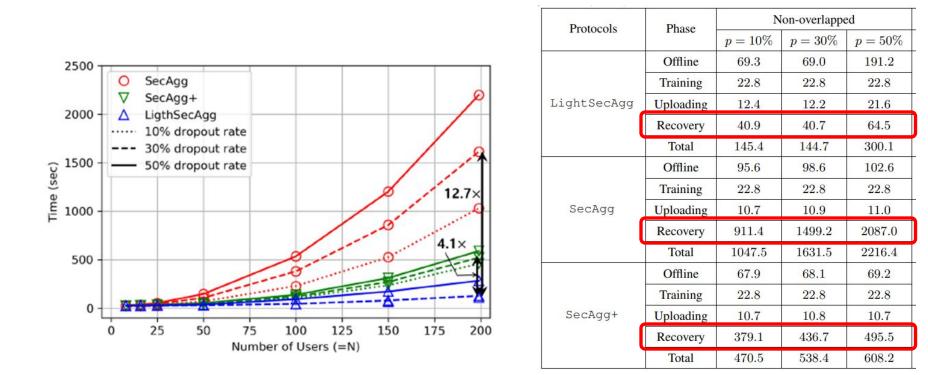
	SecAgg	SecAgg+	LightSecAgg
Offline communication per user	O(sN)	$O(s \log N)$	O(d)
Offline computation per user	$O(dN + sN^2)$	$O(d\log N + s\log^2 N)$	$O(d \log N)$
Online communication per user	O(d + sN)	$O(d + s \log N)$	O(d)
Online communication at server	$O(dN + sN^2)$	$O(dN + sN \log N)$	O(dN)
Online computation per user	O(d)	O(d)	O(d)
Reconstruction complexity at server	$O(dN^2)$	$O(dN \log N)$	$O(d \log N)$

LightSecAgg significantly improves the computation efficiency at the server during aggregation.

Experiments

- Experiment setup:
 - Amazon EC2 cloud using m3.medium machine instances
 - Four different machine learning tasks
 - Communication using the MPI4Py message passing interface on Python
 - Each user drops with a fixed dropout rate p = 0.1, p = 0.3, and p = 0.5

Experiments



LightSecAgg achieves a performance gain of up to 12.7x

11

Experiments

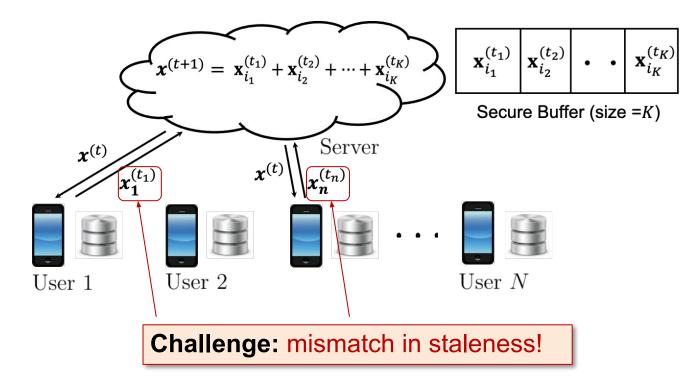
Table 2: Summary of four implemented machine learning tasks and performance gain of LightSecAgg with respect to SecAgg [4] and SecAgg+ [2]. All learning tasks are for image classification. MNIST, FEMNIST and CIFAR-100 are low-resolution datasets, while images in GLD-23K are high resolution, which cost much longer training time for one mini-batch; LR and CNN are shallow models, but MobileNetV3 and EfficientNet-B0 are much larger models, but they are tailored for efficient edge training and inference.

No. Da	Dataset	Model	Model Size (d)	Gain	
	Dataset			Non-overlapped	Overlapped
1	MNIST [14]	Logistic Regression	7,850	$6.7 \times, 2.5 \times$	8.0 imes, 2.9 imes
2	FEMNIST 5	CNN [17]	1,206,590	$11.3 \times, 3.7 \times$	$12.7 \times, 4.1 \times$
3	CIFAR-100 [13]	MobileNetV3 11	3,111,462	$7.6 \times, 2.8 \times$	9.5 imes, 3.3 imes
4	GLD-23K [27]	EfficientNet-B0 [24]	5,288,548	$3.3 \times, 1.6 \times$	$3.4 \times, 1.7 \times$

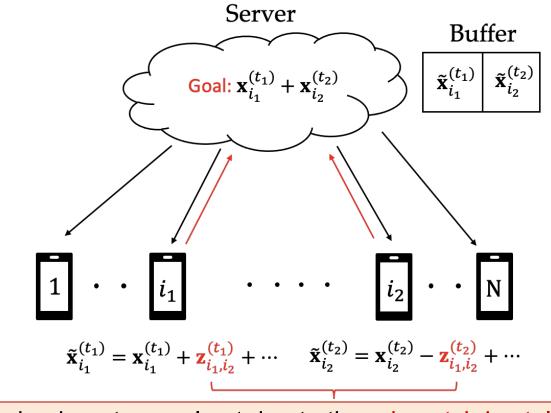
LightSecAgg can survive and speedup the training of large deep neural network models on high resolution image datasets.

Asynchronous Federated Learning

• There is a growing interest for using **asynchronous FL** to make the system scalable

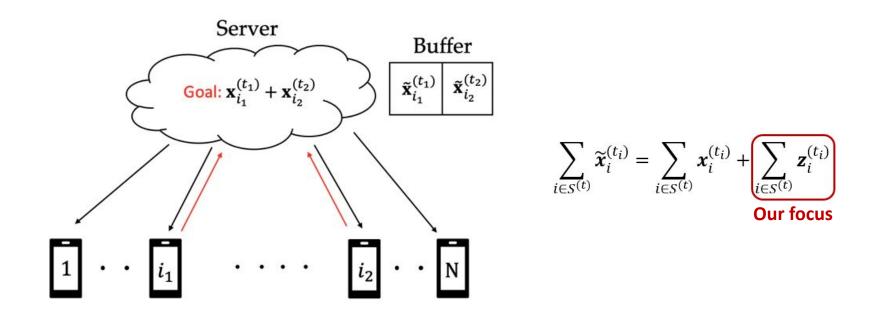


Incompatibility of SecAgg with Asynchronous FL



The masks do not cancel out due to the mismatch in staleness!

Asynchronous LightSecAgg



LightSecAgg is compatible as it enables **one-shot recovery of sum of masks** by utilizing MDS structure, even though the masks are generated in different training rounds!

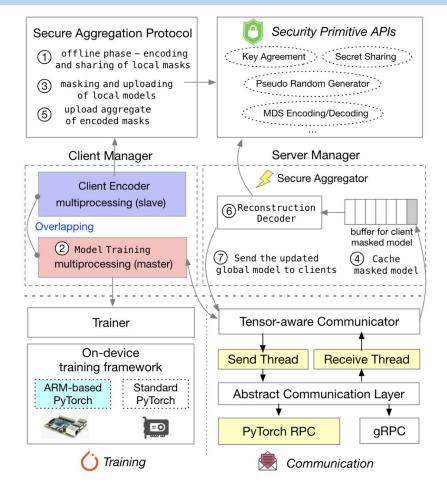
Concluding Remarks

- We propose a new perspective for secure model aggregation in FL, by turning the focus from "pairwise random-seed reconstruction of the dropped users" to "one-shot aggregate-mask reconstruction of the surviving users".
- We propose LightSecAgg that provides the same level of privacy and dropout-resiliency guarantees as the state-of-the-art while substantially reducing the aggregation complexity.
- LightSecAgg is the first secure aggregation protocol that can be applied to asynchronous FL.

Appendix

Appendix 1. System-level Optimization

Overview of the System Design



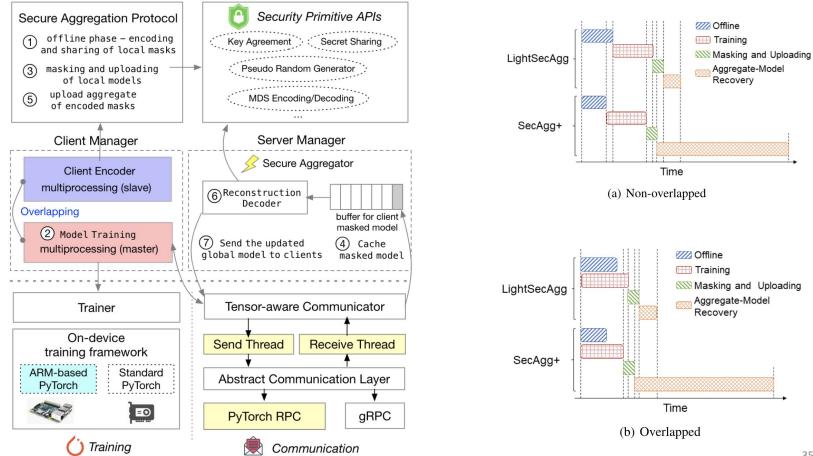
Design Goals:

1. Make the system API friendly to pure ML researchers who may not have expertise in SA/Security.

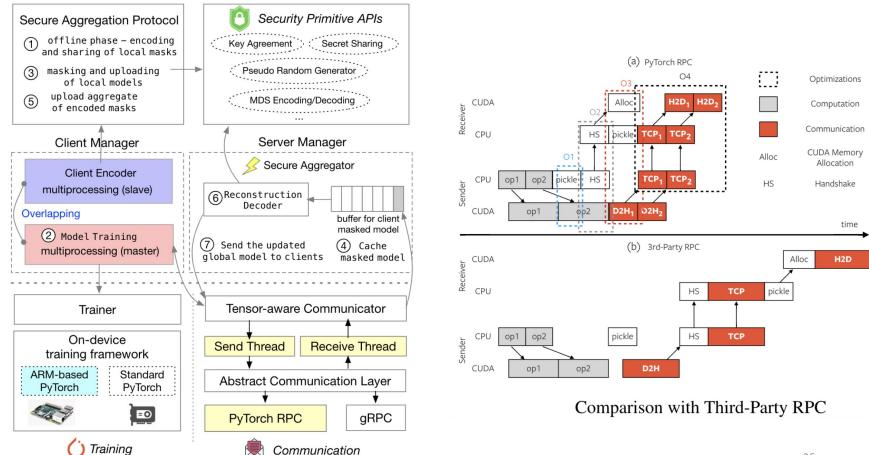
2. Reduce the cost of encoding and decoding at the edge

3. Optimize the communication backend, making it Torch Tensor-aware

1. Parallelization of offline phase and model training

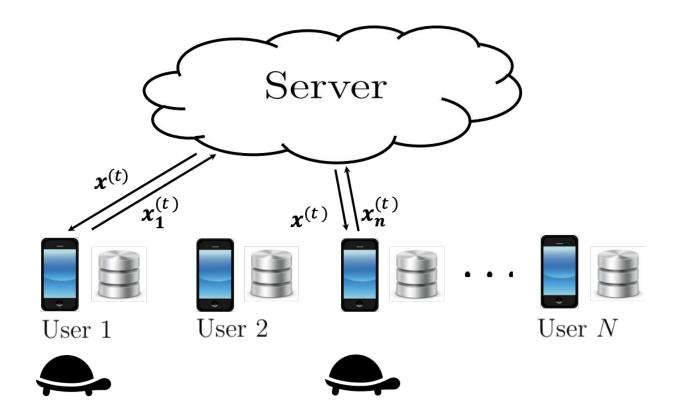


2. Tensor-aware RPC (Remote Procedure Call)

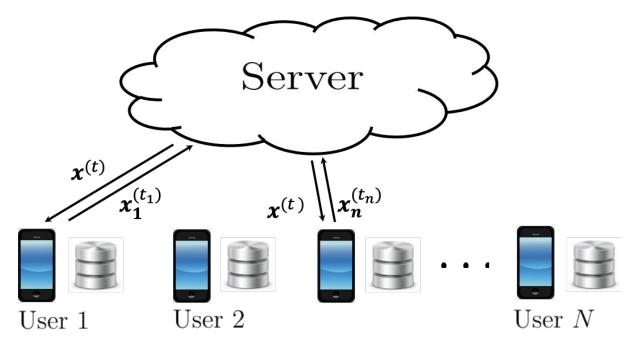


Appendix 2. LightSecAgg for Asynchronous Federated Learning

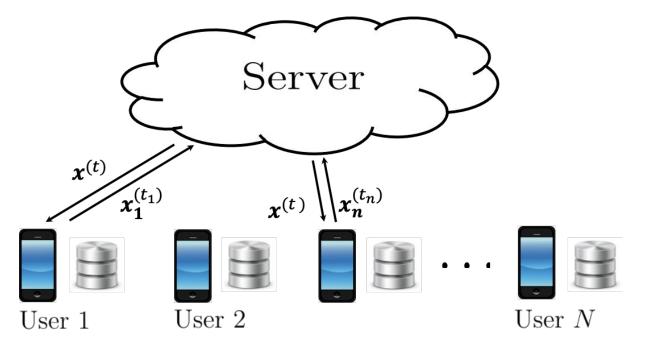
• Synchronous FL suffers from stragglers!



- Updates are not synchronized.
- Each local model received updates the global model.

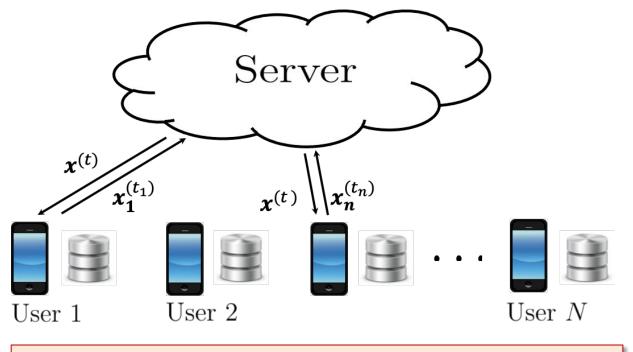


- Updates are not synchronized.
- Each local model received updates the global model.



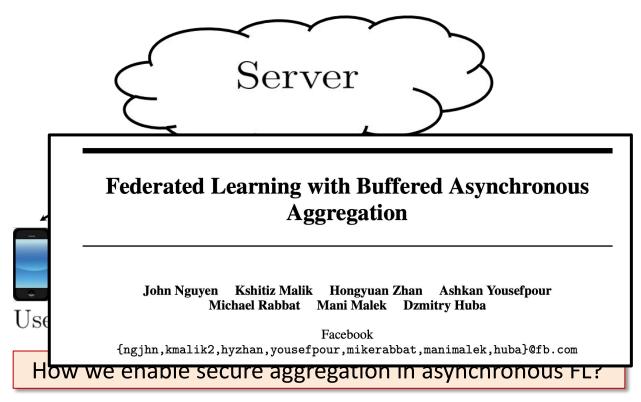
Not compatible with secure aggregation!

- Updates are not synchronized.
- Each local model received updates the global model.

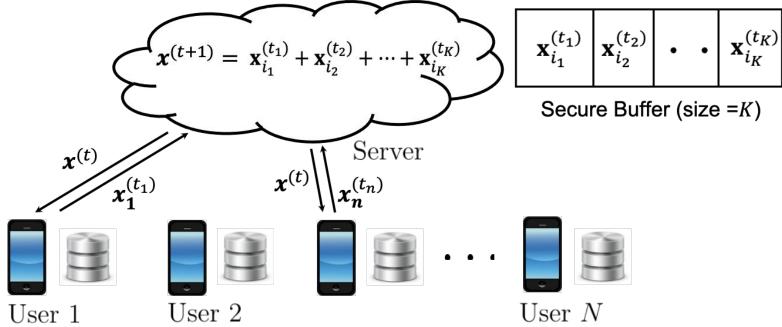


How we enable secure aggregation in asynchronous FL?

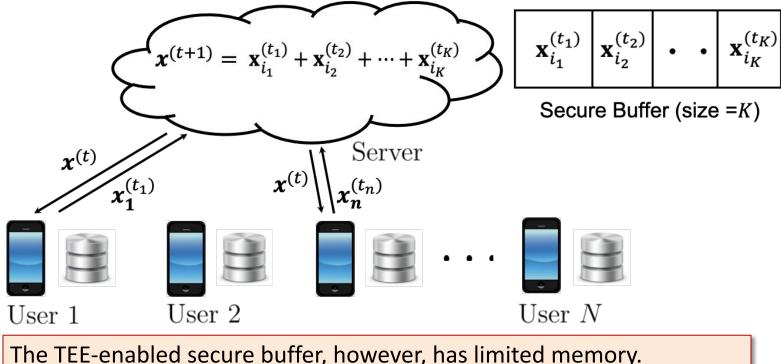
- Updates are not synchronized.
- Each local model received updates the global model.



- Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
- Buffered Asynchronous FL (FedBuff): K>1

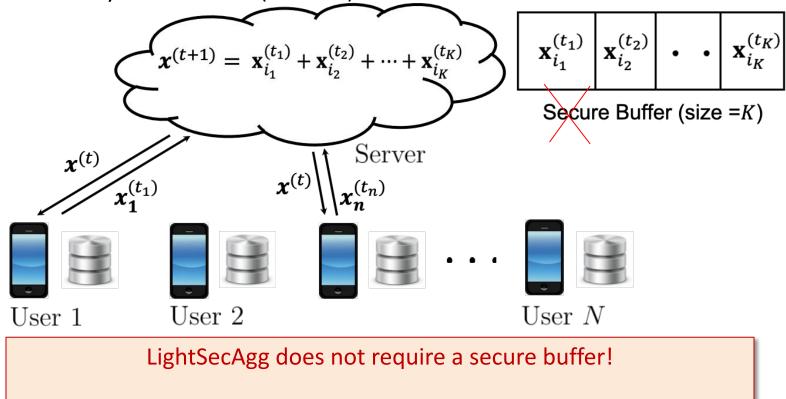


- Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
- Buffered Asynchronous FL (FedBuff): K>1

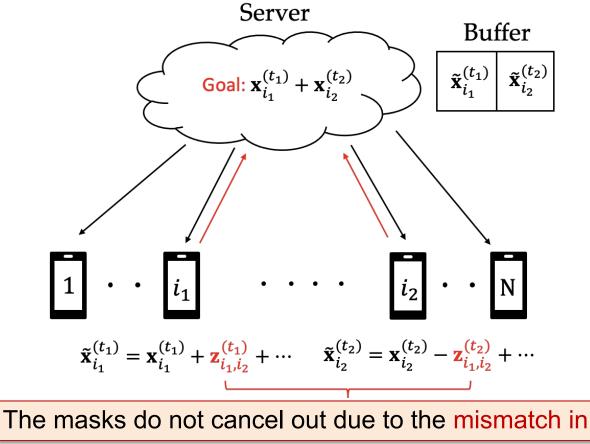


(K must be small!)

- Typical Asynchronous FL: K=1 (not compatible with secure aggregation)
- Buffered Asynchronous FL (FedBuff): K>1

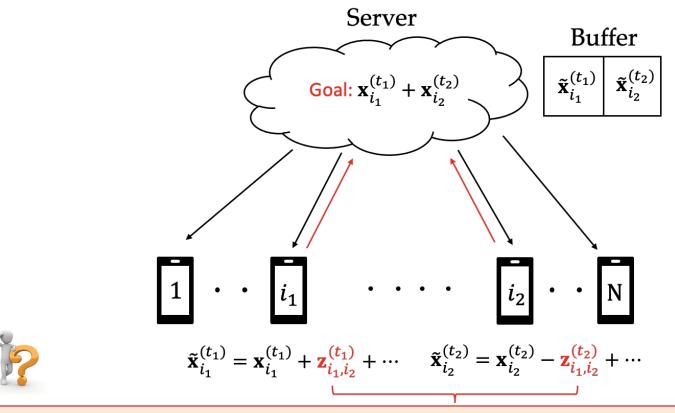


Incompatibility of SecAgg with Asynchronous FL



staleness!

Incompatibility of SecAgg with Asynchronous FL



How to design the masks to cancel out even if they belong to different rounds?

Key objective: Design the masks such that they cancel out even if they belong to different training rounds.

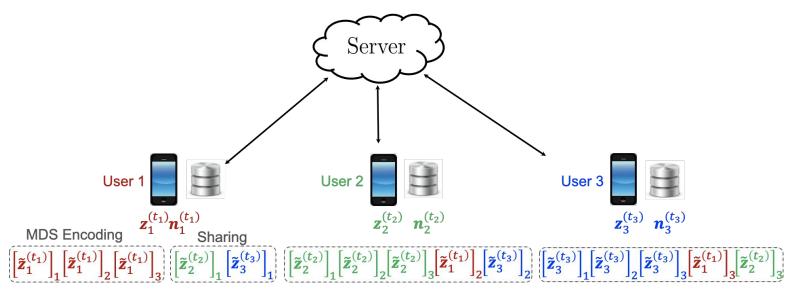
$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta_g \boldsymbol{g}^{(t)} \text{ where } \boldsymbol{g}^{(t)} = \sum_{i \in S^{(t)}} \widetilde{\boldsymbol{x}}_i^{(t;t_i)} = \sum_{i \in S^{(t)}} \overline{\boldsymbol{x}}_i^{(t;t_i)} + \sum_{i \in S^{(t)}} \boldsymbol{z}_i^{(t_i)}$$
Our focus

LightSecAgg is compatible as it does not use pair-wise masking!

Key objective: Design the masks such that they cancel out even if they belong to different training rounds.

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta_g \boldsymbol{g}^{(t)} \text{ where } \boldsymbol{g}^{(t)} = \sum_{i \in S^{(t)}} \widetilde{\boldsymbol{x}}_i^{(t;t_i)} = \sum_{i \in S^{(t)}} \overline{\boldsymbol{x}}_i^{(t;t_i)} + \sum_{i \in S^{(t)}} \boldsymbol{z}_i^{(t_i)}$$

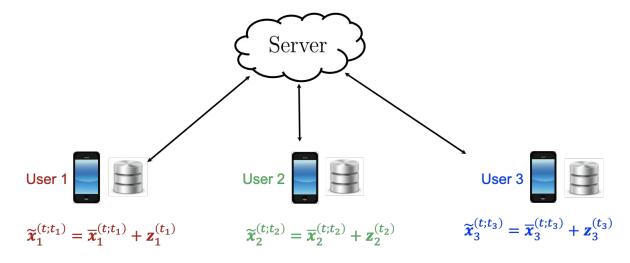
Step 1. Offline encoding and sharing of local masks



Key objective: Design the masks such that they cancel out even if they belong to different training rounds.

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta_g \boldsymbol{g}^{(t)} \text{ where } \boldsymbol{g}^{(t)} = \sum_{i \in S^{(t)}} \widetilde{\boldsymbol{x}}_i^{(t;t_i)} = \sum_{i \in S^{(t)}} \overline{\boldsymbol{x}}_i^{(t;t_i)} + \sum_{i \in S^{(t)}} \boldsymbol{z}_i^{(t_i)}$$

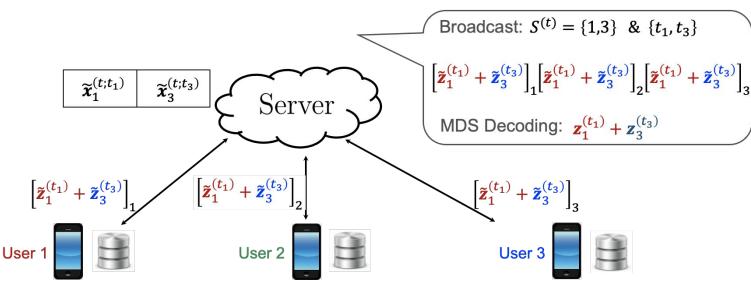
Step 2. Quantization & Masking



Key objective: Design the masks such that they cancel out even if they belong to different training rounds.

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta_g \boldsymbol{g}^{(t)} \text{ where } \boldsymbol{g}^{(t)} = \sum_{i \in S^{(t)}} \widetilde{\boldsymbol{x}}_i^{(t;t_i)} = \sum_{i \in S^{(t)}} \overline{\boldsymbol{x}}_i^{(t;t_i)} + \sum_{i \in S^{(t)}} \boldsymbol{z}_i^{(t_i)}$$

Step 3. One-Shot Recovery of Aggregate Masks



Key objective: Design the masks such that they cancel out even if they belong to different training rounds.

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta_g \boldsymbol{g}^{(t)} \text{ where } \boldsymbol{g}^{(t)} = \sum_{i \in S^{(t)}} \widetilde{\boldsymbol{x}}_i^{(t;t_i)} = \sum_{i \in S^{(t)}} \overline{\boldsymbol{x}}_i^{(t;t_i)} + \sum_{i \in S^{(t)}} \boldsymbol{z}_i^{(t_i)}$$

Step 3. One-Shot Recovery of Aggregate Masks

