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H =B

Image Category

Convolutional Neural Networks (CNNSs)

are powerful in Image classification
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Image + Relationship Category

How to incorporate relationship

among data samples?



Introduction

Image + Relationship Category

Graph Convolutional Network (GCN)
the SOTA model for capturing relationship

[1] Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR’17
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How to compute the embedding of node u?
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Graph Convolutional Network (GCN)

How to compute the embedding of node u?

E Input Features

O (D Neighbor Aggregation

(2 Feature Update

Output embedding E can be fed to the next GCN layer

or be used to downstream tasks



Introduction

Challenge: Glant Graphs for GCNs
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Amazon Co-Purchase Dataset [1,2]
9.4M nodes
231M edges
>100GB memory for a 3-layer GCN

[1] Backman, Evans and Girke. Large-scale Bioactivity Analysis of the Small-molecule Assayed Proteome. PLoS ONE’17. 10
[2] McAuley et al. Image-based Recommendations on Styles and Substitutes. SIGIR’15.



Introduction

Challenge: Glant Graphs for GCNs

>100GB training

NOT fit

16GB V100
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How to train a GCN at scale? Efficiently?




Category |




Related Work

Storage in CPU

Training in GPU !
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Related Work

Category |: Swap-Based Methods

Pro: Scalability of Graph
Con: Expensive CPU-GPU Swap

[1] Ma et al. NeuGraph: Parallel Deep Neural Network Computation on Large Graphs. USENIX ATC’19
[2] Jia et al. Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc. MLSys’20
[3] Fey et al. GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings. ICML’21
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Related Work

Slicing features across GPUs

Broadcast



Related Work

Category ll: Slice-Based Methods

Pro: Balanced Workload
Con: Expensive Broadcast
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Related Work

Assigning one partition to one GPU




Related Work

Category lll: Partition-Based Methods

Pro: Reduced Communication
The drawback is not well studied

[1] Thorpe et al. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless Threads. OSDI’21
[2] Wan et al. PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication. ICLR’22






BNS-GCN

4 Identifying drawbacks of partition-based training
4 Proposing a simple-yet-effective solution
4 Providing theoretical and empirical validation

23



BNS-GCN

Understanding Partition-Based Methods

Similar to Data Parallelism Difference: Dependency among Data
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Understanding Partition-Based Methods

GP



BNS-GCN

Understanding Partition-Based Methods

GPI

remote features



BNS-GCN

Understanding Partition-Based Methods

GPI

Computing local features



BNS-GCN

Understanding Partition-Based Methods

GPI

O Inner Node O Boundary Node



BNS-GCN

ldentifying Drawbacks



BNS-GCN

Training Time Breakdown

Reddit ogbn-products

Breakdown
Bl Computation
i Communication
m AllReduce

Drawback I: Significant Communication Overhead
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BNS-GCN

Training Memory Requirement

Reddit Dataset
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Drawback 1l: Unscalable Memory Requirement
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Per-GPU Memory Distribution

ogbn-papers100M (192 partitions)

Memory Straggler
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Drawback Ill: Imbalanced Memory across GPUs
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What’s the underlying cause?




BNS-GCN

Understanding Communication Volume

GPI

O Inner Node Q Boundary Node

(4) . (7)

The i-th partition has n,,, inner nodes and n,;;, boundary nodes



BNS-GCN

Understanding Communication Volume

GPI

Voliotal = Z VOl(gZ) — Z nl(;;l)

Comm. Volume = # Boundary Nodes

Min-Cut is not Optimal



BNS-GCN

Understanding Memory Requirement

E Input Features

O (D Neighbor Aggregation

(2 Feature Update

Mem(G;) 3n§:3 + ngg
)

Aggregation: n,ff,b) + ”z(fd)

Linear + Activation: Zn%)
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BNS-GCN

Contribution I: Identify the Underlying Cause

Significant Communication Overhead

| Unscalable Memory Requirement

Il Imbalanced Memory across GPUs

What's the underlying cause?



BNS-GCN

Contribution I: Identify the Underlying Cause

Significant Communication Overhead — = Voltotal = ZVol(Qz') = Z”z(f;z)

-

| Unscalable Memory Requirement

% Mem(G;) o 3n§2 + nl()il)
Il Imbalanced Memory across GPUs J

Reddit (10 partitions)
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How to solve them? One stone three birds?




BNS-GCN

Contribution II: Propose Boundary Node Sampling

GPI




BNS-GCN

Contribution II: Propose Boundary Node Sampling

GPL

Step 1: Sampling each boundary node with probability p
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BNS-GCN

Contribution II: Propose Boundary Node Sampling

GPL

Step 1: Sampling each boundary node with probability p

Step 2: Removing unsampled nodes

42



BNS-GCN

Contribution II: Propose Boundary Node Sampling

GPL

Reducing communication volume
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Contribution II: Propose Boundary Node Sampling

GPL

Reducing communication volume
Reducing memory requirement

44



BNS-GCN

Contribution II: Propose Boundary Node Sampling

GPL

Reducing communication volume
Reducing memory requirement
Balancing memory across GPUs
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BNS-GCN

Contribution lll: Validate BNS-GCN in Theory

Method Variance

We compare the variance of feature approximation



| Introduction | RelatedWork |  BNS-GON | Experiments |  Conclusion

Contribution lll: Validate BNS-GCN in Theory

Method Variance
— A
BNS-GCN O(|B]) boundary neighbor set
/'ﬂ.
LADIES [NeurlPs19] O(|N)) neighbor set
P Y
FastGCN [ICLR"18] O(|V]) global node set

BCN CV = BNS-GCN has the best feature approximation
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BNS-GCN

Contribution lll: Validate BNS-GCN in Theory

Method Variance
BNS-GCN O(|B|v?)
LADIES O(IN]+?)
FastGCN O(|V|~v?)
VR-GCN O(DAY?)
GraphSAGE O(Dv?)

More analysis is In our paper
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Experiments

Experiment Setup

Considered Datasets

Reddit, ogbn-products, Yelp and ogbn-papersi00M

Dataset Description

Name # Nodes | # Edges Environment
Reddit 233K 114M
ogbn-products 2.4M 62M 10 RTX-2080Ti (11GB)
Yelp 716K 7.0M
ogbn-papers100M 11IM 1.6B 32 x (6 Tesla V100 (16GB))
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Experiments

Experiment Setup

Considered Datasets

Reddit, ogbn-products, Yelp and ogbn-papersi00M

Benchmarked Baselines
ROC (swap-based) and CAGNET (slice-based)

Adopted Toolkits
DGL 0.7.0 and PyTorch 1.9.1



Training Throughput Comparison

Reddit Dataset
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Baselines: throughput <0.7 epochs/s
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Experiments

Training Throughput Comparison

Reddit Dataset
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Partition-based training: throughput >1.2 epochs/s
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Training Throughput Comparison

Reddit Dataset
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BNS-GCN: 8.9x~16.2x throughput improvement
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Training Throughput Comparison

Reddit Dataset - ogbn-products Dataset - Yelp Dataset
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BNS-GCN is consistently faster
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Experiments

Memory Saving

Peak GPU Memory
(Normalized)
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Memory Saving

Reddit Dataset

| =< BNS-GCN (p = 1.0)
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~@®- BNS-GCN (p =0.01)
—A— ldeal Memory
1 2 | 4 8
Number of GPUs

BNS-GCN saves the memory by up to 58%
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Experiments

Balancing Memory Requirement

ogbn-papers100M (192 partitions)
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Balancing Memory Requirement

ogbn-papers100M (192 partitions)
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Without BNS: >75% partitions utilize <60% memory
With BNS: nearly all partitions utilize >80% memory
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Experiments

Training Accuracy Comparison

Dataset Reddit ogbn-products Yelp

# Partitions 2 4 8 5 8 10 3 6 10
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Training Accuracy Comparison

Dataset Reddit ogbn-products Yelp

# Partitions 2 4 8 5 8 10 3 6 10

BNS-GCN (p=1.0) 9711 9711 9711 | 7914 79.14 79.14 | 65.26 65.26 65.26

BNS-GCN (p=1.0) is equivalent to vanilla training



Experiments

Training Accuracy Comparison

Dataset Reddit ogbn-products Yelp

# Partitions 2 4 8 5 8 10 3 6 10

BNS-GCN (p=1.0) 9711 9711 9711|7994 7914 79.14 | 65.26 65.26 65.26
BNS-GCN (p=0.1) 9715 9714 9718 | 7/9.36 79.48 79.30|65.32 65.26 65.34
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Experiments

Training Accuracy Comparison

Dataset Reddit ogbn-products Yelp
# Partitions 2 4 8 5 8 10 3 6 10
BNS-GCN (p=1.0) 9711 9711 9711 | 79.14 79.14 7914 | 65.26 65.26 65.26

BNS-GCN (p=0.1)
BNS-GCN (p=0.01)

BNS-GCN (p=0.0)

9715 97.14 97.18

97.09 97.03 96.91

97.03 96.87 96.81

79.36 79.48 79.30

79.43 79.28 79.21

7/8.65 78.83 78.79

65.32 65.26 65.34

65.27 65.31 65.29

65.28 65.27 65.23

BNS-GCN (p=1.0) is equivalent to vanilla training

Sampling boundary nodes maintains the accuracy

Dropping boundary nodes decreases the accuracy



Experiments

Training Accuracy Comparison

Dataset Reddit ogbn-products Yelp
# Partitions 2 4 8 5 8 10 3 6 10
BNS-GCN (p=1.0) 97.11 97.11 97.11 79.14 79.14 79.14 65.26 65.26 65.26
BNS-GCN (p=0.1) ‘ 97.15 9714 97.18 ‘ 79.36 79.48 79.30 ‘ 65.32 65.26 65.34
BNS-GCN (p=0.01) ‘ 97.09 97.03  96.91 ‘ 79.43 /9.28 79.21 ‘ 65.27 65.31 65.29
BNS-GCN (p=0.0) 97.03 96.87 96.81 /8.65 78.83 78.79 | 65.28 65.27 65.23
FastGCN 93.7 60.42 26.5
GraphSAGE 95.4 78.70 63.4
AS-GCN 96.3 OOM OOM
LADIES 94.3 77.46 60.2
VR-GCN 96.3 OOM 64.0
ClusterGCN 96.6 78.97 60.9
GraphSAINT 96.6 79.08 65.3

Full-graph training reaches higher accuracy
than sampling-based methods



Conclusion
Conclusion

4 Identified three key drawbacks in partition-based GCN training

- Underlying cause: boundary nodes

4 Proposed Boundary Node Sampling (BNS-GCN) to tackle the

three drawbacks

<4 Validated BNS-GCN in both theory and experiments

O https://github.com/RICE-EIC/BNS-GCN
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Training Convergence

Reddit (2 partitions)
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BNS-GCN with Random Partition

Table 7: Test score (%) of BNS-GCN on top of random partition, where +/- shows the accuracy difference from BNS-GCN

on top of METIS in Table 4.

Method Reddit (8 partitions) | ogbn-products (10 partitions) Yelp (10 partitions)
Random+BNS (p = 1.0) 97.11 +0.00 79.14 +0.00 65.26 +0.00
Random+BNS (p = 0.1) 96.95 -0.20 79.57 +0.27 65.18 -0.16
Random+BNS (p = 0.0) 93.37 -3.47 75.39 -3.40 64.92 -0.31

Table 8: Training efficiency improvement of BNS-GCN (p = 0.1) on top of different partition methods.

Dataset Throughput Memory # Boundary Nodes
METIS Random METIS Random METIS Random

Reddit (8 partitions) 3.1x 5.0 0.47x 0.36 % 460k 1,016k
ogbn-products (10 partitions) 3.4x 7.3% 0.75 % 0.31x 1,848k 16,797k
Yelp (10 partitions) 3.1x 5.1x 0.83 % 0.49 x 649k 2,026k




BNS-GCN vs DropEdge vs BES

Table 9: Comparison between BNS-GCN and edge sampling methods, DropEdge and Boundary Edge Sampling (BES).

Dataset Method Epoch Comm (MB) Epoch Time (sec) Test Score (%)
: DropEdge 301.3 0.613 97.12
o Ii;‘ﬁ‘gns) BES 207.9 0.484 97.16
BNS-GCN 30.4 0.319 97.17
ogbn-products DropEdge 1364.0 0.938 79.38
(5 partitions) BES 521.1 0.551 79.31
BNS-GCN 138.7 0.388 79.36
Yelp DropEdge 718.7 0.606 65.30
BES 195.3 0.328 65.30

(3 partitions) BNS-GCN 75.7 0.270 65.32




