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Ragged Tensors in Deep Learning
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input_batch = [
  [Dogs,  bark, .],
  [Maine, is,   a,     state, .],
  [The,   song, rocks, !],
  [Hello]
]
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• Natural language processing

• Image processing
Ragged Tensor



Ragged Tensors
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• Ragged tensor is a tensor where the slices corresponding to one or more 
dimensions have varying lengths

Rows (slices of the inner
dimension) have varying lengths

Dimensions: [4, ?]



Limited Support for Ragged Tensor Operators
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• Limited support for operations on 
ragged tensors

• Extensive support for dense tensors



And Padding Leads to Wasted Computation
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1.07 - 2.41X wasted
computation!



Ideal Execution: Compilation Without Padding
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CoRa Enables Ragged Tensor Execution for Higher Frameworks
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CoRa
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Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution
• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up
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Ragged Computations Are Similar to Dense Computations
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Densely packed data with no 
holes, like dense tensors



for i in 0:32:
  for j in 0:s(i):
    B[i,j] = 2*A[i,j]

Ragged Computations Are Similar to Dense Computations
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Ragged Tensor A Ragged Tensor B

2*A

Variable
loop extents

Ragged tensor
accesses



for i in 0:32:
  for j in 0:s(i):
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Ragged Computations Are Similar to Dense Computations
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Variable
loop extents

Ragged tensor
accesses

Generalize
• Compiler’s loop representations
• Scheduling primitives and their 

impl.

Generalize
• Tensor storage scheme
• Tensor access lowering

• Densely packed data with no holes, like dense 
tensors

• Ragged computations are similar to dense 
tensor computations

Reuse abstractions and techniques 
from dense tensor compilers
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  B[i,j] = 2*A[i,j]

  i = ?  
  j = ?

Loop Fusion in Ragged Operators
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31

∑
i=0

s(i)

for i in 0:32:
  for j in 0:s(i):
    B[i,j] = 2*A[i,j]

2*A

for f in 0:?:
Fuse(i,j)

Pre-compute mappings
from f to i and jOnce precomputed, we can 

schedule ragged ops like dense ops!



Ragged Computations Are Similar to Dense Computations
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Ragged Tensor Storage Without Padding
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0
1
2

0 1 2 3 4

Offset(1, 3) = RowStart(1) + 3

RowStart(1) 3

Need to precompute dimension offsets before kernel execution

Once precomputed, we have cheap random accesses, similar to dense tensors!
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CoRa’s API Is Similar to That of Dense Compilers 
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i,j = B.axis
f = fuse(i,j)
fo, fi = split(f,64)
bind(fo, 'blockIdx.x')
bind(fi, 'threadIdx.x')

Other scheduling primitives for load balancing, operation splitting, tensor dimension 
scheduling are available

2*A

for i in 0:32:
  for j in 0:s(i):
    B[i,j] = 2*A[i,j]



CoRa’s Compilation and Runtime Pipeline
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Compilation
Runtime

Input Program Scheduling and 
Storage Lowering More Lowering

KernelPre-computations

Pre-computation for
• Fused loop extents and iteration variable 

relationships
• Memory offsets for access lowering
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Layer Forward Pass Latencies on Nvidia V100 GPU
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Lower is better
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Wrapping Up CoRa
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CoRa

CoRa is a tensor compiler for 
operations on ragged tensors

CoRa provides a familiar API similar to 
that of dense tensor compilers

i,j = B.axis
f = fuse(i,j)
fo, fi = split(f,64)
bind(fo, 'blockIdx.x')
bind(fi, 'threadIdx.x')

for i in 0:32:
  for j in 0:s(i):
    B[i,j] = 2*A[i,j]

2*A
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CoRa generates code as 
performant as hand-written 
code for transformer models


