RecD: Deduplication for End-to-End Deep Learning Recommendation Model Training Infrastructure

Mark Zhao^{*}, Dhruv Choudhary, Devashish Tyagi, Ajay Somani, Max Kaplan, Sung-Han Lin, Sarunya Pumma, Jongsoo Park, Aarti Basant, Niket Agarwal, Carole-Jean Wu, and Christos Kozyrakis^{*} ^{*}Stanford University, Meta

Sixth Conference on Machine Learning and Systems (MLSys 2023)

Machine Learning at Meta

Deep Learning Recommendation Models (DLRMs) are business-critical and dominate AI training demand

End-to-End DLRM training infrastructure

End-to-end infrastructure optimization

Storage, preprocessing, and training each require immense infrastructure resources

Our approach: Co-design efficiency optimizations across the end-to-end pipeline to continue scaling ML systems

Understanding DLRM datasets

DLRM Dataset Table

	Features map <feature_id: value=""></feature_id:>	Label <i>int</i>
ny other sparse features , {comment/share/post} ory, device type, etc.	last_n_liked: [31, 55, 17,]	0
	last_n_liked: [31, 55, 17,]	0
	last_n_liked: [31, 55, 17,]	1

Ma e.g. hist

> Intuition: Many sparse features are infrequently updated across a user's samples, resulting in high duplication

Understanding DLRM datasets: % duplication

Intuition: Expensive sparse features largely duplicated across a user's samples

Opportunity:

Address overheads caused by duplicate sparse features via deduplication

RecD: End-to-end deduplication optimizations

RecD improves storage, preprocessing, and training efficiency via deduplication

Key Insight: Upstream optimizations enable further downstream optimizations

RecD: End-to-end deduplication optimizations

- Storage
 - Coalesce duplicate samples to maximize deduplication potential
- Preprocessing
 - Encode InverseKeyedJaggedTensors (IKJTs) to deduplicate each batch
- Training
 - Accelerate DLRM training using IKJT-centered modules

RecD: Coalesce DLRM training samples

Challenge: How do we maximize deduplication *potential* of the entire pipeline?

RecD: Coalesce DLRM training samples

RecD: Coalesce DLRM training samples

Maximize duplication to improve storage and read I/O efficiency via compression

RecD: **Encode** deduplicated InverseKeyedJaggedTensors

Challenge: How do we deduplicate downstream *tensor* operations?

Background: PyTorch KeyedJaggedTensors

RecD: Encode InverseKeyedJaggedTensors

RecD: Accelerate DLRM training

Challenge: How do we leverage IKJTs to improve training throughput?

Background: DLRM training

Synchronous model parallel and data parallel training

RecD: Accelerate DLRM training

Plug-and-play modules that operate on IKJTs

RecD: Accelerate DLRM training

feature_a		
[3, 4, 5]		
[3, 4, 5]		
[3, 4, 5]		

Results

RecD improves production training, preprocessing, and storage efficiency on average by 72%, 51%, and 216%, respectively.

Storage efficiency

• Higher native compression ratios

Reader efficiency

- Better storage compression for reading/extraction
- Eliminate redundant transformations

Reader CPU time/sample versus baseline

Trainer efficiency

- Smaller all-to-all data transfers
- Fewer GEMMs for pooling operations

Trainer iteration latency versus baseline

- DLRM datasets exhibit high sparse feature duplication, leading to massive inefficiencies in training pipelines.
- *RecD* is a suite of end-to-end deduplication optimizations targeting **storage**, **preprocessing**, and **training**.
- *RecD* improves training, preprocessing, and storage efficiency by **72%**, **51%**, and **216%**, respectively.

myzhao@cs.stanford.edu

Meta

Scaling hyperparameters

Config.	Norm. QPS	Max Mem. Util.	Avg. Mem. Util.	Norm. Comp. Efficiency (flop/s/GPU)
Baseline	1.00	99.90	72.83	1.00
RecD	1.89	27.76	22.20	1.73
RecD + EMB D256	1.55	40.87	31.17	1.92
RecD + B6144	2.26	91.78	51.55	2.12

RecD reduces GPU resource requirements, unlocking more complex models

Optimization	Target System	Benefit
O1: Log Sharding	LoggingService	Improves black-box compression ratios to reduce LoggingService network RX/TX and
(§4.1)		storage demands.
O2: Cluster by Ses-	ETL	Session sample co-location enables readers/trainers to exploit duplicate features. Improves
sion (§4.1)		file compression ratios, reducing storage and read IOPS demands.
O3: Inverse KJTs	Readers	New tensor encoding allows downstream preprocessing/training operations to use dedupli-
(§4.2)		cated features, enabling significant resource savings.
O4: Deduplicated	Readers	IKJT preprocessing modules reduce preprocessing compute demands. Deduplicated
Preproc. (§4.3)		outputs require less NW bandwidth between reader and trainers.
O5 : Deduplicated	Trainers	Reduced per-iteration trainer compute/memory/NW demands by deduplicating EMB
EMB (§5)		features, lookups, and activations.
O6: JaggedIndex-	Trainers	Reduced memory copy overheads by enabling index select without first converting jagged
Select (§5)		tensors to a dense representation.
07 : Deduplicated	Trainers	Reduced compute for sparse feature modules (esp. attention pooling) by allowing them to
Compute (§5)		operate on deduplicated tensors.

Experiment	Read Bytes (GB)	Send Bytes (GB)
Baseline	538	837
with Cluster	179	837
with IKJT	179	713

$$DedupeLen(f) = l(f) * B * (1 - (S - 1) * S^{-1} * d(f))$$
$$DedupeFactor(f) = l(f) * B/DedupLen(f)$$

Discussion

- Boosting deduplication factors
- Alternative Solutions
- Partial deduplication

RecD: Encode InverseKeyedJaggedTensors

Key deduplication challenges

How do we coalesce duplicate samples into a training batch?

• When and how do we **encode** duplicate sparse features?

• How can we **exploit** deduplication to improve training throughput?