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Distributed deep learning

• Gradient synchronization among GPUs
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Communication is bottleneck

• Communication cannot fully overlap with computation
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• Communication overhead can account for more than 50% of training time [1]

[1] Gradient Compression Supercharged High-Performance Data Parallel DNN Training, SOSP ’21 
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Gradient compression (GC)

• GC shrinks communicated traffic volume
• has negligible impact on model accuracy [1]
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[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS ‘21
[2] DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks, ICML ‘22 

• Sparsification
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• A subset of gradients
• Save > 99% traffic volume [2]



Gradient compression (GC) in theory

• GC reduces communication overhead
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Gradient compression (GC) in reality

• GC incurs computation overhead in practice
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Compression is costly
Iteration time breakdown

• GC reduces communication time

7

FP32 EFSignSGD

Ti
m

e 
[m

s]

50

100

DGC

Computation time
Communication time
Compression time

GC algorithms
Onebit

• GC incurs significant compression overhead 



Why is compression costly?

• Two additional operations

Tensor Communication
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Why is compression costly?

• Two additional operations

Tensor Compress Communication

• Compress overhead
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• Decompress overhead
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Why is compression costly?
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<

• Existing approach to compress tensors
• Tensor by tensor

• Invokes compress and decompress operations for each tensor

Compress

Decompress

• Many small tensors in DNN models



Fuse tensors to reduce compression overhead
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Challenges
Trade-off between compression and communication overhead
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Challenges
Trade-off between compression and communication overhead

T0

T0

T0

Computation

Compression

Communication

time

T1

T1

T1

T2

T2

T2

T3

T3

T3

T4

T4

T4

After fusion
T0Computation

Compression

Communication

time

T1 T2 T3

T0

T4

T4

T0,4

T1 T2 T3

How to find the optimal fusion strategy for gradient compression?
• Fuse tensors for compression
• Maximize the training throughput



Cupcake
Search for the optimal fusion strategy

• Formulation of the iteration time
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Cupcake
Empirical measurements 
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• Expensive to test all fusion strategies with end-to-end training

• Our solution
• Use measurements from production environment to model training process
• Profile offline based on the system configurations

• GPU computation capacity, the number of GPUs, and the network bandwidth

• Derive the timeline of training with any strategy

Tensor Computation time
(forward/backward propagation)

Tensor Communication time
(startup/transfer time)

Tensor Compression time
(kernel/compress time)



Cupcake
Determine overlap for fusion strategies

• Overlapping is specific to each fusion strategy

• Overlapping time is determined by the intricate interactions among tensors

• Communication can overlap with both computation and compression
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Cupcake
Search space 

• A brute-force method will take exponential time

17

Time complexity: O(2!)
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Suppose the best strategy so far fuses {T0, Ti-2};
now determine whether to fuse Ti-1 into F0

Pruning techniques
No need to examine all cases for the formation of F0
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Prune a strategy if its optimistic outcome is greater than the best so far

No need to explore fusion 
strategies among {Ti, TN-1}
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Too few
fusion tensors

Pruning techniques (cont’d)
Fuse tensors to maximize the overlapping time
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Pruning techniques (cont’d)
Fuse tensors to maximize the overlapping time
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Pruning techniques (cont’d) 
Fuse more tensors based on the communication progress
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An algorithm that provably finds the optimal fusion strategy quickly



Results
25Gbps network, NVLink
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• 8 GPU machines and each machine has 8 V100 GPUs

Up to 79% improvement



Results
25Gbps network, NVLink
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• Training accuracy

Model Dataset GC GRACE Cupcake

ResNet50 CIFAR10 DGC 93.2% 93.2%

ResNet101 ImageNet-1K EFSignSGD 76.6% 76.7%



Summary
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• Layer-wise compression fashion causes prohibitive compression overhead

• Cupcake applies GC algorithms in a fusion fashion

• Provably find the optimal fusion strategy to maximize training throughput 

Thank you!
( Xinyu Crystal Wu: xw64@rice.edu )
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