RecD: Deduplication for End-to-End Deep
Learning Recommendation Model Training

Infrastructure

Mark Zhao', Dhruv Choudhary, Devashish Tyagi, Ajay Somani, Max Kaplan, Sung-Han Lin, Sarunya
Pumma, Jongsoo Park, Aarti Basant, Niket Agarwal, Carole-Jean Wu, and Christos Kozyrakis

"Stanford University, Meta

Sixth Conference on Machine Learning and Systems (MLSys 2023)

Machine Learning at Meta

facebook

Suggested for You

o Healthy Eats Chicago
Thurs 4PN QD

Just published: our list of the top 10 new
restaurants in Chicago.

Why You're Seeing This Post

[~ People who interacted with this post
also recently interacted with a post
from Jasper's Market

@ Posts are suggested based on what may be

relevant to you. These suggestions are not

paid for. Instead they're influenced by

things like your past interactions on

Facebook. Get More Info © You reacted to a post from Jasper’s Market 2
CHICAGO HEALTHYEATS COM weeks ago

The Best Restaurants in Chicago in 2020

OO 25 Manage What You See in News Feed @ Jasper's Market

o Like o Healthy Eats Chicago Manage v and

~e climbers.crag - Follow 9% okayafrica & - Follow A gikamofiage - Follow © Edit Your News Feed Preferences &% People whe interacted with the same post
Eric Kiwi from Jasper’s Market also interacted with
B N Belay reciation D: e greeting the weekend like... more 1 hope he under: - " this post suggested for you

" SHAED - Trampoline (Ja. I udio africa - ¢ y 1l moflage - Original A..djkar Meet my new puppy Link!

@ Healthy Eats Chicago
Just published: our st of the top 10
< n Chicago

Deep Learning Recommendation Models (DLRMs) are business-critical and dominate Al training demand

End-to-End DLRM training infrastructure

Models
// Training Job \‘
Recommendation Features & Training Training! :
ecommenaatio Outcomes Samplegs sarpleg | fersop :
Request I :
9 > G : ity Training Tier :
EEE ——tp Preprocessin
- . e i ® (GPUs) |}
R 1| Tier (CPUs) I
Users
Inference d ;
Recommendation Tier .~ e ——— -

User & Item
Features

(L

Feature
Store

End-to-end infrastructure optimization

Storage, preprocessing, and training each require immense infrastructure resources

1
RM1 : Storage
RM?2 : Pre!or.ocessmg
I Training
RM3 |
0 20 40 60 80 100

Percent of Total Power

Our approach: Co-design efficiency optimizations across the end-to-end pipeline to
continue scaling ML systems

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22

Understanding DLRM datasets

DLRM Dataset Table

Features Label
map<feature_id: value> int

Sparse Feature:
Last N liked post IDs

Inference Tier No

last_n_liked: [31, 55, 17, ...]

[31, 55,17, ..]

0
\

No

Like last_n_liked: [31,55,17,..] |0
last_n_liked: [31, 55, 17, ...]

v

[31, 55,17, ..]

Alice

last_n_liked: [31, 55, 17, ...]

[31, 55, 17, ...]

v

last_n_liked: [31, 55, 17, ...]

last_n_liked: [31, 55, 17, ...]

[42,31, 55,17, ...]

Understanding DLRM datasets

DLRM Dataset Table

Features
map<feature_id: value>
last_n_liked: [31, 55, 17, ...]
Many other sparse features
e.g., {comment/share/post} last_n_liked: [31, 55, 17, ...]
history, device type, etc.

last_n_liked: [31, 55, 17, ...]

Intuition: Many sparse features are infrequently updated across a user’s
samples, resulting in high duplication

Understanding DLRM datasets: 7% duplication

Intuition: Expensive sparse features largely duplicated across a user’s samples

100

==
\

0 200 400 600 733
Feature Index

~
Ul

81.6% of bytes are exact duplicates!

N
Ul

% Exact Dup.
(2
o

o

Opportunity:
Address overheads caused by duplicate sparse features via deduplication

RecD: End-to-end deduplication optimizations

RecD improves storage, preprocessing, and training efficiency via deduplication

Feature
Engineering =
Pipeline

A
]

Storage Tier
(HDDs)

=

Reader /
Preprocessing
Tier (CPUs)

Training Tier
(GPUs)

RecD Deduplication Optimizations

New DLRM
Model

Key Insight: Upstream optimizations enable further downstream optimizations

RecD: End-to-end deduplication optimizations

« Storage

» Coalesce duplicate samples to maximize deduplication potential

* Preprocessing

* Encode InverseKeyedJaggedTensors (IKJTs) to deduplicate each batch

* Training

* Accelerate DLRM training using IKJT-centered modules

Feature

Engineering =——t—>

Pipeline

A
v
: el Training Tier
Storage Tier » Preprocessing (GPSS)
(HDDs) Tier (CPUs)
v
\
|

RecD Deduplication Optimizations

New DLRM
Model

RecD: Coalesce DLRM training samples

Feature Reader / . . :
Engineering — —| Preprocessing (——| R ET —— MCU Y
Pipeline Tier (CPUs)

Y
RecD Deduplication Optimizations

Challenge: How do we maximize deduplication potential of the entire pipeline?

RecD: Coalesce DLRM training samples

Training Samples
colored by User ID
(from Feature Eng.)

==

Duplicate samples distributed
across billions of rows

Table
Partition |

|

RecD: Coalesce DLRM training samples

Distributed Storage Tier
Training Samples § I
colored by User ID A Columnar File _‘.é" {= mmmm) To Readers
. 1 S L .
(from Feature Eng.) _ S
N i} —
| §§ I -:f% g —
| S = __ I
I léo g_ = .g - mm=m) To Readers
I "= I £ | N
E— 9 S — S | —
I -
Table — L ﬁ _ EEee——) .
Partition | O S — S
I = [8 |
% ﬁi‘a | -g - mmmm) To Readers
- = £ o J I = _—
— & Sa | m—— s -
I o I
(| et I <
_ I — I £ [
o | NS mmmm) To Readers
T | I
c
S [I
E -

Maximize duplication to improve storage and read 1/O efficiency via compression

12

RecD: Encode deduplicated
InverseKeyedJaggedTensors

F r Reader .
e.atu 6.? / Training Tier New DLRM
Engineering —»| Preprocessing —t—> ——p
.] (GPUs) Model
Pipeline Tier (CPUs)

|)
|

RecD Deduplication Optimizations

Challenge: How do we deduplicate downstream tensor operations?

Background: PyTorch KeyedJaggedTensors

Reader

Feature Conversion

®)
[3r4r5] .g
values: = .
3, 4, 5] (3, 4, 5, 3, 4, 5, 3, 4, 5] 5 > To Trainers
=
o
-

3,4, 5] /
offsetst 0,36

KeyedJaggedTensor

RecD: Encode InverseKeyedJaggedTensors

Reader

Feature Conversion

c
o)
© 2
[3, 4, 5] 5 values: ©
2 &

3,4,5 / = » To Trainers
[] § offsets: “{,9,
inverse lookuprt 676501 =

InverseKeyedJaggedTensor

RecD: Accelerate DLRM training

Feature Reader / Training Tier New DLRM
Engineering Preprocessing > (GPUSs) > Model
Pipeline Tier (CPUs)

Y
RecD Deduplication Optimizations

Challenge: How do we leverage IKJTs to improve training throughput?

Background: DLRM training

Synchronous model parallel and data parallel training

All-to-All &
GPU 1 All-to-Al All-to-Al AllReduce pjReduce
= Global Batch
0 g D= Size Bot. MLP
a a ;-'-;--- — de
IB-OfaI‘Il (%§ | ¢ Feature Top MLP | ::
atc D {Interaction { bwd | &
= ' ,’ /[EmB
83 14 bwd
L '
|
GPUN [: |
m Global Batch : N
g g ‘I Size S _8 '.‘ :' ‘I{Bot. MLP
s 3 —— M = \ v bwd
Local & 8 Y £ s . § Feature
Batch _ — Bottorn Interaction '\
0 g MLP EMB
C \ _J
£ 3 bwd
8 #

17

RecD: Accelerate DLRM training

Plug-and-play modules that operate on IKJTs

KJgT: [3, 4, 5, 3, 4, 5, 3, 4, 5]

RecD l

IKJT: [3, 4, 5]

All-to-All &
GPU 1 Al-to-Al All-to-All AllReduce alIRgduce
o Global Batch
0 § Tz Size Bot. MLP
g 2 [0 R bwd
Local & LgL'g ngk T | Feature Top Top MLP)
Batch w u_‘—- SRS Interaction| | MLP bwd :
o O E ' b
3¢ A EMB
8§[I] ! bwd
X

SDD EMB LookupflEMB Activation Pooling EMB A2A Index Select
[INW] [[Mem BW] [[Mem] [JCompute] [INW] [[Mem/Mem BW]

——
RecD Optimizations and Savings

RecD: Accelerate DLRM training

feature_a

[3, 4, 5]
[3, 4, 5]
[3, 4, 5]

All-to-All &

GPU 1 Al-to-Al Al-to-Al AllReduce alIRgduce

: Global Batch
= Size

Bot. MLP
bwd

Local
Batch

i~

Feature
Interaction

Sparse
Features

Dense
Features

Top Top MLP
MLP bwd

A EMB |
' bwd

SDD EMB Lookup EMB Activatio Pooling EMB A2A Index Select
[INW] [[Mem BW] [{Mem] [INW] [[Mem/Mem BW]
L _J
RecD Optim;a‘ams and Savings

19

Results

ElE RM1 BN RM2 El RM3

Norm. Performance
= N

Trainer Throughput Reader Throughput Storage
Compression Ratio

System

RecD improves production training, preprocessing, and storage efficiency on
average by 72%, 51%, and 216%, respectively.

20

Storage efficiency

* Higher native compression ratios

B RM1 BN RM2 B RM3

Norm. Performance
= N

Trainer Throughput Reader Throughput

System

Storage
Compression Ratio

21

Reader efficiency

» Better storage compression for reading/extraction
* Eliminate redundant transformations

B BLFill BL Process [RecD Convert
B 8. Convert M RecD Fill RecD Process

=
N
&

=
o
S

Norm. CPU Time/Sample
o o
Ul ~
o a1

O
N
&

o
o
S

RM1 RM2 RM3
Model

Reader CPU time/sample versus baseline

22

Trainer efficiency

 Smaller all-to-all data transfers
* Fewer GEMMs for pooling operations

=
N
&

=
o
o

Normalized Latency
o £
a1 ~l
o ol

o
N
&

0.00

B BL Misc B 8L GEMM [RecD Misc RecD GEMM
I BLEVB BL A2A B RecD EMB RecD A2A
RM1 RM2 RM3
Model

Trainer iteration latency versus baseline

23

Summary

 DLRM datasets exhibit high sparse feature duplication, leading
to massive inefficiencies in training pipelines.

* RecD is a suite of end-to-end deduplication optimizations
targeting storage, preprocessing, and training.

* RecD improves training, preprocessing, and storage efficiency by
72%, 51%, and 216%, respectively.

myzhao@cs.stanford.edu

24

O\ Meta

Scaling hyperparameters

Norm. Comp.

Norm. Max Mem. Avg. :

Config. . : Efficiency

QPS Util. Mem. Util. (flop/s/GPU)
Baseline 1.00 99.90 72.83 1.00
RecD 1.89 27.76 22.20 1.73
RecD +
EMB D256 1.55 40.87 31.17 1.92
RecD +
B6144 2.26 91.78 51.55 2.12

RecD reduces GPU resource requirements, unlocking more complex models

26

Optimization Target System | Benefit

O1: Log Sharding | LoggingService | Improves black-box compression ratios to reduce LoggingService network RX/TX and
(84.1) storage demands.

02: Cluster by Ses- | ETL Session sample co-location enables readers/trainers to exploit duplicate features. Improves
sion (§4.1) file compression ratios, reducing storage and read IOPS demands.

03: Inverse KJTs | Readers New tensor encoding allows downstream preprocessing/training operations to use dedupli-
(84.2) cated features, enabling significant resource savings.

O4: Deduplicated | Readers IKJT preprocessing modules reduce preprocessing compute demands. Deduplicated
Preproc. (§4.3) outputs require less NW bandwidth between reader and trainers.

OS: Deduplicated | Trainers Reduced per-iteration trainer compute/memory/NW demands by deduplicating EMB
EMB (§5) features, lookups, and activations.

06: JaggedIndex- | Trainers Reduced memory copy overheads by enabling index select without first converting jagged
Select (85) tensors to a dense representation.

O7: Deduplicated | Trainers Reduced compute for sparse feature modules (esp. attention pooling) by allowing them to
Compute (§5) operate on deduplicated tensors.

27

Sparse Features Label
From a. [1’2]9 : ‘ ;.a . li ’d[9]
DistributedFS —> 0: |], ¢: [7, 8], d:[9]
a: [1,2],t], c: [10], d:[11] 1
|

1
0 } Batch Size

DatalLoader Config

sparse_features: [a],
dedup_sparse_features:

[[b], [c, d]]

Reader Nodes

[Batch Reading](7

\ 4

-

key: feature_a

values: [1, 2, 1, 2],
offsets: [0, 2, 2]

KeyedJaggedTensor

o

Feature Conversion

\

key: feature b
b: {values: [3, 4,5, 4, 5,
6],
offsets: [0, 3]},
inverse lookup: [0, 1, 0]

multikey: feature_c,d
c: {values:[7, 8, 10],
offsets: [0, 2]},
d: {values: [9, 11],
offsets: [0, 1]},
inverse_lookup: [0, 0, 1]

Inverse
KeyedJaggedTensor

Inverse

KeyedJaggedTensor /

2

Preprocessing

Preprocessed Tensors
KIT || 1KJT || IKIT

Y

[Trainer Nodes

28

N

Norm.
Throughput

1 .
0

Baseline

+ CT (02)

+ IKJT (03),
DE (0O5),
JIS (O6), B4096

+ DC (07)

+ B6144

29

Experiment Read Bytes (GB) Send Bytes (GB)
Baseline 538 837
with Cluster 179 837
with IKJT 179 713

30

DedupeLen(f) =1(f)* B*x (1 — (S —1)« S~ xd(f))
DedupeFactor(f) = I(f) * B/DedupLen(f)

31

Discussion

» Boosting deduplication factors
 Alternative Solutions
 Partial deduplication

32

RecD: Encode InverseKeyedJaggedTensors

DPP Reader

Feature Conversion

keys: feature b, feature c

feature_ -
b = b: {values: t%
c offsets: =

[7, 8] [10] % as JwRlies: 5 > To Trainers
[7, 8] [10] = offsets: c
o ©
[9] [11] -

InverseKeyedlJaggedTensor

Key deduplication challenges

« How do we coalesce duplicate samples into a training
batch?

 When and how do we encode duplicate sparse features?

 How can we exploit deduplication to improve training
throughput?

34

