
SAFE OPTIMIZED STATIC MEMORY ALLOCATION
FOR PARALLEL DEEP LEARNING

Ioannis Lamprou1 Zhen Zhang1 Javier de Juan1 Hang Yang1

Yongqiang Lai2 Etienne Filhol1 Cedric Bastoul1

1Huawei Technologies France 2Huawei Technologies China

MLSys 2023, June 5th, Miami Beach, FL, USA



Safe Optimized Static Memory Allocation for Parallel Deep Learning 2

Motivation

Outline

1 Motivation

2 Problem Description

3 Multi-Stream Safety

4 Offset Assignment

5 Experimental Results



Safe Optimized Static Memory Allocation for Parallel Deep Learning 3

Motivation

Memory for Deep Neural Nets (DNNs)

Why Care?

▶ Large-scale era: deeper and wider neural networks
▶ Potent AI accelerators, yet with limited memory
▶ Fit whole model onto fewer devices



Safe Optimized Static Memory Allocation for Parallel Deep Learning 4

Motivation

Static Execution for Parallel

Benefits

▶ Compile on host, then load and execute on device
▶ Avoid OOM, fragmentation, reallocation, relaunching
▶ Tune the parallelism strategy for large models!



Safe Optimized Static Memory Allocation for Parallel Deep Learning 5

Problem Description

Outline

1 Motivation

2 Problem Description

3 Multi-Stream Safety

4 Offset Assignment

5 Experimental Results



Safe Optimized Static Memory Allocation for Parallel Deep Learning 6

Problem Description

From Offset Calculation ... MXNet [Chen et al., 2015]
Chainer [Sekiyama et al., 2018]
TF Lite [Lee et al., 2019, Pisarchyk and Lee, 2020]

La = [1, 3], Lf = [4, 6], therefore a and f safe to overlap

Definition 1 (Offset Calculation).

Given a topologically sorted DNN, return a start offset for each
tensor, such that no two tensors t1, t2, where Lt1 ∩ Lt2 ̸= ∅,
overlap in memory and the total footprint is minimized.



Safe Optimized Static Memory Allocation for Parallel Deep Learning 7

Problem Description

... to Offset Calculation for Parallel

Topological sorting valid only within stream: a and f unsafe to overlap

Definition 2 (Offset Calculation for Parallel).

Given a multi-stream DNN, return a start offset for each
tensor, so that no two tensors overlap, if they might be needed
simultaneously in memory, and the total footprint is minimized.



Safe Optimized Static Memory Allocation for Parallel Deep Learning 8

Problem Description

Offset Calculation for Parallel

Challenges

▶ Global lifetime cannot determine safe reuse
▶ Time complexity ↓ to enable parallel strategy tuning
▶ Capture general parallelism scenario

Contributions

▶ Fast computing of provably safe memory reuse constraints
▶ Fast offset assignment, while (nearly) optimal footprint
▶ Validation in open-source framework MindSpore (SOMAS)



Safe Optimized Static Memory Allocation for Parallel Deep Learning 9

Multi-Stream Safety

Outline

1 Motivation

2 Problem Description

3 Multi-Stream Safety

4 Offset Assignment

5 Experimental Results



Safe Optimized Static Memory Allocation for Parallel Deep Learning 10

Multi-Stream Safety

The Problem

Definition 3 (Safe Pair).

An unordered pair of tensors {t1, t2} is called a safe pair if
there is no need to maintain t1 and t2 concurrently in memory
for any potentially realized parallel execution of the DNN.

Definition 4 (Multi-Stream Safety).

Given a multi-stream DNN, for each pair of tensors {t1, t2}
decide whether {t1, t2} is a safe pair.



Safe Optimized Static Memory Allocation for Parallel Deep Learning 11

Multi-Stream Safety

Graph-based

▶ DestNodes[a] = {2, 3}
▶ AncNodes[source(f )] = {1, 2}
▶ a ̸∈ AncTensors[f ]

▶ Computational graph G = (N,A) and tensor set T
▶ AncNodes[n] := {n′ ∈ N | there is a path from n′ to n}
▶ DestNodes[t ] := {n′′ ∈ N |n′′ receives tensor t}

AncTensors[t ] := {t ′ ∈ T |DestNodes[t ′] ⊆ AncNodes[source(t)]}

{t1, t2} safe pair if t1 ∈ AncTensors[t2] or t2 ∈ AncTensors[t1]



Safe Optimized Static Memory Allocation for Parallel Deep Learning 12

Multi-Stream Safety

Stream-based

Input: A DNN stream set S and tensor set T .
Output: A set U′′ ⊆

(T
2

)
of unsafe pairs.

1 U ←
(T

2

)
;

2 U′ ← AncestorStreamsReuse(S,T ,U);
3 U′′ ← SameStreamReuse(S,T ,U′);
4 return U′′;

Idea: Stream graph

▶ Pairs of tensors in unrelated streams unsafe by default
▶ Only check safe pairs for sources in ancestor/same stream
▶ DestStreams[t ′] ⊆ AncStreams[stream(t)]

Theorem 5.

Stream-based solves Multi-Stream Safety



Safe Optimized Static Memory Allocation for Parallel Deep Learning 13

Offset Assignment

Outline

1 Motivation

2 Problem Description

3 Multi-Stream Safety

4 Offset Assignment

5 Experimental Results



Safe Optimized Static Memory Allocation for Parallel Deep Learning 14

Offset Assignment

Contiguous Constraints

▶ Set of Contiguous Constraints {C1,C2, . . . , ,Cl}
▶ Ci = [ti,1, ti,2, . . . , ti,ki ]

▶ offset(ti,j) = offset(ti,j−1) + size(ti,j−1) for all j = 1,2, . . . ki

▶ Tensor concatenation may not be possible (tensor shapes)
▶ “Union” of safe pairs may overprotect (5% in ResNet50)



Safe Optimized Static Memory Allocation for Parallel Deep Learning 15

Offset Assignment

The Problem

Definition 6 (Offset Assignment for Parallel).

Given a set of tensors, a set of unsafe pairs and contiguous
constraints, return a start offset for each tensor so that
▶ any two tensor offset intervals do not overlap if unsafe
▶ all contiguous constraints are respected, and
▶ the total footprint is minimized.



Safe Optimized Static Memory Allocation for Parallel Deep Learning 16

Offset Assignment

Key Concepts

Algorithm Design

1 Sort blocks of tensor(s) according to some criteria
2 Determine forbidden offset intervals for current block

Special care for contiguous: if {E ,B} unsafe, E unsafe start on [5, 14],
so D unsafe start on [−3, 6], i.e., on [0, 6]

3 Decide offset interval for current block out of safe ones



Safe Optimized Static Memory Allocation for Parallel Deep Learning 17

Offset Assignment

From Single Object ...



Safe Optimized Static Memory Allocation for Parallel Deep Learning 18

Offset Assignment

... to Many Objects

Iterate steps 2,3 within each object until placement, do not examine whole space.
Break if unsafe with object-spanning block. If no placement possible, create new object.



Safe Optimized Static Memory Allocation for Parallel Deep Learning 19

Experimental Results

Outline

1 Motivation

2 Problem Description

3 Multi-Stream Safety

4 Offset Assignment

5 Experimental Results



Safe Optimized Static Memory Allocation for Parallel Deep Learning 20

Experimental Results

Multi-Stream Safety

Multi-Stream Safety tested in MindSpore on Ascend 910 (solving time in milliseconds)

Network Graph Based Stream Based Speedup

BERT-base 957 620 ~35%
BERT-large 4043 2289 ~43%
BERT-nezha 5275 2959 ~44%
FaceRecognition 1376 845 ~39%
PanGu-α (2.6B) 13845 10359 ~25%
ResNet-50 32 20 ~38%
Tiny-BERT 143 96 ~33%
FaceDetection 693 546 ~21%
Transformer 720 568 ~21%
MobileNetv2 57 42 ~26%



Safe Optimized Static Memory Allocation for Parallel Deep Learning 21

Experimental Results

Offset Assignment I

Training experiments: peak memory in GB, solving time (milliseconds) in italic

BERT-base BERT-large BERT-nezha FaceRecognition PanGu-α (2.6B)
Memory Usage

Naïve Allocation 42.7816 83.3553 61.5739 77.6916 1349.1400
Single Object (SO) 13.5119 24.9171 14.7778 15.7456 18.4541
Many Objects (MO) 13.5121 24.9172 14.7854 15.7797 18.4541
Lower Bound (LB) 13.5119 24.9171 14.6860 15.7456 18.4541

Memory Error
MO to SO 0.00148% 0.00040% 0.05143% 0.21656% 0%
min(SO,MO) to LB 0% 0% 0.62509% 0% 0%

Solving Time
Single Object (SO) 600 3596 4161 2925 15478
Many Objects (MO) 316 2090 2185 869 12586
MO to SO gain ~47% ~42% ~48% ~70% ~19%



Safe Optimized Static Memory Allocation for Parallel Deep Learning 22

Experimental Results

Offset Assignment II

Training experiments: peak memory in GB, solving time (milliseconds) in italic

ResNet-50 Tiny-BERT FaceDetection Transformer MobileNetv2
Memory Usage

Naïve Allocation 3.3598 5.17475 13.5162 34.2267 64.1832
Single Object (SO) 1.4133 0.70180 3.19949 7.54506 17.6506
Many Objects (MO) 1.4132 0.69726 3.20942 7.54506 17.6662
Lower Bound (LB) 1.4056 0.68938 3.19949 7.54506 17.6423

Memory Error
MO to SO -0.00708% -0.64690% 0.31036% 0% 0.08838%
min(SO,MO) to LB 0.54069% 1.14306% 0% 0% 0.04705%

Solving Time
Single Object (SO) 49 101 808 317 611
Many Objects (MO) 29 44 424 152 158
MO to SO gain ~41% ~56% ~48% ~52% ~74%



Safe Optimized Static Memory Allocation for Parallel Deep Learning 23

Experimental Results

Large model with Contiguous Constraints

Training experiment: PanGu-α large model (400-700 contiguous constraints)

PanGu-α (8B) PanGu-α (13B)

Baseline (MindSpore before our solution) 27.36 31.72
Our Best Result 14.76 25.08
Lower Bound 14.68 24.95

Memory Error
Our result to Baseline -46.05% -20.92%
Our result to Lower Bound 0.54% 0.55%



Safe Optimized Static Memory Allocation for Parallel Deep Learning 24

Experimental Results

Conclusion

Recap

▶ Enable generalized static parallel deep learning
▶ Safe pairs determining for Multi-Stream Safety
▶ Many Objects (with contiguous) for Offset Assignment

Future Work

▶ Choice of multi-streaming
▶ Global/local topological sorting

Thank you!



Safe Optimized Static Memory Allocation for Parallel Deep Learning 24

Experimental Results

Conclusion

Recap

▶ Enable generalized static parallel deep learning
▶ Safe pairs determining for Multi-Stream Safety
▶ Many Objects (with contiguous) for Offset Assignment

Future Work

▶ Choice of multi-streaming
▶ Global/local topological sorting

Thank you!



Safe Optimized Static Memory Allocation for Parallel Deep Learning 25

Experimental Results

References

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274, 2015.

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh, Fabio Riccardi, Raman Sarokin,
Andrei Kulik, and Matthias Grundmann. On-device neural net inference with mobile gpus. arXiv preprint
arXiv:1907.01989, 2019.

Yury Pisarchyk and Juhyun Lee. Efficient memory management for deep neural net inference. arXiv preprint
arXiv:2001.03288, 2020.

Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. Profile-guided memory optimization for deep
neural networks. arXiv preprint arXiv:1804.10001, 2018.


	Motivation
	Problem Description
	Multi-Stream Safety
	Offset Assignment
	Experimental Results
	References

