

Cupcake: A compression optimizer for scalable communication-efficient distributed training

Big Data and Optical Lightpaths Driven Lab

Zhuang Wang, Xinyu Crystal Wu, Zhaozhuo Xu and T. S. Eugene Ng

Distributed deep learning

Gradient synchronization among GPUs

Training dataset partitions

[1] Gradient Compression Supercharged High-Performance Data Parallel DNN Training, SOSP '21

Communication overhead can account for more than 50% of training time ^[1]

Gradient compression (GC)

- GC shrinks communicated traffic volume
 - has negligible impact on model accuracy ^[1] •
- Quantization

[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS '21 [2] DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks, ICML '22

- Sparsification
 - A subset of gradients
 - Save > 99% traffic volume ^[2]

S

Gradient compression (GC) in theory

GC reduces communication overhead

Gradient compression (GC) in reality

GC incurs computation overhead in practice

Compression time

Compression is costly Iteration time breakdown

GC reduces communication time

GC incurs significant compression overhead

Why is compression costly?

Two additional operations

Why is compression costly?

Two additional operations

Compress overhead

Why is compression costly?

- Existing approach to compress tensors
 - Tensor by tensor \bullet
- Many small tensors in DNN models

Fuse tensors to reduce compression overhead

Challenges **Trade-off between compression and communication overhead**

Least communication overhead Worst compression overhead

Challenges **Trade-off between compression and communication overhead**

Communication

Cupcake Search for the optimal fusion strategy

Formulation of the iteration time

Cupcake **Empirical measurements**

- Expensive to test all fusion strategies with end-to-end training
- Our solution
 - Use measurements from production environment to model training process
 - Profile offline based on the system configurations \bullet
 - GPU computation capacity, the number of GPUs, and the network bandwidth •

Tensor Computation time (forward/backward propagation)

Tensor Communication time (startup/transfer time)

Derive the timeline of training with any strategy

Tensor Compression time (kernel/compress time)

Cupcake

Determine overlap for fusion strategies

- Overlapping is specific to each fusion strategy
- Overlapping time is determined by the intricate interactions among tensors
 - Communication can overlap with both computation and compression

• A brute-force method will take exponential time

Pruning techniques

No need to examine all cases for the formation of Fo

Prune a strategy if its optimistic outcome is greater than the best so far

Pruning techniques (cont'd) Fuse tensors to maximize the overlapping time

Pruning techniques (cont'd) Fuse tensors to maximize the overlapping time

Pruning techniques (cont'd) Fuse more tensors based on the communication progress

An algorithm that provably finds the optimal fusion strategy quickly

Computation	To	T ₁	T 2		T 3
Tensor fusion		FO			F
Compression				FO	
Communication					

Results 25Gbps network, NVLink

8 GPU machines and each machine has 8 V100 GPUs

(a) ResNet50

Up to 79% improvement

(b) ResNet101

Results

25Gbps network, NVLink

• Training accuracy

Model	Dataset	GC	GRACE	Cupcake
ResNet50	CIFAR10	DGC	93.2%	93.2%
ResNet101	ImageNet-1K	EFSignSGD	76.6%	76.7%

Summary

- Cupcake applies GC algorithms in a fusion fashion

Thank you! (Xinyu Crystal Wu: <u>xw64@rice.edu</u>)

Layer-wise compression fashion causes prohibitive compression overhead

Provably find the optimal fusion strategy to maximize training throughput