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Deep Learning Recommendation Models (DLRMs) are business-critical and dominate Al training demand



End-to-End DLRM training infrastructure
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End-to-end infrastructure optimization

Storage, preprocessing, and training each require immense infrastructure resources
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Our approach: Co-design efficiency optimizations across the end-to-end pipeline to
continue scaling ML systems

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22



Understanding DLRM datasets

DLRM Dataset Table

Features Label
map<feature_id: value> int

Sparse Feature:
Last N liked post IDs

Inference Tier No

last_n_liked: [31, 55, 17, ...]

[31, 55,17, ..]

0
\

No

Like last_n_liked: [31,55,17,..] |0
last_n_liked: [31, 55, 17, ...]

v

[31, 55,17, ..]

Alice

last_n_liked: [31, 55, 17, ...]

[31, 55, 17, ...]

v

last_n_liked: [31, 55, 17, ...]

last_n_liked: [31, 55, 17, ...]

[42,31, 55,17, ...]



Understanding DLRM datasets

DLRM Dataset Table

Features
map<feature_id: value>
last_n_liked: [31, 55, 17, ...]
Many other sparse features
e.g., {comment/share/post} last_n_liked: [31, 55, 17, ...]
history, device type, etc.

last_n_liked: [31, 55, 17, ...]

Intuition: Many sparse features are infrequently updated across a user’s
samples, resulting in high duplication



Understanding DLRM datasets: 7% duplication

Intuition: Expensive sparse features largely duplicated across a user’s samples
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Opportunity:
Address overheads caused by duplicate sparse features via deduplication



RecD: End-to-end deduplication optimizations

RecD improves storage, preprocessing, and training efficiency via deduplication
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Key Insight: Upstream optimizations enable further downstream optimizations



RecD: End-to-end deduplication optimizations

« Storage

» Coalesce duplicate samples to maximize deduplication potential

* Preprocessing

* Encode InverseKeyedJaggedTensors (IKJTs) to deduplicate each batch

* Training

* Accelerate DLRM training using IKJT-centered modules
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RecD: Coalesce DLRM training samples
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Challenge: How do we maximize deduplication potential of the entire pipeline?



RecD: Coalesce DLRM training samples
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RecD: Coalesce DLRM training samples
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Maximize duplication to improve storage and read 1/O efficiency via compression
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RecD: Encode deduplicated
InverseKeyedJaggedTensors
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RecD Deduplication Optimizations

Challenge: How do we deduplicate downstream tensor operations?



Background: PyTorch KeyedJaggedTensors
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RecD: Encode InverseKeyedJaggedTensors
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RecD: Accelerate DLRM training
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Challenge: How do we leverage IKJTs to improve training throughput?



Background: DLRM training

Synchronous model parallel and data parallel training
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RecD: Accelerate DLRM training

Plug-and-play modules that operate on IKJTs

KJgT: [3, 4, 5, 3, 4, 5, 3, 4, 5]
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RecD: Accelerate DLRM training
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Results
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RecD improves production training, preprocessing, and storage efficiency on
average by 72%, 51%, and 216%, respectively.
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Storage efficiency

* Higher native compression ratios

B RM1 BN RM2 B RM3

Norm. Performance
= N

Trainer Throughput  Reader Throughput

System

Storage
Compression Ratio

21



Reader efficiency

» Better storage compression for reading/extraction
* Eliminate redundant transformations
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Trainer efficiency

 Smaller all-to-all data transfers
* Fewer GEMMs for pooling operations
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Summary

 DLRM datasets exhibit high sparse feature duplication, leading
to massive inefficiencies in training pipelines.

* RecD is a suite of end-to-end deduplication optimizations
targeting storage, preprocessing, and training.

* RecD improves training, preprocessing, and storage efficiency by
72%, 51%, and 216%, respectively.

myzhao@cs.stanford.edu
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Scaling hyperparameters

Norm. Comp.

Norm. Max Mem. Avg. :

Config. . : Efficiency

QPS Util. Mem. Util. (flop/s/GPU)
Baseline 1.00 99.90 72.83 1.00
RecD 1.89 27.76 22.20 1.73
RecD +
EMB D256 1.55 40.87 31.17 1.92
RecD +
B6144 2.26 91.78 51.55 2.12

RecD reduces GPU resource requirements, unlocking more complex models
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Optimization Target System | Benefit

O1: Log Sharding | LoggingService | Improves black-box compression ratios to reduce LoggingService network RX/TX and
(84.1) storage demands.

02: Cluster by Ses- | ETL Session sample co-location enables readers/trainers to exploit duplicate features. Improves
sion (§4.1) file compression ratios, reducing storage and read IOPS demands.

03: Inverse KJTs | Readers New tensor encoding allows downstream preprocessing/training operations to use dedupli-
(84.2) cated features, enabling significant resource savings.

O4: Deduplicated | Readers IKJT preprocessing modules reduce preprocessing compute demands. Deduplicated
Preproc. (§4.3) outputs require less NW bandwidth between reader and trainers.

OS: Deduplicated | Trainers Reduced per-iteration trainer compute/memory/NW demands by deduplicating EMB
EMB (§5) features, lookups, and activations.

06: JaggedIndex- | Trainers Reduced memory copy overheads by enabling index select without first converting jagged
Select (85) tensors to a dense representation.

O7: Deduplicated | Trainers Reduced compute for sparse feature modules (esp. attention pooling) by allowing them to
Compute (§5) operate on deduplicated tensors.
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Sparse Features Label
From a. [1’2]9 : ‘ ;.a . li ’d[9]
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DatalLoader Config

sparse_features: [a],
dedup_sparse_features:
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key: feature_a

values: [1, 2, 1, 2],
offsets: [0, 2, 2]

KeyedJaggedTensor

o

Feature Conversion
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key: feature b
b: {values: [3, 4,5, 4, 5,
6],
offsets: [0, 3]},
inverse lookup: [0, 1, 0]

multikey: feature_c,d
c: {values:[7, 8, 10],
offsets: [0, 2]},
d: {values: [9, 11],
offsets: [0, 1]},
inverse_lookup: [0, 0, 1]
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Experiment  Read Bytes (GB) Send Bytes (GB)
Baseline 538 837
with Cluster 179 837
with IKJT 179 713
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DedupeLen(f) =1(f)* B*x (1 — (S —1)« S~ xd(f))
DedupeFactor(f) = I(f) * B/DedupLen(f)
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Discussion

» Boosting deduplication factors
 Alternative Solutions
 Partial deduplication
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RecD: Encode InverseKeyedJaggedTensors

DPP Reader

Feature Conversion

keys: feature b, feature c
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Key deduplication challenges

« How do we coalesce duplicate samples into a training
batch?

 When and how do we encode duplicate sparse features?

 How can we exploit deduplication to improve training
throughput?
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