
RecD: Deduplication for End-to-End Deep
Learning Recommendation Model Training
Infrastructure

Mark Zhao*, Dhruv Choudhary, Devashish Tyagi, Ajay Somani, Max Kaplan, Sung-Han Lin, Sarunya
Pumma, Jongsoo Park, Aarti Basant, Niket Agarwal, Carole-Jean Wu, and Christos Kozyrakis*
*Stanford University, Meta

Sixth Conference on Machine Learning and Systems (MLSys 2023)

1

Machine Learning at Meta

2

Deep Learning Recommendation Models (DLRMs) are business-critical and dominate AI training demand

End-to-End DLRM training infrastructure

3

Users Inference
Tier

Recommendation
Request

Feature
Store

User & Item
Features

Recommendation

Features &
Outcomes

Feature
Eng.

Storage Tier
(HDDs)

Training
Samples

Reader /
Preprocessing

Tier (CPUs)

Training
Samples

Training Tier
(GPUs)

Tensors

Models

Training Job

End-to-end infrastructure optimization

4

Storage, preprocessing, and training each require immense infrastructure resources

Our approach: Co-design efficiency optimizations across the end-to-end pipeline to
continue scaling ML systems

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22

Understanding DLRM datasets

5

Alice

Sparse Feature:
Last N liked post IDs

[31, 55, 17, …]

Inference Tier

DLRM Dataset Table

[31, 55, 17, …]

[31, 55, 17, …]

No
Like

No
Like

Like

Features
map<feature_id: value>

Label
int

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 1

[42, 31, 55, 17, …]

Understanding DLRM datasets

6

DLRM Dataset Table
Features

map<feature_id: value>
Label

int

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 1

Intuition: Many sparse features are infrequently updated across a user’s
samples, resulting in high duplication

Many other sparse features
e.g., {comment/share/post}
history, device type, etc.

Understanding DLRM datasets: % duplication

7

Opportunity:
Address overheads caused by duplicate sparse features via deduplication

Intuition: Expensive sparse features largely duplicated across a user’s samples

81.6% of bytes are exact duplicates!

RecD: End-to-end deduplication optimizations

8

Feature
Engineering

Pipeline

Reader /
Preprocessing

Tier (CPUs)

Training Tier
(GPUs)

Storage Tier
(HDDs)

RecD improves storage, preprocessing, and training efficiency via deduplication

RecD Deduplication Optimizations

Key Insight: Upstream optimizations enable further downstream optimizations

New DLRM
Model

RecD: End-to-end deduplication optimizations

9

• Storage
• Coalesce duplicate samples to maximize deduplication potential

• Preprocessing
• Encode InverseKeyedJaggedTensors (IKJTs) to deduplicate each batch

• Training
• Accelerate DLRM training using IKJT-centered modules

Feature
Engineering

Pipeline

Reader /
Preprocessing

Tier (CPUs)

Training Tier
(GPUs)

Storage Tier
(HDDs)

RecD Deduplication Optimizations

New DLRM
Model

RecD: Coalesce DLRM training samples

10

Feature
Engineering

Pipeline

Reader /
Preprocessing

Tier (CPUs)

Training Tier
(GPUs)

Storage Tier
(HDDs)

RecD Deduplication Optimizations

New DLRM
Model

Challenge: How do we maximize deduplication potential of the entire pipeline?

RecD: Coalesce DLRM training samples

11

Training Samples
colored by User ID
(from Feature Eng.)

Table
Partition

Duplicate samples distributed
across billions of rows

RecD: Coalesce DLRM training samples

12

Re
cD

 C
lu

st
er

in
g

Training Samples
colored by User ID
(from Feature Eng.)

Distributed Storage Tier

Columnar File

Co
m

pr
es

si
on

Bl

oc
k

Co
m

pr
es

si
on

Bl

oc
k

Maximize duplication to improve storage and read I/O efficiency via compression

M
in

ib
at

ch

To Readers

M
in

ib
at

ch

To Readers

M
in

ib
at

ch

To Readers

M
in

ib
at

ch

To Readers

Table
Partition

RecD: Encode deduplicated
InverseKeyedJaggedTensors

13

Feature
Engineering

Pipeline

Reader /
Preprocessing

Tier (CPUs)

Training Tier
(GPUs)

Storage Tier
(HDDs)

RecD Deduplication Optimizations

New DLRM
Model

Challenge: How do we deduplicate downstream tensor operations?

Background: PyTorch KeyedJaggedTensors

14

feature_a

[3, 4, 5]

[3, 4, 5]

[3, 4, 5]

Reader

Ba
tc

h
Re

ad

Feature Conversion

Tr
an

sf
or

m
at

io
nkey: feature_a

values:
[3, 4, 5, 3, 4, 5, 3, 4, 5]

offsets: [0, 3, 6]

KeyedJaggedTensor

To Trainers

RecD: Encode InverseKeyedJaggedTensors

15

feature_a

[3, 4, 5]

[3, 4, 5]

[3, 4, 5]

Reader

Ba
tc

h
Re

ad

Feature Conversion

Tr
an

sf
or

m
at

io
n

key: feature_a

values: [3, 4, 5]

offsets: [0]

inverse_lookup: [0, 0, 0]

InverseKeyedJaggedTensor

To Trainers

RecD: Accelerate DLRM training

16

Feature
Engineering

Pipeline

Reader /
Preprocessing

Tier (CPUs)

Training Tier
(GPUs)

Storage Tier
(HDDs)

RecD Deduplication Optimizations

New DLRM
Model

Challenge: How do we leverage IKJTs to improve training throughput?

Background: DLRM training

17

Synchronous model parallel and data parallel training

RecD: Accelerate DLRM training

Plug-and-play modules that operate on IKJTs

18

KJT: [3, 4, 5, 3, 4, 5, 3, 4, 5]

IKJT: [3, 4, 5]

RecD

RecD: Accelerate DLRM training

19

feature_a

[3, 4, 5]

[3, 4, 5]

[3, 4, 5]

Results

20

RecD improves production training, preprocessing, and storage efficiency on
average by 72%, 51%, and 216%, respectively.

Storage efficiency

• Higher native compression ratios

21

Reader efficiency

• Better storage compression for reading/extraction
• Eliminate redundant transformations

22
Reader CPU time/sample versus baseline

Trainer efficiency

• Smaller all-to-all data transfers
• Fewer GEMMs for pooling operations

23

Trainer iteration latency versus baseline

Summary

• DLRM datasets exhibit high sparse feature duplication, leading
to massive inefficiencies in training pipelines.

• RecD is a suite of end-to-end deduplication optimizations
targeting storage, preprocessing, and training.

• RecD improves training, preprocessing, and storage efficiency by
72%, 51%, and 216%, respectively.

24

myzhao@cs.stanford.edu

25

Scaling hyperparameters

26

RecD reduces GPU resource requirements, unlocking more complex models

27

28

29

30

31

Discussion

• Boosting deduplication factors
• Alternative Solutions
• Partial deduplication

32

RecD: Encode InverseKeyedJaggedTensors

33

feature_
b

feature_
c

[7, 8] [10]

[7, 8] [10]

[9] [11]

DPP Reader

Ba
tc

h
Re

ad

Feature Conversion

Tr
an

sf
or

m
at

io
n

keys: feature_b, feature_c

b: {values: [7, 8, 9]
 offsets: [0, 2]}
c: {values: [10, 11],
 offsets: [0, 1]}

inverse_lookup: [0, 0, 1]

InverseKeyedJaggedTensor

To Trainers

Key deduplication challenges

34

• How do we coalesce duplicate samples into a training
batch?

• When and how do we encode duplicate sparse features?

• How can we exploit deduplication to improve training
throughput?

