Yiiet Gode: Automatic Code Generation for
Dynamic Tensor Programs

Bojian Zheng' 237, Ziheng Jiang* ", Cody YuZ, Haichen Shen?,
Josh Fromm?, Yizhi Liu?, Yida Wang?,
Luis Ceze> ®, Tiangi Chen> 7, Gennady Pekhimenko?! %3

" Equal Contributions
4 5

2 3
dWS -\ NSTITUTE 31 ByteDance OctoML

Executive Summary

* Challenges posed by dynamic-shape workloads:
* Vendor Libraries: Hard to be Engineered for Efficiency
 Existing Auto-Schedulers: Long Compilation Time (days for a single operator)

s Yiet Gode addresses the challenges with

(1) shape-generic search space
(2 micro-kernel-based cost model.

* Key Results:
e Compilation Time: 5. 88 saving vs. Ansor.

* Performance: Up to 1. 70X better vs. Ansor and 1. 19X vs. the vendor library
on modern GPUs.

Background: ML Framework Stack

Fae 0
£

e Application
\5>II|III|II @

v

Image CIassuflcatlon 1" Machine Translation'?/ Speech Recognition'’

) ‘)
— Framework </>

.

1 TensorFlow O PyTorch XY
L 4] [5] S we ¢ J
[1]). Guo et al. GluonCV and GluonNLP. JMLR 2020 [4] M. Abadi et al. TensorFlow. OSDI 2016
[2] https://translate.google.com/ [5] A. Paszke et al. PyTorch. NeurlPS 2019 3

[3] https://github.com/NVIDIA/NeMo [6] https://github.com/google/jax

Background: ML Framework Stack

— Framework
. . WY, \
TensorFlow O PyTorch ', o000

- . " o T
Interpretation: Graph of Operators!’! —7\
IR =N e SRS S

[4] M. Abadi et al. TensorFlow. OSDI 2016 [7] https://netron.app/
[5] A. Paszke et al. PyTorch. NeurlPS 2019 3
[6] https://github.com/google/jax

Background: Vendor Libraries

e Vendor Libraries ~N
: m =!,; ..u'|= 2]
Operator =ﬁ=ﬂ CU D N N °00

Matrix Multipl
(PIy) CuBLAS!!
H 00
Built-in Kernel 2

[Dispatcher] Built-in Kernel 1

[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

Background: Vendor Libraries

| e Vendor Libraries ~N

: " [2]
Operator =ﬁ=ﬂ Cu D N N 000

Matrix Multipl
(PIV) CuBLAS!!!

XX
‘_ Built-in Kernel 2

[Dispatcher] Built-in Kernel 1

[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

Background: Vendor Libraries

)
)
Operator ﬁ'

Matrix Multipl
(PIy) CuBLAS!!

| e Vendor Libraries

cuDNN

~

[Dispatcher]

[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/ \

— Hardware

Built-in Kernel 2

~ | NVIDIAGPU®

‘ Built-in Kernel 1 \—’

| 7

‘)

Background: Vendor Libraries

e Challenges

 Performance of built-in kernels
can be suboptimal on the given

shapes or hardware!* > 67,89, ..],

 Huge engineering efforts and
expertise required to tune for
specific use cases.

[1] https://developer.nvidia.com/cublas

[2] https://developer.nvidia.com/cudnn

[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

[4] T. Chen et al. TVM. OSDI 2018

[5] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[6] L. Zheng et al. Ansor. OSDI 2020

[7] F. Yu et al. Towards Latency-aware DNN Optimization with GPU Runtime
Analysis and Tail Effect Elimination. arXiv 2020

[8] S. Feng, B. Hou et al. TensorIR. arXiv 2022

[9] https://tvm.apache.org/2018/03/23/nmt-transformer-optimize

r Vendor Libraries ~N

AR CUDNN' eoe

\‘@‘
cuBLAS!!]
XX
Built-in Kernel 2
Built-in Kernel 1

~— Hardware 4\

NVIDIA GPU[3! 00

[Dispatcher]

> =
= =
il - = © B
| VIO
BITN TR IR 11117 1 1 '

1' 21 3' 4]

Background: Auto-Scheduler

o ObjECtiVEZ <> { Operator] [Shape Description] Frontend
Auto-Scheduler

Automatically Generate

\ ¢

Schedule
(i.e., Implementation)

Hardware

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020

[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

[1,2,3,4]

Background: Auto-Scheduler

Operator Shape Description Frontend

Auto-Scheduler

| | | | |

i

Al . & 2\ / R B

Hardware

[1] A. Adams et al. Halide Auto-Scheduler. SSGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020

[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Background: Auto-Scheduler

<>

E.g.,

Operator] [Shape Description]
./Operator:
for (int 1 = 0; i < 50; ++i) {
Ali] = ...
}
\

1' 2[3' 4]

Frontend
Auto-Scheduler

A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
N. Vasilache et al. Tensor Comprehensions. TACO 2019

[1]

(2]

[3] L. Zheng et al. Ansor. OSDI 2020

[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Hardware

1' 2[3' 4]

Background: Auto-Scheduler

e [Operator] [Shape Description] Frontend
|]
E.g., Auto-Scheduler

Search Candidate: tile size t

Loop Tiling Schedule:
for (int io = 0; io < [5(t]; ++io) {
for (int ii = 0; ii <|ef ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
}
}

Hardware

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020

[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

1' 2[3' 4]

Background: Auto-Scheduler

e [Operator] [Shape Description] Frontend
|]
E.g., Auto-Scheduler

Search Techniques:
Search Candidate: tile size t € [2, o) 1. Shape-Dependent Search Space
2. Complete Program Cost Model

Loop Tiling Schedule:
for (int io = 0; io < [5(t]; ++io) {
for (int ii = 0; ii <|ef ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
}
}

Hardware

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020 5
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

1. Shape-Dependent Search Space

<> [Operator] [Shape Description] Frontend

——— = = = === -

Auto-Scheduler

[Shape-Dependent Search Space]

Search Candidate: tile size t € |2, o)

Loop Tiling Schedule:
for (int io = 0; io < [5(t]; ++io) {
for (int ii = 0; ii <|¢] ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
I3
I3

Hardware

1. Shape-Dependent Search Space
1% [Operator] [Shape Description] Frontend

] Auto-Scheduler
[Shape-Dependent Search Space]

4 Circumscribes
Search Candidate: tile size t € |2, o)

Loop Tiling Schedule:
for (int io = 0; io < [5(t]; ++io) {
for (int ii = 0; ii <|ef ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
I
}

Hardware

1. Shape-Dependent Search Space
1% [Operator] [Shape Description] Frontend

] Auto-Scheduler
[Shape-Dependent Search Space]

4 Circumscribes
Search Candidate: tile size t € filmee {2 5,10,25}

Loop Tiling Schedule:
for (int io = 0; io < [5(t]; ++io) {
for (int ii = 0; ii <|ef ++ii) {
if (ioxt+ii <50) Alioxt+ii] = ...
I
}

Hardware

2. Complete Program Cost Model
1% [Operator] [Shape Description] Frontend

Auto-Scheduler

>[Shape-Dependent Search Space]

(XX
@ Sample
Search Candidate: tile size t Program 2
Performance = Predictor(Complete Program P(tile size t)) Program 1
Complete-Program Loop Tiling Schedule: (using tile size t,)
for (int io = @; io < | t]; ++:';o?{ {
f (int ii = 0; ii <ft] ++ii
COSt MOdEl oirf :(L?oxtliii<50)llA[ioxt+ii] = ...
}
’ Measure
|] |] |] |] |] |] |] |] |] |] |] |] ||

Train
Hardware

Challenges from Dynamic-Shape Workloads

</> Operator] [Shape Description] Frontend
! Auto-Scheduler

[Shape-Dependent Search Space]

Sample § b
@I Program 2

Program 1
{Complete-ProgramJ

Cost Model

Measure

Train

Hardware

Challenges from Dynamic-Shape Workloads

e Cannot efficiently handle
dynamic-shape operators,
common in

Challenges from Dynamic-Shape Workloads

e Cannot efficiently handle
dynamic-shape operators,
common in
\ ‘

N §;-||||||n

p S—

_

N

Translation!'! Speech Recognition!?!

[4]

@O L Text Auto—C‘ompIete

Sentiment
Analysis!®!

whose input sentences/audios
have dynamic lengths. o e o A e

[3] J. Devlin et al. BERT. NAACL-HTL 2019
[4] A. Radford et al. GPT-2. 2019

Challenges from Dynamic-Shape Workloads

e Cannot efficiently handle
dynamic-shape operators,
due to
* Humongous Search Space
* Inaccurate Performance Prediction

* YietGode's Key ldeas:

* Shape-Generic Search Space

* Micro-Kernel-based
Cost Model

Challenge #1. Humongous Search Space

* Hard to share search | Shape Description |
space between operators

of different shapes. |
[Shape-Dependent Search Space]

Challenge #1. Humongous Search Space

* Hard to share search | Shape Description 1JJ
space between operators
of different shapes. — ,
* (N search space: Tiny [Shape 1’s Search Space |

* U search space: Humongous

Challenge #1. Humongous Search Space

* Hard to share search | Shape Description 1JJ
space between operators
of different shapes. — ,
* (N search space: Tiny [Shape 1’s Search Space |

* U search space: Humongous
= Huge Compilation Time
(days for a single operator)

Key Idea #1. Shape-Generic Search Space

° Composed Of micro- [Shape Description 1 J_J

kernels, each
* Does a tile of the entire compute.

il

[Shape-Generic Search Space]

* Sampled uniformly from maximum

. 000
shapes and constrained by Sample § ,
hard t Micro-Kernel 2
ardware parameters. Micro-Kernel 1

* Can be ported to all shapes of
the same operator.

Challenge #2. Inaccurate Performance Prediction

e Cost model trained on
one shape can be
inaccurate on others.
e E.g., Performance of Y = XWT

X:[16XT,768], W:[2304,768] w.r.t. T on
a NVIDIA Tesla T4 GPU!! all

sharing the same micro-kernel.[cOmpmte-programJ

(9]

Cost Model

Compute Throughput (TFLOPS)
= Y @ +

(=)

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/

14 41 68 95 122
Shape Dimension 7'

Challenge #2. Inaccurate Performance Prediction

e Cost model trained on
one shape can be
inaccurate on others.
e E.g., Performance of Y = XWT

X:[16XT,768], W:[2304,768] w.r.t. T on
a NVIDIA Tesla T4 GPU!! all

sharing the same micro-kernel.[cOmmete-programJ

27 Cost Model

@)

=z

=)

=

Ei

201 . . .

'E !) @ Predictions are inaccurate
‘%14 ‘," —— Re'al Measurements on Other ShapeS

g P e Prior Cost Model [2]

So 2 St [1] https://www.nvidia.com/en-us/data-center/tesla-t4/

14 41 68 95 122 [2] L. Zheng et al. Ansor. OSDI 2020 1 1
Shape Dimension 7'

Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
proportionally with hardware
core occupancy.

fMicroKernel) fPenalty

Micro-Kernel-based
Cost Model

(9]

N

Compute Throughput (TFLOPS)
[N (98]

(=)

14 41 68 95 122
Shape Dimension 7'

12

Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
proportionally with hardware
core occupancy.

fMicroKernel) fPenalty
Trainable function for [

peak prediction

Micro-Kernel-based
Cost Model

W BN W

[\

Compute Throughput (TFLOPS)

(=)

14 41 68 95 122
Shape Dimension 7'

Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
proportionally with hardware
core occupancy.

fMicroKernel)

(9]

Micro-Kernel-based
Cost Model

N

/

14 41 68 95 122
Shape Dimension 7'

Compute Throughput (TFLOPS)
[N (98]

(=)

Key Idea #2. Micro-Kernel-based Cost Model

e Key Observation:
Performance scales
proportionally with hardware
core occupancy.

fMicroKernel) fPenalty
e More Accurate Predictions [

(9]

Cost Model

Micro-KerneI-basedJ

%%

n

W

[\

—e— Real Measurements
== == Micro-Kernel-based Cost Model

—

Compute Throughput (TFLOPS)

(=)

14 41 68 95 122
Shape Dimension 7'

DietGode System Overview

.
<> [Operator] [hape Description 1 l] Frontend
]

| | | +]] ! | | | | | ||
‘l,v YDietGode
[Shape-Generic Search Space]

Sample § bt
@ Micro-Kernel 2

Micro-Kernel 1

performing on real
workloads?

Micro-Kernel-based
Cost Model

Measure

Train

Hardware

EV I t : [1] https://www.nvidia.com/en-us/data-center/tesla-t4/
a u a I O n [2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

Hardware [NVIDIA RTX 3090 GPU2!

14

EV I t : [1] https://www.nvidia.com/en-us/data-center/tesla-t4/
a u a I O n [2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

Hardware) NVIDIA RTX 3090 GPU

] <A 4 [5]
Software & TVMEIv0.8.dev0 nvioia. v11.3 cuDNN v8.3

CUDA

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/ 14
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

Evaluation

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

) NVIDIA RTX 3090 GPUI2

sampled within the range [1, 128]

Hardware
] <A @ [5]
Software - TVMEIv0.8.dev0 nvima v11.3 <cuDNN v8.3
CUDA
. . ,GO |e Dynamic sequence lengths uniformly
Appllcathn fi |:r:|{9[6]
; !

P

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] J. Devlin et al. BERT. NAACL-HTL 2019

14

EV I t : [1] https://www.nvidia.com/en-us/data-center/tesla-t4/
a u a I O n [2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

Hardware INVIDIA RTX 3090 GPU!?!
O A 4] [5]
SOftware & TVMEB!v0.8.dev0 nvipia. Vv11.3 cuDNN v8.3
CUDA
. . e GO g|e Dynamic sequence lengths uniformly
Application g BERTI6] sampled within the range [1, 128]
a =
. [7]
O PYTOI’Ch with the Vendor Library
Baselines 0
& ’s Auto-Scheduler Ansor!®!
[3] T. Chen et al. TVM. OSDI 2018 [6] J. Devlin et al. BERT. NAACL-HTL 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/ [7] A. Paszke et al. PyTorch. NeurlPS 2019 14

[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html [8] L. Zheng et al. Ansor. OSDI 2020

EV I t : [1] https://www.nvidia.com/en-us/data-center/tesla-t4/
a u a I O n [2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

* NVIDIA Tesla T4 GPU!!

Hardware
] <A 4 [5]
SOftwa re & TVMEB!v0.8.dev0 nvipia. Vv11.3 cuDNN v8.3
CUDA
. . , GO g|e Dynamic sequence lengths uniformly
Application @5 BERTI6] sampled within the range [1, 128]
(=
. [7]
O PYTOFCh with the Vendor Library
Baselines 0
& ’s Auto-Scheduler Ansor!®!
[3] T. Chen et al. TVM. OSDI 2018 [6] J. Devlin et al. BERT. NAACL-HTL 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/ [7] A. Paszke et al. PyTorch. NeurlPS 2019 14

[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html [8] L. Zheng et al. Ansor. OSDI 2020

Compilation Time vs. Ansor

12

Better
Time (Hours)
2 9 ® S

()

-

[—1 Ansor
- Yiiet Gode

15

Compilation Time

* Ansor: Time estimated to be
more than 1 week for only key
operators.

[U—
(&}

if all sequenie lengths are compiled
(rather than|the 8 sampled ones)

[W—
-

o0

s Ansor (Projected)

N\

Better
Time (Hours)
N

()

ol

_

_

S

15

Compilation Time vs. Ansor

* Ansor: Time estimated to be
more than 1 week for only key
operators.

* YietGode reduces the
compilation time by 5. 88 % vs.
Ansor

Better

12

Time (Hours)
o o 3

()

)

o0

~

[—1 Ansor
- Yiiet Gode

15

Compilation Time vs. Ansor

* Ansor: Time estimated to be
more than 1 week for only key
operators.

* YietGode reduces the
compilation time by 5. 88 % vs.
Ansor, as it only needs to
compile once for all shapes.

16X increase in compilation time

Better

12

Time (Hours)
o o 3

()

-

o0

~

[—1 Ansor
- Yiiet Gode

15

Compilation Time vs. Ansor

* Ansor: Time estimated to be
more than 1 week for only key
operators.

* YietGode reduces the
compilation time by 5. 88X vs.
Ansor, as it only needs to

compile once for all shapes.

Better

12

Time (Hours)
o o 3

()

-

o0

~

[—1 Ansor
- Yiiet Gode

15

Latency vs. Vendor/Ansor

Latency (ms)
.0]
S

5 24 43 62 81 100
Sequence Length of BERT

119

128 Average

16

Latency vs. Vendor/Ansor

Better
Latency (ms)

5 24 43 62 81 100 119 128
Sequence Length of BERT

Uniformly sampled and includes composite and prime numbers.
16

Latency vs. Vendor/Ansor

Better

EE Vendor [Ansor B YiGode

Latency (ms)

81
Sequence Length of BERT

v Upto 1.70%/1. 19% better than Ansor/Vendor.

16

Latency vs. Vendor/Ansor

EE Vendor [Ansor B YiGode

ok

Better
Latency (ms)

Average
Sequence Length of BERT

v Upto 1.70%/1. 19% better than Ansor/Vendor.

v 1.30x/1.05x on average. 16

Latency vs. Vendor/Ansor

Better
Latency (ms)

= Vendor 1 Ansor B 9code

ok

L
[Shape Description 1]_]

|
Average

Co ntribUtEd by [Shape-Generic Search Space

Sequence Length of BERT

.19 x better than Ansor/Vendor.

Sgmpl |
(1 | Micro-Kernel 2

V1.

16

Micro-Kernel 1

Oon average.

Latency vs. Vendor/Ansor

EE Vendor [Ansor B YiGode

ok

Better
Latency (ms)

Average

Contributed by [Sha;;-Generic Search Space] Sequence Length of BERT
v Upto 1.70%/1. 19% better than Ansor/Vendor.

v 1.30x/1.05x on average.

16

Future Directions

* We are working on upstreaming PDietGodle to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with
improvement of the tuning algorithms.

Many thanks to the & community!

* Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations)

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/

17

https://github.com/apache/tvm-rfcs/pull/72

Future Directions

* We are working on upstreaming PDietGodle to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with

improvement of the tuning algorithms.

Many thanks to the

community!

* Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations) and workloads.
Tane I

11" Speech Recognition/?! Object Detection!®!

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/

[2] https://github.com/NVIDIA/NeMo

[3] K. He et al. Mask R-CNN. ICCV 2017

17

https://github.com/apache/tvm-rfcs/pull/72

Conclusion

* Challenges posed by dynamic-shape workloads:
* Vendor Libraries: Hard to be Engineered for Efficiency
* Existing Auto-Schedulers: Long Compilation Time

s Yiet Gode addresses the challenges with

(1) shape-generic search space
(2 micro-kernel-based cost model.

* Key Results:
e Compilation Time: 5. 88 saving vs. Ansor.

* Performance: Up to 1. 70X better vs. Ansor and 1. 19X vs. the vendor library
on modern GPUs.

Yiiet Gode: Automatic Code Generation for
Dynamic Tensor Programs

Bojian Zheng' 237, Ziheng Jiang* ", Cody YuZ, Haichen Shen?,
Josh Fromm?, Yizhi Liu?, Yida Wang?,
Luis Ceze> ®, Tiangi Chen> 7, Gennady Pekhimenko?! %3

" Equal Contributions
4 5

2 3
dWS -\ NSTITUTE 31 ByteDance OctoML

Optimization Strategy

* Objective: End-to-End Latency

* All workloads have “optimization priority” as
FLOPs X weight (user-defined, 1 by default)

* Consequently, workloads with higher FLOPs will be given more
attention compared with smaller ones.

NVIDIA RTX 3090!" Preliminary Results

Micro-Kernel-based Cost Model Performance

[a—
o0

[E—
[\

Better
Runtime (us)
g

(@)}

—e— Real Measurements

---o-- Prior Cost Model [2]

== == Micro-Kernel-based Cost Model 5 24 43 6 81 100 119 128 Average
Dense([16 x T, 768], [2304, 768])

Compute Throughput (TFLOPS)

-

19 56 93
Shape Dimension T Up to 1.52x%/1. 26X better than Ansor/Vendor
[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/ (1 . 1 6 ></1 . 1 1 X on ave rage)
[2] L. Zheng et al. Ansor. OSDI 2020 54

Conv2D

* NCHW is usually implemented using the Winograd algorithm, which is
in essence batched matrix multiplies.

* NHWC:

E= Vendor [Ansor B YictGode

TGS TEGE IS TGO

hhhhhh

0
Average
conv2D1\HWC [B,7,7,512], 512 7,7,512])

Upto 1.11x/2. 01X better than Ansor/Vendor (1.02x/1.80x on average). 55

Better
Runtime (us)
[a— [\
) O
nr 2

vs. Nimble ™

* Focuses on the runtime system for dynamic-shape workloads, with
one section (i.e., Section 3.5) discussing about the code generation.

EE Vendor [Ansor E==1 Nimble Hl DictCode

Runtime (us)
s 3 3

5 24 43 62 81 100 119 128 Average
BatchMatmulNT ([192, T, 64], [192, T, 64])

Nimble cannot cover all shapes efficiently.

[1] H. Shen, J. Roesch et al. Nimble. MLSys 2021

56

Local Padding vs. Loop Partitioning

e Common:

* Key Observation: Out-of-boundary checks in the compute stage are what
negatively affect performance the most.

* Performance difference is usually less than 5%.

Local Padding vs. Loop Partitioning

Local Padding

* Key Idea: Pads tensors by the
size of the local workspace when
loading from the off-chip device
memory.

(-) Redundant computations

Loop Partitioning

* Key ldea: Partition the regions
that have predicates and regions
that do not.

(-) Cannot remove overheads in
some pathological cases.

(-) Cannot support compute
intrinsics such as the tensor core
operations.

