C

The CoRa lensor Compiller:
Compilation for Ragged lensors With Minimal Padding

Pratik Fegade!,

Tiangl Chen!Z Philli

b B. Gibbons!, Toc

'Carnegie Mellon University

Carnegie Mellon University
Computer Science Department

d L Moy

Al

(3; catalyst

.
>
4
|

* Image

Ragged lensors in Deep Learning

- Natural language processing

pukE batch = |

fbedgs., bark, .1,

[Maine, 1s, a,
song, rocks,

[The,
[Hello]

DroCessiNg

state,

11

- 1

Ragged lensor

Ragged lensors

* Ragged tensor Is a tensor where the slices corres

&

Imensions have varying lengths

‘ /

Dimensions: [4, ?]

DO

INg to one or more

| Rows (slices of the inner
dimension) have varying lengths

Limited Support for Ragged Tensor Operators

. » Limited support for operations on
& t\/m ragged tensors

API |
one » Extensive support for dense tensors

And Padding Leads to VWasted Computation

1.0/ - 241 X wasted
computation!

ldeal Execution: Compilation Without Padding

CoRa Enables Ragged Tensor Execution for Higher Frameworks

CoRa Enables Transformer Implementation Without Padding

QKV Proj. QKV Proj. QKV Proj. S Operator

QKT QKT Padding

Proj2 Proj2 Proj2

FeedForward | FeedForward | FeedForward |
FeedForward? FeedForward? FeedForward?

Py lorch Faster [ranstormer CoRa

SR RN SRR

S

Hand-written/vendor library Compiler-generated

* Motivation: Inefficient Su

0,

Qutline

bort for Raggec

e CoRa: Our Compliler Based Solution

» Scheduling and lowering

« AP| and overview

e Fvaluation

* VWrapping up

lensors

* Motivation: Inefficient Su

0,

Qutline

bort for Raggec

» CoRa: Our Compiler Based Solution

» Scheduling and lowering

« AP| and overview

e Fvaluation

* VWrapping up

lensors

Ragged Computations Are Similar to Dense Computations

| Densely packed data with no
| holes, like dense tensors

Ragged Computations Are Similar to Dense Computations

Ragged lensor A Ragged lensor B

‘ |

Variable

T0r 1 1n (:32: loop extents
for j in O:
= 24a[i,3]

Ragged tensor
aCCEeSSES

|2

Ragged Computations Are Similar to Dense Computations

- Densely packed data with no holes, like dense
tensors

Reuse abstractions and techniques

» Ragged computations are similar to dense from dense tensor compilers

tensor computations

Generalize
Variable _} Compller's loop representations

¥y 1 an 0:32: loop extents - Scheduling primitives and their
for j in O : mpl.
P = 2%A[1, 7]

Ragged tensor
aCCesses

Generalize
-> » lensor storage scheme
lensor access lowering

|3

Ragged Computations Are Similar to Dense Computations

» Densely packed data with no holes, like dense
1ERs0rs

Reuse abstractions and techniques

» Ragged computations are similar to dense from dense tensor compilers

tensor computations

Generalize
Variable » Compiller's loop representations

Far | an 0:32: loop extents - Scheduling primitives and their
for 1 in O: impl.

H

Ragged tensor Generalize

dCCESSES

lensor storage scheme
lensor access lowering

|4

Loop Fusion in Ragged Operators

| |
| | 31

| | Z S(i)
/ i=0
for f in 0:2:
1 = ?

o 1 1n (0:32:
FOr 1 in O:s(1): Fuse(i,3)
L 1] - 2*A[1,3]

18
B[1,]] 2*A[1,]]

Pre-compute mappings
Once precomputed, we can & fomfiodial

schedule ragged ops like dense ops!

Ragged Computations Are Similar to Dense Computations

» Densely packed data with no holes, like dense
tensors

Reuse abstractions and techniques

» Ragged computations are similar to dense from dense tensor compilers

tensor computations

Generalize
Variable » Compiller's loop representations

Far | an 0:32: loop extents » Scheduling primitives and their
for 1 in O: impl.

Bli,J] = 2%A[i,]]
= 2el2a)

Ragged tensor
dcCesses

Generalize

lensor storage scheme
fensor access lowering

|6

0
|
Z

Ragged Tensor Storage Without Padding

. a0 4

Song
I
_

>

RowStart(1l) 3

Offset(], 3) = Rowstartiil 1

Need to precompute dimension offsets before kernel execution

Once precomputed, we have cheap random accesses, similar to dense tensors!

* Motivation: Inefficient Su

0,

Qutline

bort for Raggec

e CoRa: Our Compliler Based Solution

» Scheduling and lowering

APl and overview

e Fvaluation

* VWrapping up

lensors

CoRa’s APl Is Similar to That of Dense Compilers

| .
| |
| |
1,] = B.ax1s
FOF 1 in 0:32: f = fuse(i, })
¥0r | 1n O:s(1): fo, £f1 = split(f,643}
B[i,j] = 2*A[i,] bind(fo, 'blockIdx.x')

bind(fi, threadldxix |

Other scheduling primitives for load balancing, operation splitting, tensor dimension
scheduling are available

CoRa’s Compilation and Runtime Pipeline

Compilation
Runtime

‘ 4 v
B ~re-computations > Kernel

Pre-computation for

» Fused loop extents and Iteration variable
relationships

» Memory offsets for access lowering

Scheduling and

Storage Lowering

20

* Motivation: Inefficient Su

0,

Qutline

bort for Raggec

e CoRa: Our Compliler Based Solution

» Scheduling and lowering

« AP| and overview

* Evaluation

* VWrapping up

2|

lensors

Layer Forward Pass Latencies on NvidiaV 100 GPU

| ower Is better

Q ®m PyTorch m FasterTransformer m CoRa
= Y
|7
&=
© BN
5
O | 56X
X 15
L1
@,
O 1q D.98X
N -
.
€ NS
@
~

0.0

RACE Wiki512 SQuADv2 Wiki128 MNLI XNLI MRPC ColLA | Overal

Datasets
)

* Motivation: Inefficient Su

0,

Qutline

bort for Raggec

e CoRa: Our Compliler Based Solution

» Scheduling and lowering

« AP| and overview
e Fvaluation

* Wrapping up

23

lensors

Wrapping Up CoRa

ll
*

]

| |
| |
|
I I
: ‘ 1,] = B.axis
§for 1. 3in 0:232:¢ = fuse(j_,j)
2 for j in 0O:s(i): fo, fi = split(f 64
B[i,j] = 2*A[i1,7] bind(fo, 'blockIdx.x') :
bind(fi, 'threadldx.x') :
CoRa Is a tensor compller for CoRa provides a tamiliar APl similar to
operations on ragged tensors that of dense tensor compilers
i
: QKT QKT :
§ o § ot - CoRa generates code as
— - performant as hand-written
1T 1 ~ I
D =) =) | Code for transformer models
FeedForward?2 FeedForward?2

PR FasterTransformer

.

24

