SPARSITY-AWARE MEMORY INTERFACE USING STACKED XORNET COMPRESSION

Younghoon Byun^{1*}, Seungsik Moon^{1*}, Baeseong Park², Se Jung Kwon², Dongsoo Lee², Gunho Park¹, Eunji Yoo¹, Jung Gyu Min¹, Youngjoo Lee¹ ¹Pohang University of Science and Technology, ²NAVER Cloud

Model: GPT-4

tell me about Conference on Machine Learning and Systems

The Conference on Machine Learning and Systems (MLSys) is a premier venue for presenting and discussing cutting-edge research at the intersection of machine learning and computer systems. It brings together researchers, engineers, and practitioners from academia and industry to share their insights, ideas, and innovations in machine learning, system design, and optimization.

Bard Experiment

.... C

tell me about conference on machine learning and systems 🧷

View other drafts 🛛 🗸

The Conference on Machine Learning and Systems (MLSys) is an annual conference that brings together researchers from the fields of machine learning and systems. The goal of the conference is to foster collaboration between these two fields and to promote the development of new machine learning techniques that are tailored to the needs of real-world systems. Microsoft Bing Q 검색

색 😑 채팅

tell me about conference on machine learning and systems

/ "conference on machine learning and systems" 검색 중

✔ 답변을 생성하는 중...

The **Conference on Machine Learning and Systems (MLSys)** targets research at the intersection of machine learning and systems. The conference aims to elicit new connections amongst these fields, including identifying best practices and design principles for learning systems, as well as developing novel learning methods and theory tailored to practical machine learning workflows¹.

The next MLSys conference will be held in **Miami** at the **Miami Beach Convention Center** from **June 4th through June 8th**¹. Is there anything else you would like to know about this conference?

자세한 정보: 1. mlsys.org	mlsys.org	+2 더 보기	1 / 20 🌑
----------------------	-----------------------------	---------	----------

Encoder (Context summarization)

- ✓ Large batch size MM
 (seq_len × batch_size)
- ✓ Higher weight-reusability
- ✓ Computation-bound

Decoder (Generation)

✓ Small batch size MM

(seq_len=1, autoregressive)

- ✓ Lower utilization
- ✓ Memory-bound

Matrix compression – pruning, Compressed Sparse Row (CSR)

Matrix compression – pruning, Compressed Sparse Row (CSR)

Matrix compression – pruning, Compressed Sparse Row (CSR)

Compressed Sparse Row

Effective bandwidth

✓ Effective bandwidth : bandwidth from the processing engine's perspective

- ✓ Ideal compression ratio = $\frac{1}{1-S}$
- ✓ Ideal effective bandwidth = $\frac{1}{1-S}$ × physical bandwidth, S = sparsity

XORNet compression process

✓ Pruning, quantization, and XOR encoding

XORNet encoding process

✓ Fixed length encoding with error patch

XORNet encoding process

- ✓ Compare encoding sequence with possible output sequence
- ✓ Choose a minimum error sequence as an input (encoded) sequence

XORNet encoding process

- ✓ Errorless matching is not guaranteed
- ✓ Add extra error index for correction (patch)

XORNet compression

Detailed XORNet encoding and decoding process

✓ Encoded sequence and error position index (patch)

XORNet decoding hardware

- ✓ XORNet decompressor with patch correction module
- ✓ Patch FIFO, distributing network

XORNet decoding hardware

- \checkmark The number of decompressor (N)
- ✓ N=256 supports 960GBps memory bandwidth (RTX 3090 : ~940GBps)
- ✓ The area complexity increases exponentially with memory bandwidth
- ✓ Distributing network dominates area overhead in high-bandwidth system

Interface for high-bandwidth system

Horizontally aligned (HA) patch memory

- \checkmark p_{ii} represents j-th patch in i-th vector
- HA-patch save the patch sequentially

Interface for high-bandwidth system

Vertically aligned (VA) patch memory

- ✓ VA-patch saves patch in the order of decompressor
- Large buffer size is required due to the patch imbalance

Patch imbalance along with decompressors

Vertically aligned (VA) patch memory

- ✓ Transformer model, WMT en-de task
- ✓ Large patch imbalance cause large patch buffer size

Stacked XORNet (sXORNet)

- ✓ Conventional XORNet uses single LUT independent with sparsity
- ✓ Proposed stacked XORNet adaptively uses LUT based on the sparsity
 - Generates fewer patches, leading to low patch imbalance

Conventional XORNet

19 of 25

Proposed sXORNet

Experimental results

Patch imbalance comparison for VA-patch

- ✓ Transformer model, WMT en-de task
- ✓ The patch imbalance decreased with the proposed sXORNet in all case

Experimental results

Compression quality for different compression techniques

✓ 8-bit quantized transformer model

Sparsity and area complexity

✓ N=256 (960GBps)

Sparsity and effective bandwidth

✓ N=256 (960GBps)

Conclusion

- \checkmark Investigated interface-level overhead for different compression types
- ✓ Proposed XORNet optimized hardware patch architecture (VA-patch)
- Proposed imbalance considering algorithm (sXORNet)
- ✓ Achieved low-area complexity, high-throughput memory interface

Appendix A. DNN hardware with memory interface

Data Movement Energy Cost [1]

[1] Y. -H. Chen *et al.*, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," *ISCA*, 2016.

Appendix B. area complexity and effective bandwidth

	EFFECTIVE BANDWIDTH (TBps)				AREA COMPLEXITY (mm ²)						
Ν	IDEAL CS		XORNET	XORNET	SXORNET		XORNET	XORNET	SXORNET		
		CSR	НА-РАТСН	VA-P (<i>B</i> =	АТСН 256)	CSR	НА-РАТСН	VA-PATCH $(B=256)$			
TRANSFORMER (VASWANI ET AL., 2017) ($S = 0.6$)											
64	0.60	0.25	0.33	0.17	0.30	1.057	5.053	0.244	0.271		
128	1.20	0.51	0.66	0.34	0.63	3.165	29.268	0.489	0.542		
256	2.40	1.01	1.32	0.90	1.36	9.687	139.109	0.977	1.085		
GPT-2 SMALL (BROWN ET AL., 2020) $(S = 0.6)$											
64	0.60	0.25	0.33	0.09	0.27	1.057	5.053	0.244	0.271		
128	1.20	0.50	0.66	0.23	0.58	3.165	29.268	0.489	0.542		
256	2.40	0.99	1.32	0.61	1.21	9.687	139.109	0.977	1.085		
ResNet-50 (He et al., 2016) ($S = 0.7$)											
64	0.80	0.26	0.41	0.31	0.40	1.227	5.067	0.258	0.271		
128	1.60	0.51	0.82	0.62	0.79	3.804	29.295	0.515	0.542		
256	3.20	1.02	1.64	1.23	1.57	11.925	139.163	1.031	1.085		