
P y T o r c h R P C : D i s t r i b u t e d D e e p L e a r n i n g B u i l t o n

T e n s o r - O p t i m i z e d R e m o t e P r o c e d u r e C a l l s

M e t a A I * U n i v e r s i t y o f S o u t h e r n C a l i f o r n i a

S h e n L . P r i t a m D . L u c a W . R o h a n V . O m k a r S . P a v e l B . H o w a r d H . Y a n l i Z .

L u c a s H . W a n c h a o L . H o n g y i J . S h i h a o X . S a t e n d r a G . A l i s s o n A . G u o q i a n g C .

Z a c h a r y D . C h a o y a n g H . * A m i r Z . * A l b a n D . E d w a r d Y . G r e g o r y C . B r i a n V .

M a n o j K . J o e S . S a l m a n A . * S o u m i t h C .

0 1

M o t i v a t i o n

0 2

U X & S y s t e m D e s i g n

0 3

E v a l u a t i o n

3

Motivat ion

• PyTorch DDP and FSDP are supports synchronized Single-Program Multi-Data (SPMD)

• Some applications do not fit well with the collective-based paradigms

1-to-many (e.g., RL) pipeline (e.g., LLM) async (e.g., GenAI)

• Can we build a generic low-level API to serve them all?

4

Motivat ion

• Existing options

• We want advantages from both sides

Send/Recv from *CCL

§ Pro: high-perf
§ Con: Huge context on

developers’ shoulder

o pickling
o comm order & content
o overlapping
o etc.

3rd-party RPC

§ Pro: great UX, except bwd
§ Con: relatively low-perf due

to the barrier between ML
framework and comm layer

o no CUDA-CPU overlap
o no PCIe-TPC overlap
o Sync on Tensor malloc
o format conversion
o etc.

*CCL’s perf + RPC’s UX PyTorch RPC

0 1

M o t i v a t i o n

0 2

U X & S y s t e m D e s i g n

0 3

E v a l u a t i o n

Programming Interface

6

initialize RPC agent for this process
rpc_init(“p0”,…)

def my_add(x, y):
 return x + y

x = torch.zeros(2, requires_grad=True)

async, returns future
fut = rpc_async(“p1”, my_add, args=(x, 1))

async, returns reference of result
rref = remote(
 “p2”, torch.add, args=(x, fut.wait())
)

bwd will prop thru proc boundaries
rref.to_here().sum().backward()

shutdown RPC agent
shutdown()

init_rpc() on the process and give it a
name

Run arbitrary functions including bulitin ones
remotely and get the result back asynchronously

remote() keeps the result on the remote
process and pass the reference around.

to_here() fetches the referenced data to
the local process

call backward() as-if this is local training

Tensor Communicat ion with 3 rd Party RPC

wait for pending CUDA
ops before pickling

pickle kicks off D2H copy

comm won’t start before
D2H finishes

tensor allocation needs to
wait for unpickling

7

Optimized Tensor Communicat ion

metadata pickling on CPU
overlaps with pending CUDA ops

handshake uses CPU, can
overlap with CUDA ops too

receiver can allocate tensors after recv
metadata, which can overlap with CUDA

ops, D2H comms and TCP comms

Tensors are sliced into chunks. Use
staging buffer to overlap D2H, TCP,

and H2D comms

8

Remote Reference (RRef)

9

def rref_add(ra, rb):
 return ra.to_here() + rb.to_here()

on worker process “p0”
ra = remote(“p1”, load_data_a)
rb = remote(“p2”, load_data_b)
rc = remote(“p3”, rref_add, args=(ra, rb))
rd = remote(“p4”, rref_add, args=(rc, rc))

p0

p1

p2

p3 p4

• RRef is “roughly” a distributed shared pointer

• Owner is the RRef that holds the data

• Owner RRef keeps reference counts and runs GC
based accordingly.

• Owner RRef will be notified when a user RRef is
forked or deleted.

• RRef allows separate out control plane with data
plane

Distr ibuted Autograd

10

rx, ri, and ry are a RRef
class Block(nn.Module):
 def forward(self, rx):
 # .to_here() triggers tensor comm
 return self.relu(self.fc(rx.to_here()))

class Model(nn.Module):
 def __init__(self):
 self.rb1 = remote(“p1”, Block)
 self.rb2 = remote(“p2”, Block)

 # run forward on “p0”
 def forward(self, ri):
 rx = self.rb1.remote().forward(ri)
 ry = self.rb2.remote().forward(rx)
 return ry

m = Model()
loss = m(RRef(i)).to_here().sum()

• Each rpc_async and to_here call in forward
installs a pair of send/recv autograd functions to
connect local autograd graphs.

• recv recursively waits for its send peer during the
backward propagation.

• Gradients are stored in dedicated distributed
context for every concurrent backward.

0 1

M o t i v a t i o n

0 2

U X & S y s t e m D e s i g n

0 3

E v a l u a t i o n

Latency Comparison

• Tensor {4MB, 400MB} X func {Id, 200ops}
• CPU Intra-node: SHM/CMA
• CPU Inter-node: 4X100Gbps Ethernet
• GPU Intra-node: NVLink, PCIe
• GPU Inter-node: 4X100Gbps Ethernet, IB
• Every call repeated 10 times
• Largest lead observed in 400MB + Id + GPU

• Speedups

• Direct access to Tensor storage
• Multiple types of overlap
• Diverse HW-related optimizations

12

Reinforcement Learning

• Env: OpenAI Gym
• Algorithm: Async Advantage Actor Critic (A3C)
• Actor behavior:

• Fetch global network
• Interact with env
• Generate grads
• Push grads to update global network

• Enable PyTorch RPC only requires ~10 LoC

13

Federated Learning

• Integrated with fedml.ai
• FL Clients use multiple AWS accounts but share the same AWS region
• Server: AWS EC2 p3.2xlarge (8 CPU cores, 1 V100 GPU)
• Training 25M-param model with FedAvg and FedSGD

14

http://www.fedml.ai/

Thanks!

• Github:
https://github.com/pytorch/pytorch/blob/main/tor
ch/distributed/rpc

• Docments:
https://pytorch.org/docs/stable/rpc.html

• Forum:
https://discuss.pytorch.org/c/distributed/12

• Slack:
https://pytorch.slack.com/archives/CBHSWPNM7

15

https://github.com/pytorch/pytorch/blob/main/torch/distributed/rpc
https://github.com/pytorch/pytorch/blob/main/torch/distributed/rpc
https://pytorch.org/docs/stable/rpc.html
https://discuss.pytorch.org/c/distributed/12
https://pytorch.slack.com/archives/CBHSWPNM7

