
The CoRa Tensor Compiler :
Compilation for Ragged Tensors With Minimal Padding

Pratik Fegade1,
Tianqi Chen12, Phillip B. Gibbons1, Todd C. Mowry1

1

1Carnegie Mellon University 2OctoML

Ragged Tensors in Deep Learning

2

input_batch = [
 [Dogs, bark, .],
 [Maine, is, a, state, .],
 [The, song, rocks, !],
 [Hello]
]

3
5
4
1

• Natural language processing

• Image processing
Ragged Tensor

Ragged Tensors

3

• Ragged tensor is a tensor where the slices corresponding to one or more
dimensions have varying lengths

Rows (slices of the inner
dimension) have varying lengths

Dimensions: [4, ?]

Limited Support for Ragged Tensor Operators

4

• Limited support for operations on
ragged tensors

• Extensive support for dense tensors

And Padding Leads to Wasted Computation

5

1.07 - 2.41X wasted
computation!

Ideal Execution: Compilation Without Padding

6

?

CoRa Enables Ragged Tensor Execution for Higher Frameworks

7

CoRa

8

PyTorch FasterTransformer CoRa

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

Hand-written/vendor library Compiler-generated

CoRa Enables Transformer Implementation Without Padding

Full
Partial
Little to none

Operator

Padding

Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution
• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up

9

Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution

• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up

10

Ragged Computations Are Similar to Dense Computations

11

Densely packed data with no
holes, like dense tensors

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

Ragged Computations Are Similar to Dense Computations

12

Ragged Tensor A Ragged Tensor B

2*A

Variable
loop extents

Ragged tensor
accesses

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

Ragged Computations Are Similar to Dense Computations

13

Variable
loop extents

Ragged tensor
accesses

Generalize
• Compiler’s loop representations
• Scheduling primitives and their

impl.

Generalize
• Tensor storage scheme
• Tensor access lowering

• Densely packed data with no holes, like dense
tensors

• Ragged computations are similar to dense
tensor computations

Reuse abstractions and techniques
from dense tensor compilers

Ragged Computations Are Similar to Dense Computations

14

Generalize
• Compiler’s loop representations
• Scheduling primitives and their

impl.

Generalize
• Tensor storage scheme
• Tensor access lowering

• Densely packed data with no holes, like dense
tensors

• Ragged computations are similar to dense
tensor computations

Reuse abstractions and techniques
from dense tensor compilers

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

Variable
loop extents

Ragged tensor
accesses

 B[i,j] = 2*A[i,j]

 i = ?  
 j = ?

Loop Fusion in Ragged Operators

15

31

∑
i=0

s(i)

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

2*A

for f in 0:?:
Fuse(i,j)

Pre-compute mappings
from f to i and jOnce precomputed, we can

schedule ragged ops like dense ops!

Ragged Computations Are Similar to Dense Computations

16

Generalize
• Compiler’s loop representations
• Scheduling primitives and their

impl.

Generalize
• Tensor storage scheme
• Tensor access lowering

• Densely packed data with no holes, like dense
tensors

• Ragged computations are similar to dense
tensor computations

Reuse abstractions and techniques
from dense tensor compilers

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

Variable
loop extents

Ragged tensor
accesses

Ragged Tensor Storage Without Padding

17

0
1
2

0 1 2 3 4

Offset(1, 3) = RowStart(1) + 3

RowStart(1) 3

Need to precompute dimension offsets before kernel execution

Once precomputed, we have cheap random accesses, similar to dense tensors!

Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution
• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up

18

CoRa’s API Is Similar to That of Dense Compilers

19

i,j = B.axis
f = fuse(i,j)
fo, fi = split(f,64)
bind(fo, 'blockIdx.x')
bind(fi, 'threadIdx.x')

Other scheduling primitives for load balancing, operation splitting, tensor dimension
scheduling are available

2*A

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

CoRa’s Compilation and Runtime Pipeline

20

Compilation
Runtime

Input Program Scheduling and
Storage Lowering More Lowering

KernelPre-computations

Pre-computation for
• Fused loop extents and iteration variable

relationships
• Memory offsets for access lowering

Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution
• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up

21

Layer Forward Pass Latencies on Nvidia V100 GPU

22

Lower is better

Datasets

N
or

m
ali

ze
d

Ex
ec

ut
io

n T
im

e

1.58X

0.98X

Outline
• Motivation: Inefficient Support for Ragged Tensors

• CoRa: Our Compiler Based Solution
• Scheduling and lowering
• API and overview

• Evaluation

• Wrapping up

23

Wrapping Up CoRa

24

CoRa

CoRa is a tensor compiler for
operations on ragged tensors

CoRa provides a familiar API similar to
that of dense tensor compilers

i,j = B.axis
f = fuse(i,j)
fo, fi = split(f,64)
bind(fo, 'blockIdx.x')
bind(fi, 'threadIdx.x')

for i in 0:32:
 for j in 0:s(i):
 B[i,j] = 2*A[i,j]

2*A

PT/TF FasterTransformer CoRa

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

Proj2

FeedForward1

QKV Proj.

QKT

Softmax

AttnV

FeedForward2

CoRa generates code as
performant as hand-written
code for transformer models

