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Executive Summary

* Challenges posed by dynamic-shape workloads:
* Vendor Libraries: Hard to be Engineered for Efficiency
 Existing Auto-Schedulers: Long Compilation Time (days for a single operator)

s Yiet Gode addresses the challenges with

(1) shape-generic search space
(2 micro-kernel-based cost model.

* Key Results:
e Compilation Time: 5. 88 saving vs. Ansor.

* Performance: Up to 1. 70X better vs. Ansor and 1. 19X vs. the vendor library
on modern GPUs.
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Background: Vendor Libraries

e Challenges

 Performance of built-in kernels
can be suboptimal on the given

shapes or hardware!* > 67,89, ..],

 Huge engineering efforts and
expertise required to tune for
specific use cases.
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Background: Auto-Scheduler

e [ Operator ] [ Shape Description ] Frontend
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Background: Auto-Scheduler
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Search Techniques:
Search Candidate: tile size t € [2, o) 1. Shape-Dependent Search Space
2. Complete Program Cost Model
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for (int ii = 0; ii <|ef ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
}
}
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1. Shape-Dependent Search Space
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2. Complete Program Cost Model
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Challenges from Dynamic-Shape Workloads

e Cannot efficiently handle
dynamic-shape operators,
due to
* Humongous Search Space
* Inaccurate Performance Prediction

* YietGode's Key ldeas:

* Shape-Generic Search Space

* Micro-Kernel-based
Cost Model



Challenge #1. Humongous Search Space
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Key Idea #1. Shape-Generic Search Space

° Composed Of micro- [Shape Description 1 J_J

kernels, each
* Does a tile of the entire compute.

il

[ Shape-Generic Search Space ]

* Sampled uniformly from maximum

. 000
shapes and constrained by Sample § ,
hard t Micro-Kernel 2
ardware parameters. Micro-Kernel 1

* Can be ported to all shapes of
the same operator.




Challenge #2. Inaccurate Performance Prediction

e Cost model trained on
one shape can be
inaccurate on others.
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Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
proportionally with hardware
core occupancy.
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Key Idea #2. Micro-Kernel-based Cost Model
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Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
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DietGode System Overview
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Compilation Time

* Ansor: Time estimated to be
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Compilation Time vs. Ansor

* Ansor: Time estimated to be
more than 1 week for only key
operators.

* YietGode reduces the
compilation time by 5. 88 % vs.
Ansor, as it only needs to
compile once for all shapes.
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Compilation Time vs. Ansor
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Latency vs. Vendor/Ansor
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Latency vs. Vendor/Ansor
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Future Directions

* We are working on upstreaming PDietGodle to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with
improvement of the tuning algorithms.

Many thanks to the & community!

* Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations)

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/
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Future Directions

* We are working on upstreaming PDietGodle to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with

improvement of the tuning algorithms.

Many thanks to the

community!

* Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations) and workloads.
Tane I

11" Speech Recognition/?! Object Detection!®!

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/

[2] https://github.com/NVIDIA/NeMo

[3] K. He et al. Mask R-CNN. ICCV 2017
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Conclusion

* Challenges posed by dynamic-shape workloads:
* Vendor Libraries: Hard to be Engineered for Efficiency
* Existing Auto-Schedulers: Long Compilation Time

s Yiet Gode addresses the challenges with

(1) shape-generic search space
(2 micro-kernel-based cost model.

* Key Results:
e Compilation Time: 5. 88 saving vs. Ansor.

* Performance: Up to 1. 70X better vs. Ansor and 1. 19X vs. the vendor library
on modern GPUs.
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Optimization Strategy

* Objective: End-to-End Latency

* All workloads have “optimization priority” as
FLOPs X weight (user-defined, 1 by default)

* Consequently, workloads with higher FLOPs will be given more
attention compared with smaller ones.



NVIDIA RTX 3090!" Preliminary Results

Micro-Kernel-based Cost Model Performance

[a—
o0

[E—
[\

Better
Runtime (us)
g

(@)}

—e— Real Measurements

---o-- Prior Cost Model [2]
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Conv2D

* NCHW is usually implemented using the Winograd algorithm, which is
in essence batched matrix multiplies.

* NHWC:

E= Vendor [ Ansor B YictGode

TGS TEGE IS TGO

hhhhhh

0
Average
conv2D1\HWC [B,7,7,512], 512 7,7,512])

Upto 1.11x/2. 01X better than Ansor/Vendor (1.02x/1.80x on average). 55
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vs. Nimble ™

* Focuses on the runtime system for dynamic-shape workloads, with
one section (i.e., Section 3.5) discussing about the code generation.

EE Vendor [ Ansor E==1 Nimble Hl DictCode

Runtime (us)
s 3 3

5 24 43 62 81 100 119 128 Average
BatchMatmulNT ([192, T, 64], [192, T, 64])

Nimble cannot cover all shapes efficiently.

[1] H. Shen, J. Roesch et al. Nimble. MLSys 2021
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Local Padding vs. Loop Partitioning

e Common:

* Key Observation: Out-of-boundary checks in the compute stage are what
negatively affect performance the most.

* Performance difference is usually less than 5%.




Local Padding vs. Loop Partitioning

Local Padding

* Key Idea: Pads tensors by the
size of the local workspace when
loading from the off-chip device
memory.

(-) Redundant computations

Loop Partitioning

* Key ldea: Partition the regions
that have predicates and regions
that do not.

(-) Cannot remove overheads in
some pathological cases.

(-) Cannot support compute
intrinsics such as the tensor core
operations.



