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HIGH PERFORMANCE COMPUTING (HPC) SYSTEMS
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HIGH DEGREES OF RESOURCE SHARING
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PERFORMANCE  VARIATIONS IN HPC

Up to 8x delay 
in job execution time [Zhang et al.,Cluster’20]

70% variation 
in application performance [Chunduri et al., SC’17]

5

Performance 
variations in 

HPC

Job terminations

Variable running 
time

Wasted 
computing power

Performance 
degradation

ML-based Computer System Telemetry Analytics



PERFORMANCE  VARIATIONS IN HPC

◼ The main cause of the performance variations is anomalies
◼ Anomalies do not terminate the execution of an application, but often 

increase the execution time 
◼ Memory leakage, CPU contention, etc. 
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How do we detect and diagnose performance anomalies?
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TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS
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◼ Terabytes of telemetry data per day
◼ Logs, performance metrics, traces, etc. 

◼ Rule-based anomaly detection methods are commonly deployed in large-scale 
systems 
◼ Threshold-based rules on the monitored resource usage, metrics, and applications 

[Ahad et al., ICCAC’15; Jayathilaka et al., WWW’17]

◼ Disadvantages:
◼ Focused on detecting anomalies - no information about the root cause
◼ Reliance on expert knowledge
◼ Dependence on the target HPC infrastructure
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TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS

8

◼ Machine learning (ML) frameworks

◼ Raise an anomaly alert whenever the prediction does not match the 
forecasted metric value beyond an acceptable range of differences

■ Support vector regression [Jin et al., ITC’16] 

■ Autoregressive moving averages [Laptev et al., SIGKDD’15]

■ Holt-Winters forecasting [Nair et al., SIGKDD’15]

ML framework:  HPC performance analytics tools that leverage ML approaches
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TELEMETRY DATA-BASED PERFORMANCE ANOMALY DIAGNOSIS
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◼ Machine learning (ML) frameworks

◼ Detect & diagnose performance anomalies and suspicious behaviors 

■ Density estimation [Baseman et al., SIGKDD’16]

■ Random Forest [Klinkenberg et al., Cluster’17]

■ Autoencoder [Borghesi et al., IAAI’20]

■ Autoencoder + SVM [Aksar et al., ISC’21]

ML framework:  HPC performance analytics tools that leverage ML approaches
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◼ LDMS [Agelastos et al., SC’12] data is collected from the applications once per second
◼ Hardware counters, memory/CPU usage metrics, etc.
◼ 100s of time series per node
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ONLINE DIAGNOSIS OF PERFORMANCE VARIATION 
IN HPC SYSTEMS USING MACHINE LEARNING 

Tuncer et al., ISC’17, Gauss Award
Tuncer et al., TPDS’18
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HPC SYSTEMS
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▪ Testbed HPC system
▪ 52 compute nodes
▪ Run applications: 

▪ 4, 8, and16 nodes
▪ 10 – 15 mins

ECLIPSE VOLTA

▪ Production HPC system
▪ 1488 compute nodes
▪ Run applications:

▪  4 nodes 
▪ 20 – 45 mins
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SYNTHETIC ANOMALIES
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▪ High-performance anomaly suite (HPAS) mimics performance anomalies 
observed in large-scale systems [Ates et al., ICPP’19]

▪ Anomalies have multiple intensities and target a specific subsystem 
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PERFORMANCE  VARIATION DIAGNOSIS - METHODOLOGY

◼ To reduce data dimensionality, statistical properties of the timeseries are extracted 
◼ Feature selection to choose important features and achieve lower overhead for 

runtime analysis
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PERFORMANCE  VARIATION DIAGNOSIS - METHODOLOGY

◼ Models: Random Forest, Decision Tree, SVM, Extra Trees
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PERFORMANCE  VARIATION DIAGNOSIS - METHODOLOGY

◼ At runtime:
◼ Features are extracted with 45-seconds window
◼ False positive filter prevents glitches in the consecutive time windows
◼ Use the models trained in the offline phase 
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PERFORMANCE  VARIATION DIAGNOSIS - EVALUATION

◼ Diagnosed 98% of the injected performance anomalies with 0.3% false alarm rate
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[Lan et al., TPDS’10]

[Bodik et al., EuroSys’10]
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LIMITATIONS OF THE EXISTING ML FRAMEWORKS

◼ Two major problems: 
◼ Collecting labeled telemetry data is challenging 

◼ Unknown applications and application inputs
◼ Thousands of compute nodes

◼ Most supervised frameworks require a large set of labeled telemetry data
◼ After collecting telemetry data, most of the labeling solutions are heuristic-based
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MONITORING AND DATA ACQUISITION

ExaMon: exascale ready monitoring framework for supercomputers
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Borghesi et al., ExaTWIN’22



PRE-PROCESSING AND DATASET

◼ Flexible pre-processing pipeline supporting semi-supervised and unsupervised training
◼ Dataset for the workshop is collected from Marconi 100

21

Molan et al., RUAD’22



SoA FOR ANOMALY DETECTION
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Borghesi et al., TPDS’22



SoA FOR ANOMALY DETECTION
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WHY UNSUPERVISED ANOMALY DETECTION?

◼ Semi-supervised anomaly detection: models trained only on normal 
operation

◼ Need for (accurate) information about downtimes (anomaly timestamps)
◼ Difficult to deploy - accurate downtime information is not always available
◼ Motivation: train on all data including anomalies
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Unsupervised anomaly detection: RUAD
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RESULTS ON A COMPLETE HPC SYSTEM MARCONI 100
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ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT 
REPRESENTATIONS OF DEEP LEARNING MODELS
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ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT 
REPRESENTATIONS OF DEEP LEARNING MODELS

◼ Motivation: comparing populations by comparing fitted distributions
◼ Autoencoders are a good representation of node behaviour
◼ Overview of the approach:

a. Separate model is trained for each node
b. Features are extracted from nodes
c. Based on extracted features similarity is calculated
d. Similarity measure is used in hierarchical clustering
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ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT 
REPRESENTATIONS OF DEEP LEARNING MODELS
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ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT 
REPRESENTATIONS OF DEEP LEARNING MODELS
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ANALYSING SUPERCOMPUTER NODES BEHAVIOUR WITH LATENT 
REPRESENTATIONS OF DEEP LEARNING MODELS
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HPC DIGITAL TWIN

32

Borghesi et al., ExaTWIN’22



HPC DIGITAL TWIN
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HPC DIGITAL TWIN
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HPC DIGITAL TWIN
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HPC DIGITAL TWIN
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PROCTOR:
A SEMI-SUPERVISED PERFORMANCE ANOMALY DIAGNOSIS FRAMEWORK
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▪ A semi-supervised framework to detect and diagnose performance 
anomalies
▪ Significantly less labeled data compared to baselines

▪ Evaluation on a production HPC system and a testbed HPC cluster
▪ 11% better F-score on average

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


PROCTOR: MONITORING
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▪ Run synthetic anomalies with different real and proxy HPC 
applications
▪ Anomalies mimic common performance variations

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


PROCTOR: MONITORING
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▪ Collect telemetry data using Lightweight Distributed Metric 
System (LDMS) [Agelastos et al., SC’12] 
▪ 100s of time series per node
▪ Hardware counters, memory/CPU usage, etc.

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


PROCTOR: AUTOENCODER TRAINING
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▪ Extract statistical features that retain the raw time series’ 
characteristics 
▪ Remove application initialization and finalization periods
▪ Transform cumulative counters into events/sec

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


PROCTOR: AUTOENCODER TRAINING
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▪ Autoencoder learns the representation of normal and anomalous 
runs in an unsupervised manner

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


PROCTOR: DIAGNOSIS
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▪ Use the trained autoencoder’s encoder and perform two-level 
classification using a few labeled samples
▪ First classifier learns to classify anomalous vs. normal
▪ Second classifier learns to classify the type of the anomalies

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


EXPERIMENTAL METHODOLOGY – BASELINE METHODS
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◼ RF-Tuncer [Tuncer et al., TPDS’18]
◼ Statistical feature extraction and feature selection to train decision tree-based models 

◼ Anomaly diagnosis 

◼ AE-Borghesi [Borghesi et al., EAAI’19]
◼ Autoencoder trained on only normal samples and selects a threshold 

◼ Anomaly detection

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


EXPERIMENTAL METHODOLOGY – EVALUATION
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▪ F1-score
▪ The harmonic mean of precision and recall

▪ False alarm rate 
▪ Classifying a normal sample as any type of 

anomaly

▪ Anomaly miss rate 
▪ Classifying any of the anomalous samples as 

normal

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


DATASET PREPARATION

◼ Sample:  Telemetry data collected during an application run from a compute node
◼ Eclipse: 
◼ 1526 normal samples and 2304 anomalous samples

◼ Unlabeled Training Data: 611 normal & 68 anomalous 

◼ Volta: 
◼ 18980 normal samples and 1932 anomalous samples

◼ Unlabeled Training Data:  5694 normal & 618 anomalous

◼ Labeled training data - only for Proctor and RF-Tuncer

◼ Eclipse: 2%, 3%, 4%, 5%, 6%, 8%, 10%  of unsupervised training data

◼ Volta : 0.1%, 0.15%, 0.2%, 0.25%, 0.30%, 0.35% of unsupervised training data
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Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


EVALUATION – ANOMALY DETECTION (ECLIPSE)

◼ Proctor outperforms the baselines in F1-score and anomaly miss rate 
◼ Proctor maintains a similar performance with RF-Tuncer in false alarm rate 
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Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor


EVALUATION – ANOMALY DIAGNOSIS (ECLIPSE)
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◼ Proctor outperforms RF-Tuncer by 4.5% on average in F1-score 
◼ Maintains very low false alarm rate and anomaly miss rate 

Aksar et al., ISC’21 - [Open Source]

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor
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DEPLOYMENT PERSPECTIVE  - RELATED WORK

◼ Deploying node-specific and node-agnostic anomaly detection models to a 
small-scale cluster [Borghesi et al., EAAI’19] 

◼ Deploying models to forecast node power and identify abnormal behaviors on a 
cluster [Netti et al., HPDC’20] 

◼ Deploying a supervised ML framework to a production system [Aksar et al., Euro-par’21] 
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E2EWATCH:
AN END-TO-END ANOMALY DIAGNOSIS FRAMEWORK FOR PRODUCTION HPC SYSTEMS
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▪ Deployment of an end-to-end anomaly diagnosis framework on a 
1488-node production HPC system
▪ Job and node-level analysis 
▪ Deliver results in near-real time
▪ Customizable and interpretable visualization

Aksar et al., Euro-Par’21 - [Open Source]

ML-based Computer System Telemetry Analytics

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: SUMMARY

51

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: MONITORING
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▪ Collect telemetry data during controlled experiments with and 
without synthetic anomalies

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: DATA PREPARATION
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▪ Divide raw time series into multiple equal-length overlapping windows with 
15-seconds skip intervals 
▪ E.g., [0-45], [15-60]

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: DATA PREPARATION
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▪ Calculate the following statistical features of each window
▪ Minimum; maximum; 5th , 25th , 50th , 75th , 95th percentiles; mean; variance; skewness

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: OFFLINE MODEL TRAINING
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▪ Hyperparameter tuning and K-fold cross validation
▪ Select the best performing model
▪ Store model as pickle in the monitoring server

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: RUNTIME DEPLOYMENT
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▪ The same data preparation phase

▪ Use the pickled model to make 
predictions

▪ Send results to Grafana user 
interface 

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: FRONTEND
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Orange box shows detected anomaly types during selected job

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: FRONTEND
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Yellow box shows anomaly percentages across all computed windows
Green box shows prediction confidences 

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


E2EWATCH: FRONTEND
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Red box shows node-level breakdown for the selected job id

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


EXPERIMENTAL METHODOLOGY – MODELS
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▪ Extreme Gradient Boosting (XGBoost)
▪ Uses gradient boosting which is an ensemble of weak learners 

▪ Light Gradient Boosting Machine (LGBM)
▪ Similar to XGBoost but it has different node splitting

▪ Random Forest (RF)
▪ Combines results of multiple decision trees

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


EVALUATION – ANOMALY DIAGNOSIS
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◼ Almost perfect diagnosis in without anomaly case

◼ LGBM and XGBoost perform up to 10% better than RF

◼ Cpuoccupy is being confused with membw due to similar CPU utilization characteristics

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


EVALUATION – UNKNOWN APPLICATIONS
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◼ Goal: Evaluate each model’s performance when test data has unknown applications
◼ Remove all runs of the selected application from the training set 
◼ Include only the removed application to the test set

◼ Except LAMMPS and SWFFT, XGBoost and LGBM perform up to 10% better than RF
◼ LGBM is the best considering anomaly miss rate and false alarm rate

Aksar et al., Euro-Par’21 - [Open Source]

https://dl.acm.org/doi/abs/10.1007/978-3-030-85665-6_5
https://github.com/peaclab/E2EWatch


DEPLOYMENT CHALLENGES

◼ Computation-heavy runtime analysis 
◼ Models are only run when a user requests and this saves significant energy 

◼ Delivering results in near-real time
◼ The database is specifically designed for the scale and HPC telemetry data

◼ Data transformation 
◼ Transforming the raw monitoring data into a format suitable for ML models

◼ Transforming the results into a format for visualization

◼ Exa-scale scaling
◼ How to train and deploy a ML framework that will handle thousands of compute nodes
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HANDS-ON ACTIVITY

Github Repository: https://github.com/MolanM/Hands-on 
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