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Embedding Table Sharding Problem

e Problem Setting
e Given N number of embedding tables, output a sharding plan that decides 1)
partitioning which tables, and 2) how to place them on GPU devices.
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Our Proposal “Pre-train, and Search”
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e Why neural networks?
* The computation and communication costs have a nonlinear correlation with
the sum of the costs of the individual tables.
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Key Challenges

e Challenges
e How to collect data and pre-train?
e How to search (NP-hard problem).

e Solution
¢ Neural cost models
e Nested search process
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Neural Cost Models
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Nested Search Process

e Key observations
¢ \When partitioning a table into two halves column-wisely, the computation
cost of each shard is larger than half the cost of the original table (left figure).
e The max forward/backward communication cost among all the GPUs
positively correlates with the max device dimension among all the GPUs

(right figure).
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Nested Search Process

e Key ideas
¢ |[n the outer loop, use beam search to perform column-wise sharding.
e |n the inner loop, use “greedy grid-search”, i.e., 1) use max dimension as the
proxy of communication cost and do grid search, and 2) use greedy
algorithm (with max dimension as constraint) to assign tables.
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Results

e Settings
¢ 800+ tables sharded on 128 GPUSs.

; : Embedding Cost | Training Throughput
Sharding ~lganthm (Milliseconds) Improvement
Random 118.3 -
Size-based 107.6 +4.0%
Heuristic Dim-based 90.8 +13.9%
Lookup-based 102.4 +11.9%
Size-lookup-based 109.2 +12.8%
Reinforcement Learning AutoShard 86.6 +32.4%
DreamShard 61.6 +45.3%
Planning TorchRec 86.4 +34.6%
Proposed NeuroShard 55.2 +54.9%
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Summary and Takeaways

e Embedding table sharding problem
e Placing a large number of embedding tables on hundreds of (GPU) devices.
e Challenges: cost estimation, NP-hardness.

e Our contributions
e NeuroShard with neural cost models and a nested search process.
¢ \/alidated its effectiveness on both open-sourced and production data.
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