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Machine Learning at Meta
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Deep Learning Recommendation Models (DLRMs) are business-critical and dominate AI training demand



End-to-End DLRM training infrastructure 
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End-to-end infrastructure optimization
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Storage, preprocessing, and training each require immense infrastructure resources

Our approach: Co-design efficiency optimizations across the end-to-end pipeline to 
continue scaling ML systems 

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22



Understanding DLRM datasets
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Understanding DLRM datasets
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DLRM Dataset Table
Features 

map<feature_id: value>
Label

int

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 0

last_n_liked: [31, 55, 17, …] 1

Intuition: Many sparse features are infrequently updated across a user’s 
samples, resulting in high duplication

Many other sparse features 
e.g., {comment/share/post} 
history, device type, etc.



Understanding DLRM datasets: % duplication
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Opportunity: 
Address overheads caused by duplicate sparse features via deduplication

Intuition: Expensive sparse features largely duplicated across a user’s samples

81.6% of bytes are exact duplicates!



RecD: End-to-end deduplication optimizations
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RecD: End-to-end deduplication optimizations
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• Storage 
• Coalesce duplicate samples to maximize deduplication potential

• Preprocessing 
• Encode InverseKeyedJaggedTensors (IKJTs) to deduplicate each batch

• Training 
• Accelerate DLRM training using IKJT-centered modules
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RecD: Coalesce DLRM training samples
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Challenge: How do we maximize deduplication potential of the entire pipeline?



RecD: Coalesce DLRM training samples

11

Training Samples 
colored by User ID 
(from Feature Eng.)

Table 
Partition

Duplicate samples distributed 
across billions of rows 



RecD: Coalesce DLRM training samples
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RecD: Encode deduplicated 
InverseKeyedJaggedTensors
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Challenge: How do we deduplicate downstream tensor operations?  



Background: PyTorch KeyedJaggedTensors
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RecD: Encode InverseKeyedJaggedTensors
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RecD: Accelerate DLRM training
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Challenge: How do we leverage IKJTs to improve training throughput?  



Background: DLRM training
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Synchronous model parallel and data parallel training 



RecD: Accelerate DLRM training

Plug-and-play modules that operate on IKJTs
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KJT: [3, 4, 5, 3, 4, 5, 3, 4, 5]

IKJT: [3, 4, 5]

RecD



RecD: Accelerate DLRM training
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Results
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RecD improves production training, preprocessing, and storage efficiency on 
average by 72%, 51%, and 216%, respectively.



Storage efficiency

• Higher native compression ratios
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Reader efficiency

• Better storage compression for reading/extraction
• Eliminate redundant transformations
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Reader CPU time/sample versus baseline



Trainer efficiency

• Smaller all-to-all data transfers 
• Fewer GEMMs for pooling operations
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Trainer iteration latency versus baseline



Summary

• DLRM datasets exhibit high sparse feature duplication, leading 
to massive inefficiencies in training pipelines.

• RecD is a suite of end-to-end deduplication optimizations 
targeting storage, preprocessing, and training.

• RecD improves training, preprocessing, and storage efficiency by 
72%, 51%, and 216%, respectively.
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Scaling hyperparameters
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RecD reduces GPU resource requirements, unlocking more complex models
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Discussion

• Boosting deduplication factors
• Alternative Solutions
• Partial deduplication
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RecD: Encode InverseKeyedJaggedTensors
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Key deduplication challenges
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• How do we coalesce duplicate samples into a training 
batch?

• When and how do we encode duplicate sparse features?

• How can we exploit deduplication to improve training 
throughput?


