
ML-based Computer System Telemetry Analytics

1Boston University; 2University of Bologna

BY BURAK AKSAR1, MARTIN MOLAN2, ANDREA BORGHESI2, LUCA BENINI2, ANDREA BARTOLINI2, AYSE K. COSKUN1

August 30, 2022

AGENDA

◼ Overview: Telemetry Data-based Analytics on Large-scale Computing Systems
◼ Supervised Methods: Anomaly Detection and Diagnosis
◼ Break
◼ Semi-supervised and Unsupervised Anomaly Detection in Supercomputers
◼ Deployment: Challenges and Current Status
◼ Hands-on Activity

2ML-based Computer System Telemetry Analytics

HIGH PERFORMANCE COMPUTING (HPC) SYSTEMS

3

SierraSummitFugaku

Medicine Security Climate Simulations

https://innovationatwork.ieee.org/cyber-security-advancing-through-ai/
https://www.sandia.gov/news/publications/labnews/articles/2020/05-08/COVID-19_CRISPR.html

https://www.japantimes.co.jp/news/2020/06/23/national/fugaku-supercomputer-ranked-fastest/
https://en.wikipedia.org/wiki/Sierra_(supercomputer)

https://phys.org/news/2018-06-ornl-summit-supercomputer.html
https://cars.okstate.edu/

ML-based Computer System Telemetry Analytics

https://www.sandia.gov/news/publications/labnews/articles/2020/05-08/COVID-19_CRISPR.html
https://www.sandia.gov/news/publications/labnews/articles/2020/05-08/COVID-19_CRISPR.html
https://www.japantimes.co.jp/news/2020/06/23/national/fugaku-supercomputer-ranked-fastest/
https://en.wikipedia.org/wiki/Sierra_(supercomputer)
https://phys.org/news/2018-06-ornl-summit-supercomputer.html
https://cars.okstate.edu/

HIGH DEGREES OF RESOURCE SHARING

4ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATIONS IN HPC

Up to 8x delay
in job execution time [Zhang et al.,Cluster’20]

70% variation
in application performance [Chunduri et al., SC’17]

5

Performance
variations in

HPC

Job terminations

Variable running
time

Wasted
computing power

Performance
degradation

ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATIONS IN HPC

◼ The main cause of the performance variations is anomalies
◼ Anomalies do not terminate the execution of an application, but often

increase the execution time
◼ Memory leakage, CPU contention, etc.

6

How do we detect and diagnose performance anomalies?

ML-based Computer System Telemetry Analytics

TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS

7

◼ Terabytes of telemetry data per day
◼ Logs, performance metrics, traces, etc.

◼ Rule-based anomaly detection methods are commonly deployed in large-scale
systems
◼ Threshold-based rules on the monitored resource usage, metrics, and applications

[Ahad et al., ICCAC’15; Jayathilaka et al., WWW’17]

◼ Disadvantages:
◼ Focused on detecting anomalies - no information about the root cause
◼ Reliance on expert knowledge
◼ Dependence on the target HPC infrastructure

ML-based Computer System Telemetry Analytics

TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS

8

◼ Machine learning (ML) frameworks

◼ Raise an anomaly alert whenever the prediction does not match the
forecasted metric value beyond an acceptable range of differences

■ Support vector regression [Jin et al., ITC’16]

■ Autoregressive moving averages [Laptev et al., SIGKDD’15]

■ Holt-Winters forecasting [Nair et al., SIGKDD’15]

ML framework: HPC performance analytics tools that leverage ML approaches

ML-based Computer System Telemetry Analytics

TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS

9

◼ Machine learning (ML) frameworks

◼ Detect & diagnose performance anomalies and suspicious behaviors

■ Density estimation [Baseman et al., SIGKDD’16]

■ Random Forest [Klinkenberg et al., Cluster’17]

■ Autoencoder [Borghesi et al., IAAI’20]

■ Autoencoder + SVM [Aksar et al., ISC’21]

ML framework: HPC performance analytics tools that leverage ML approaches

ML-based Computer System Telemetry Analytics

AGENDA

◼ Overview: Telemetry Data-based Analytics on Large-scale Computing Systems
◼ Supervised Methods: Anomaly Detection and Diagnosis
◼ Break
◼ Semi-supervised and Unsupervised Anomaly Detection in Supercomputers
◼ Deployment: Challenges and Current Status
◼ Hands-on Activity

10ML-based Computer System Telemetry Analytics

◼ LDMS [Agelastos et al., SC’12] data is collected from the applications once per second
◼ Hardware counters, memory/CPU usage metrics, etc.
◼ 100s of time series per node

11

ONLINE DIAGNOSIS OF PERFORMANCE VARIATION
IN HPC SYSTEMS USING MACHINE LEARNING

Tuncer et al., ISC’17, Gauss Award
Tuncer et al., TPDS’18

ML-based Computer System Telemetry Analytics

HPC SYSTEMS

12

▪ Testbed HPC system
▪ 52 compute nodes
▪ Run applications:

▪ 4, 8, and16 nodes
▪ 10 – 15 mins

ECLIPSE VOLTA

▪ Production HPC system
▪ 1488 compute nodes
▪ Run applications:

▪ 4 nodes
▪ 20 – 45 mins

ML-based Computer System Telemetry Analytics

SYNTHETIC ANOMALIES

13

▪ High-performance anomaly suite (HPAS) mimics performance anomalies
observed in large-scale systems [Ates et al., ICPP’19]

▪ Anomalies have multiple intensities and target a specific subsystem

ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATION DIAGNOSIS - METHODOLOGY

◼ To reduce data dimensionality, statistical properties of the timeseries are extracted
◼ Feature selection to choose important features and achieve lower overhead for

runtime analysis

14ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATION DIAGNOSIS - METHODOLOGY

◼ Models: Random Forest, Decision Tree, SVM, Extra Trees

15ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATION DIAGNOSIS - METHODOLOGY

◼ At runtime:
◼ Features are extracted with 45-seconds window
◼ False positive filter prevents glitches in the consecutive time windows
◼ Use the models trained in the offline phase

16ML-based Computer System Telemetry Analytics

PERFORMANCE VARIATION DIAGNOSIS - EVALUATION

◼ Diagnosed 98% of the injected performance anomalies with 0.3% false alarm rate

17

[Lan et al., TPDS’10]

[Bodik et al., EuroSys’10]

ML-based Computer System Telemetry Analytics

LIMITATIONS OF THE EXISTING ML FRAMEWORKS

◼ Two major problems:
◼ Collecting labeled telemetry data is challenging

◼ Unknown applications and application inputs
◼ Thousands of compute nodes

◼ Most supervised frameworks require a large set of labeled telemetry data
◼ After collecting telemetry data, most of the labeling solutions are heuristic-based

18ML-based Computer System Telemetry Analytics

AGENDA

◼ Overview: Telemetry Data-based Analytics on Large-scale Computing Systems
◼ Supervised Methods: Anomaly Detection and Diagnosis
◼ Break
◼ Semi-supervised and Unsupervised Anomaly Detection in Supercomputers
◼ Deployment: Challenges and Current Status
◼ Hands-on Activity

19ML-based Computer System Telemetry Analytics

MONITORING AND DATA ACQUISITION

ExaMon: exascale ready monitoring framework for supercomputers

20

Borghesi et al., ExaTWIN’22

PRE-PROCESSING AND DATASET

◼ Flexible pre-processing pipeline supporting semi-supervised and unsupervised training
◼ Dataset for the workshop is collected from Marconi 100

21

Molan et al., RUAD’22

SoA FOR ANOMALY DETECTION

22

Borghesi et al., TPDS’22

SoA FOR ANOMALY DETECTION

23

Borghesi et al., TPDS’22

WHY UNSUPERVISED ANOMALY DETECTION?

◼ Semi-supervised anomaly detection: models trained only on normal
operation

◼ Need for (accurate) information about downtimes (anomaly timestamps)
◼ Difficult to deploy - accurate downtime information is not always available
◼ Motivation: train on all data including anomalies

24

Molan et al., RUAD’22

Unsupervised anomaly detection: RUAD

25

Molan et al., RUAD’22

RESULTS ON A COMPLETE HPC SYSTEM MARCONI 100

26

Molan et al., RUAD’22

ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT
REPRESENTATIONS OF DEEP LEARNING MODELS

27

Molan et al., Euro-par’22

ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT
REPRESENTATIONS OF DEEP LEARNING MODELS

◼ Motivation: comparing populations by comparing fitted distributions
◼ Autoencoders are a good representation of node behaviour
◼ Overview of the approach:

a. Separate model is trained for each node
b. Features are extracted from nodes
c. Based on extracted features similarity is calculated
d. Similarity measure is used in hierarchical clustering

28

Molan et al., Euro-par’22

ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT
REPRESENTATIONS OF DEEP LEARNING MODELS

29

Molan et al., Euro-par’22

ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT
REPRESENTATIONS OF DEEP LEARNING MODELS

30

Molan et al., Euro-par’22

ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT
REPRESENTATIONS OF DEEP LEARNING MODELS

31

Molan et al., Euro-par’22

HPC DIGITAL TWIN

32

Borghesi et al., ExaTWIN’22

HPC DIGITAL TWIN

33

Borghesi et al., ExaTWIN’22

HPC DIGITAL TWIN

34

Borghesi et al., ExaTWIN’22

HPC DIGITAL TWIN

35

Borghesi et al., ExaTWIN’22

HPC DIGITAL TWIN

36

Borghesi et al., ExaTWIN’22

PROCTOR:
A SEMI-SUPERVISED PERFORMANCE ANOMALY DIAGNOSIS FRAMEWORK

37

▪ A semi-supervised framework to detect and diagnose performance
anomalies
▪ Significantly less labeled data compared to baselines

▪ Evaluation on a production HPC system and a testbed HPC cluster
▪ 11% better F-score on average

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

PROCTOR: MONITORING

38

▪ Run synthetic anomalies with different real and proxy HPC
applications
▪ Anomalies mimic common performance variations

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

PROCTOR: MONITORING

39

▪ Collect telemetry data using Lightweight Distributed Metric
System (LDMS) [Agelastos et al., SC’12]
▪ 100s of time series per node
▪ Hardware counters, memory/CPU usage, etc.

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

PROCTOR: AUTOENCODER TRAINING

40

▪ Extract statistical features that retain the raw time series’
characteristics
▪ Remove application initialization and finalization periods
▪ Transform cumulative counters into events/sec

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

PROCTOR: AUTOENCODER TRAINING

41

▪ Autoencoder learns the representation of normal and anomalous
runs in an unsupervised manner

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

PROCTOR: DIAGNOSIS

42

▪ Use the trained autoencoder’s encoder and perform two-level
classification using a few labeled samples
▪ First classifier learns to classify anomalous vs. normal
▪ Second classifier learns to classify the type of the anomalies

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

EXPERIMENTAL METHODOLOGY – BASELINE METHODS

43

◼ RF-Tuncer [Tuncer et al., TPDS’18]
◼ Statistical feature extraction and feature selection to train decision tree-based models

◼ Anomaly diagnosis

◼ AE-Borghesi [Borghesi et al., EAAI’19]
◼ Autoencoder trained on only normal samples and selects a threshold

◼ Anomaly detection

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

EXPERIMENTAL METHODOLOGY – EVALUATION

44

▪ F1-score
▪ The harmonic mean of precision and recall

▪ False alarm rate
▪ Classifying a normal sample as any type of

anomaly

▪ Anomaly miss rate
▪ Classifying any of the anomalous samples as

normal

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

DATASET PREPARATION

◼ Sample: Telemetry data collected during an application run from a compute node
◼ Eclipse:
◼ 1526 normal samples and 2304 anomalous samples

◼ Unlabeled Training Data: 611 normal & 68 anomalous

◼ Volta:
◼ 18980 normal samples and 1932 anomalous samples

◼ Unlabeled Training Data: 5694 normal & 618 anomalous

◼ Labeled training data - only for Proctor and RF-Tuncer

◼ Eclipse: 2%, 3%, 4%, 5%, 6%, 8%, 10% of unsupervised training data

◼ Volta : 0.1%, 0.15%, 0.2%, 0.25%, 0.30%, 0.35% of unsupervised training data

45

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

EVALUATION – ANOMALY DETECTION (ECLIPSE)

◼ Proctor outperforms the baselines in F1-score and anomaly miss rate
◼ Proctor maintains a similar performance with RF-Tuncer in false alarm rate

46

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

EVALUATION – ANOMALY DIAGNOSIS (ECLIPSE)

47

◼ Proctor outperforms RF-Tuncer by 4.5% on average in F1-score
◼ Maintains very low false alarm rate and anomaly miss rate

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

AGENDA

◼ Overview: Telemetry Data-based Analytics on Large-scale Computing Systems
◼ Supervised Methods: Anomaly Detection and Diagnosis
◼ Break
◼ Semi-supervised and Unsupervised Anomaly Detection in Supercomputers
◼ Deployment: Challenges and Current Status
◼ Hands-on Activity

48ML-based Computer System Telemetry Analytics

DEPLOYMENT PERSPECTIVE - RELATED WORK

◼ Deploying node-specific and node-agnostic anomaly detection models to a
small-scale cluster [Borghesi et al., EAAI’19]

◼ Deploying models to forecast node power and identify abnormal behaviors on a
cluster [Netti et al., HPDC’20]

◼ Deploying a supervised ML framework to a production system [Aksar et al., Euro-par’21]

49ML-based Computer System Telemetry Analytics

E2EWATCH:
AN END-TO-END ANOMALY DIAGNOSIS FRAMEWORK FOR PRODUCTION HPC SYSTEMS

50

▪ Deployment of an end-to-end anomaly diagnosis framework on a
1488-node production HPC system
▪ Job and node-level analysis
▪ Deliver results in near-real time
▪ Customizable and interpretable visualization

Aksar et al., Euro-Par’21 - [Open Source]

ML-based Computer System Telemetry Analytics

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: SUMMARY

51

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: MONITORING

52

▪ Collect telemetry data during controlled experiments with and
without synthetic anomalies

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: DATA PREPARATION

53

▪ Divide raw time series into multiple equal-length overlapping windows with
15-seconds skip intervals
▪ E.g., [0-45], [15-60]

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: DATA PREPARATION

54

▪ Calculate the following statistical features of each window
▪ Minimum; maximum; 5th , 25th , 50th , 75th , 95th percentiles; mean; variance; skewness

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: OFFLINE MODEL TRAINING

55

▪ Hyperparameter tuning and K-fold cross validation
▪ Select the best performing model
▪ Store model as pickle in the monitoring server

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: RUNTIME DEPLOYMENT

56

▪ The same data preparation phase

▪ Use the pickled model to make
predictions

▪ Send results to Grafana user
interface

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: FRONTEND

57

Orange box shows detected anomaly types during selected job

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: FRONTEND

58

Yellow box shows anomaly percentages across all computed windows
Green box shows prediction confidences

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

E2EWATCH: FRONTEND

59

Red box shows node-level breakdown for the selected job id

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

EXPERIMENTAL METHODOLOGY – MODELS

60

▪ Extreme Gradient Boosting (XGBoost)
▪ Uses gradient boosting which is an ensemble of weak learners

▪ Light Gradient Boosting Machine (LGBM)
▪ Similar to XGBoost but it has different node splitting

▪ Random Forest (RF)
▪ Combines results of multiple decision trees

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

EVALUATION – ANOMALY DIAGNOSIS

61

◼ Almost perfect diagnosis in without anomaly case

◼ LGBM and XGBoost perform up to 10% better than RF

◼ Cpuoccupy is being confused with membw due to similar CPU utilization characteristics

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

EVALUATION – UNKNOWN APPLICATIONS

62

◼ Goal: Evaluate each model’s performance when test data has unknown applications
◼ Remove all runs of the selected application from the training set
◼ Include only the removed application to the test set

◼ Except LAMMPS and SWFFT, XGBoost and LGBM perform up to 10% better than RF
◼ LGBM is the best considering anomaly miss rate and false alarm rate

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch

DEPLOYMENT CHALLENGES

◼ Computation-heavy runtime analysis
◼ Models are only run when a user requests and this saves significant energy

◼ Delivering results in near-real time
◼ The database is specifically designed for the scale and HPC telemetry data

◼ Data transformation
◼ Transforming the raw monitoring data into a format suitable for ML models

◼ Transforming the results into a format for visualization

◼ Exa-scale scaling
◼ How to train and deploy a ML framework that will handle thousands of compute nodes

63

AGENDA

◼ Overview: Telemetry Data-based Analytics on Large-scale Computing Systems
◼ Supervised Methods: Anomaly Detection and Diagnosis
◼ Break
◼ Semi-supervised and Unsupervised Anomaly Detection in Supercomputers
◼ Deployment: Challenges and Current Status
◼ Hands-on Activity

64ML-based Computer System Telemetry Analytics

HANDS-ON ACTIVITY

Github Repository: https://github.com/MolanM/Hands-on

65ML-based Computer System Telemetry Analytics

https://github.com/MolanM/Hands-on

ACKNOWLEDGMENTS

◼ This research was partly supported by the EuroHPC EU PILOT project (g.a.101034126), the EuroHPC
EU Regale project (g.a. 956560), EU H2020-ICT-11-2018-2019 IoTwins project (g.a. 857191), and EU
Pilot for exascale EuroHPC EUPEX (g. a. 101033975).

◼ This work has been partially funded by Sandia National Laboratories. Sandia National Laboratories is a
multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration under Contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or
the United States Government.

66ML-based Computer System Telemetry Analytics

COLLABORATORS

● Jim Brandt - Sandia National Labs
● Vitus J. Leung - Sandia National Labs
● Benjamin Schwaller - Sandia National Labs
● Omar Aaziz - Sandia National Labs
● Brian Kulis - Boston University
● Manuel Egele - Boston University

67

