servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-First Pipeline Parallelism

Joel Lamy-Poirier

ServiceNow Research, Montreal, Canada

June 6, 2023

servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Our guest: high GPU utilization and small batch sizes

Problem: Current methods for training large language models need a to
achieve a high (computational efficiency), yet runs faster
with

Small batch, low efficiency

Larger batch sizes slow down the convergence of SGD. More Large batch, high eficiency
training samples are needed to reach the same validation loss.

Optimal

Empirical model: The training length depends on the ratio
between the batch size and the empirical

Batch Size
ritical Batch

Samples oc 1+ &

Scaling the cluster: \When scaling the cluster, the GPU
utilization mainly depends on the :

ofo/

Cost o Utilization™(8) (1 + BumGPls) |
Cost

Time Num GPUs*

Training cost (relative)

Trade-off: The training time and cost
. We want to by
for a

Training time (relative)

servicenow.

The good old methods won't do!

Data parallelism: needs help...
At small batch sizes, data-parallel training is bottlenecked by the

Breadth-First Pipeline Parallelism

Joel Lamy-Polrier

Looooong gradient regluction —

GPU O 0

i’

(Layers 0-15) (

)

GPU 1 1

i’

(Layers 0-15) (

)

GPU 2 2 | 2| 2| 2 2 2 2 2

i’

(Layers 0-15) (

Sy}

GPU 3 3 (13|33 3 3 3 3

i’

(Layers 0-15) (

)

Pipeline parallelism: still struggling...
At small batch sizes, adding pipeline parallelism (or
Good pipeline overla Large bubble
pIp \IO ge r

) leads to a

4

and

Shorter reductign, bad overlap

GPU O 0/112/3/4\5|6|7

(Layers 0-3)

F

GPU 1 0

(Layers 4-7)

F

GPU 2 0

(Layers 8-11)

GPU 3 0

(Layers 12-15)

Layers 0-3
Forward (0-7)

Layers 4-7
Backward (0-7) / Reduce (G)

I Device / stream

Time

Layers 8-11

= Optimizer step (S)

Layers 12-15

servicenow.

Breadth-First Pipeline Parallelism

Bending the pipes

The solution: looping the pipeline
We replace the few large stages by

, looping around the pipeline multiple times. This allows for a

, even

with a . This comes at the cost of
GPUO|O|1 |23 GPU O 4 8 12
GPU 1 4|15 106 |7 GPU 1 5 9 13
GPU 2 819 (10|11 GPU 2 6 10 14
GPU 3 12113(14|15 GPU 3 7 11 15
I Device T Device
Layer (a) Standard Layer (b) Looping
Depth-first (interleaved): almost there!
The depth-first schedule (Megatron-LM), running , shrinks the bubble but has a
Bad pipeline overlap Small bubble Moderate redkuction overlap
GPU 0 '
(Stages 0, 4, 8, 12) G G G G
GPU 1
(Stages 1, 5, 9, 13) G G G G
GPU 2
(Stages 2, 6, 10, 14) G G G
GPU 3
(Stages 3, 7, 11, 15) G G G
Layers 0-3 Layers 4-7 Layers 8-11 Layers 12-15

I Device / stream

Time

Forward (0-7)

Backward (0-7) / Reduce (G)

Optimizer step (S) Idle

Joel Lamy-Polrier

servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Our method: Breadth-First Pipeline Parallelism

Breadth-first schedule: that’s the one!

A breadth-first, running , schedule keeps the small bubble but has a
Good pipeline overlap Small bubble Great reduction overlap
GPU O
(Stages 0, 4, 8, 12) G G G G
GPU 1
(Stages 1, 5, 9, 13) G G G G
GPU 2
(Stages 2, 6, 10, 14) G G G G F
GPU 3
(Stages 3, 7, 11, 15) G G G G F
Device / stream Layers 0-3 Layers 4-7 Layers 8-11 Layers 12-15
’ Forward (0-7) Backward (0-7) / Reduce (G) = Optimizer step (S) Idle
Time

How about memory?

For , our method has the of all pipeline-parallel methods, providing for choosing better
training configurations:

Weights, gradients and training state: Unlike other pipeline-parallel methods, Breadth-First pipeline parallelism
(ZeRO-3). This allows training very large models with small pipelines.

Activations and checkpoints: At small batch sizes, all pipeline-parallel methods use the

servicenow.

Breadth-First Pipeline Parallelism

How far we went

Data-parallel

Looooong gragient reduction

Joel Lamy-Polrier

GPU 0 ol oo [0 NN o N
(Layers 0-15) G | G] G] G
GPU 1 I 1] (1 e
(Layers 0-15) G | G] G] G
GPU 2 211 12[[1211 2] 2 | 2] 12]]
(Layers 0-15) G | G] G] G
GPU 3 311333 BN 3 | 31] 3]
(Layers 0-15) G \ G | G | G
Pipeline-parallel (GPipe)
Good pipeline overlap Large Pubble Shorter reductign, bad overlap
GPU 0 O[1[23[45[6]7] TR BB [T P
(Layers 0-3) G
GPU 1 [0]1]2]3]4]|5]6]7] [0/ [I1]2/ 3]] 4] 5]6]7 F
(Layers 4-7) G
GPU 2 [0]1]2]3]4]|5]6]7] [TO[IL]]12]]13]]14]]I5]]]6]]]T F
(Layers 8-11) G
GPU 3 [o[[2[3[a]5 67 NORN RSN NS Ne T | 5
(Layers 12-15) G \

Bad pipeline overlap Small bubble

GPUO
(Stages 0, 4, 8, 12)
GPU 1
(Stages 1, 5, 9, 13)
GPU 2
(Stages 2, 6, 10, 14)
GPU 3
(Stages 3, 7, 11, 15)

I_M

Depth-first

Moderate reduction overlap

Il

1R T S M RIAIRIAIRIAIRIARIAIRIAIELA

INEARINIRNI
G| G

G

G

T TR R SR NN MRTN (NI MIRTRIEIR

HININARININNRINE

G | G| G| G

TR TR ST TN M TN R RIRTR A1

IRTNARIATHN NN
G | G| G

I AT A e e R P T T e e

HIRINERN{ANRINE
G | G| G| G

.

Good pipeline overlap Small bubble

GPUO
(Stages 0, 4, 8, 12)
GPU 1
(Stages 1, 5, 9, 13)
GPU 2
(Stages 2, 6, 10, 14)
GPU 3
(Stages 3, 7, 11, 15)

I Device / stream

Time

Breadth-first

Great reduction overlap

P e
TR ECEACE A L P
G [| ¢][] 6][&
EEETATETFCFRCACFAT AR T T L L TP
G || G ||] G || G
FEAEFAT e T P TP

é | g | é [IG

TN SR BR R R

L]
|

| |
[l 6 [l 6

Layers 0-3
Forward (0-7)

Layers 4-7

Backward (0-7) / Reduce (G) "

Layers 8-11
Optimizer step (S)

Layers 12-15
Idle

servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first loops better

45.0 ~ 45.0 ~
42.5 42.5
X 40.0 - X 40.0 -
C C
2 37.5 A 2 37.5 A
g g
= 35.0 - = 35.0 -
> -]
% 32.5 - é 32.5 -
30.0 - 30.0 -
27 5 27 5 - Breadth.-flrst
Depth-first
25.0 1 1 . 25.0 4 1 1 1
1 2 4 8 1 2 4 8
Stages per device Stages per device
(a) Batch size 16 (b) Batch size 64

Figure 2. Comparison of looping schedule efficiencies for different number of loops. Both methods help with the pipeline
bubble, which is higher for small batch sizes, but the depth-first does it at the expense of network overhead. (52 B model,
TP = PP =8, DP = 1, micro-batch size = 1)

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected
with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).

servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first is better at small batch sizes

50 ~ 50 ~
45 - 45 -
S < S
- 40 - \9 ~ 40 -
0 0
N 35 - N 35 -
5 5
o 30 - 5 30 -
& & ® Breadth-first (ours)
25 - 25 - Depth-first (Megatron-LM)
Non-looped (GPipe/1F1B)
20 - 20 A ¢ No pipeline (Sharded)
| | | | | | | | | | | |
1/8 1/4 1/2 1 2 4 8 1/2 1 2 4 8
Batch size / GPU Batch size / GPU
(a) 52 B model (b) 6.6 B model

Figure 3. Comparison the efficiency of each method as a function of the batch size (per GPU). Each data point represents an
optimal configuration found through an extensive search over the configuration space. Breadth-First Pipeline Parallelism
outperforms other methods for smaller batch sizes.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected
with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).

servicenow. Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first trains faster and for cheaper

! \ [! H H
/| —— Breadth-first (ours)

\ Depth-first (Megatron-LM)
Non-looped (GPipe/1F1B)
—-— No pipeline (Sharded)

~

o
1
~

o)}
o
1
(o)}
1

Training cost (x1000 GPU-days)
Training cost (x1000 GPU-days)
U1

50 -
4 -
40 -
3 -
30 ~
2 -
| | | | | |
4 8 16 32 64 128 256 1 2 4 8 16 32
Training time (days) Training time (days)
(a) 52 B model (b) 6.6 B model

Figure 4. Breadth-First Pipeline Parallelism outperforms other methods for smaller batch sizes per GPU, resulting in smaller
training times and costs.

Setup
We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).

	Proposed solution

