
Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-First Pipeline Parallelism

Joel Lamy-Poirier

ServiceNow Research, Montreal, Canada

June 6, 2023



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Our quest: high GPU utilization and small batch sizes
Problem: Current methods for training large language models need a high batch size per GPU to

achieve a high GPU utilization (computational efficiency), yet Stochastic Gradient Descent runs faster

with small batch sizes.

Larger batch sizes slow down the convergence of SGD. More

training samples are needed to reach the same validation loss.

� Empirical model: The training length depends on the ratio

between the batch size and the empirical critical batch

size:

Samples ∝ 1 + Batch Size
Critical Batch

� Scaling the cluster: When scaling the cluster, the GPU

utilization mainly depends on the batch size per GPU β:

Cost ∝ Utilization
−1(β)

(
1 + β Num GPUs

Critical Batch

)
,

Time ∝ Cost
Num GPUs

.

� Trade-off: The training time and cost cannot be minimized

together. We want tomitigate the trade-off bymaximizing

the GPU utilization for a small batch size per GPU.

|

Training time (relative)

Tr
ai
ni
ng

 c
os

t (
re
la
tiv

e)
Go
al

Small batch, low efficiency
Large batch, high eficiency
Optimal



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

The good old methods won’t do!

Data parallelism: needs help...

At small batch sizes, data-parallel training is bottlenecked by the long gradient reduction.

0 0 0 0 0 0 0 0
Looooong gradient reduction ⟶

SGPU 0
G G G G⟶Layers 0-15)

1 1 1 1 1 1 1 1 SGPU 1
G G G G⟶Layers 0-15)

2 2 2 2 2 2 2 2 SGPU 2
G G G G⟶Layers 0-15)

3 3 3 3 3 3 3 3 SGPU 3
G G G G⟶Layers 0-15)

Pipeline parallelism: still struggling...

At small batch sizes, adding pipeline parallelism (GPipe or 1F1B) leads to a large pipeline bubble and poor gradient reduction overlap.

0 1 2 3 4 5 6 7
Large bubble

0 1 2 3 4 5 6 7
Good pipeline overlap Shorter reduction, bad overlap

SGPU 0
G(Layers 0-3)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 1
G(Layers 4-7)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 2
G(Layers 8-11)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 3
G(Layers 12-15)

Time
Device / stream Layers 0-3

Forward (0-7)
Layers 4-7
Backward (0-7) / Reduce (G)

Layers 8-11
Optimizer step (S)

Layers 12-15
Idle



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Bending the pipes

The solution: looping the pipeline

We replace the few large stages by many small stages, looping around the pipeline multiple times. This allows for a smaller pipeline bubble, even

with a small batch size. This comes at the cost of extra pipeline-parallel communication

0 1 2 3GPU 0
4 5 6 7GPU 1

8 9 10 11GPU 2
12 13 14 15GPU 3

Layer

Device
(a) Standard

0 4 8 12GPU 0
1 5 9 13GPU 1

2 6 10 14GPU 2
3 7 11 15GPU 3

Layer

Device
(b) Looping

Depth-first (interleaved): almost there!

The depth-first schedule (Megatron-LM), running earlier micro-batches first, shrinks the bubble but has a limited data- and pipeline-parallel

network overlap.

Small bubbleBad pipeline overlap Moderate reduction overlap
SGPU 0

G G G G(Stages 0, 4, 8, 12)
SGPU 1

G G G G(Stages 1, 5, 9, 13)
SGPU 2

G G G G(Stages 2, 6, 10, 14)
SGPU 3

G G G G(Stages 3, 7, 11, 15)

Time
Device / stream Layers 0-3

Forward (0-7)
Layers 4-7
Backward (0-7) / Reduce (G)

Layers 8-11
Optimizer step (S)

Layers 12-15
Idle



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Our method: Breadth-First Pipeline Parallelism

Breadth-first schedule: that’s the one!

A breadth-first, running earlier stages first, schedule keeps the small bubble but has a great data- and pipeline-parallel network overlap.

Small bubbleGood pipeline overlap Great reduction overlap
SGPU 0

G G G G(Stages 0, 4, 8, 12)
SGPU 1

G G G G(Stages 1, 5, 9, 13)
SGPU 2

G G G G(Stages 2, 6, 10, 14)
SGPU 3

G G G G(Stages 3, 7, 11, 15)

Time
Device / stream Layers 0-3

Forward (0-7)
Layers 4-7
Backward (0-7) / Reduce (G)

Layers 8-11
Optimizer step (S)

Layers 12-15
Idle

How about memory?

For small batch sizes, our method has the lowest memory usage of all pipeline-parallel methods, providing extra flexibility for choosing better

training configurations:

� Weights, gradients and training state: Unlike other pipeline-parallel methods, Breadth-First pipeline parallelism combines well with Fully Sharded

Data-Parallel (ZeRO-3). This allows training very large models with small pipelines.

� Activations and checkpoints: At small batch sizes, all pipeline-parallel methods use the same activation memory.



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

How far we went Data-parallel

0 0 0 0 0 0 0 0
Looooong gradient reduction

SGPU 0
G G G G(Layers 0-15)

1 1 1 1 1 1 1 1 SGPU 1
G G G G(Layers 0-15)

2 2 2 2 2 2 2 2 SGPU 2
G G G G(Layers 0-15)

3 3 3 3 3 3 3 3 SGPU 3
G G G G(Layers 0-15)

Pipeline-parallel (GPipe)

0 1 2 3 4 5 6 7
Large bubble

0 1 2 3 4 5 6 7
Good pipeline overlap Shorter reduction, bad overlap

SGPU 0
G(Layers 0-3)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 1
G(Layers 4-7)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 2
G(Layers 8-11)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 SGPU 3
G(Layers 12-15)

Depth-first

Small bubbleBad pipeline overlap Moderate reduction overlap
SGPU 0

G G G G(Stages 0, 4, 8, 12)
SGPU 1

G G G G(Stages 1, 5, 9, 13)
SGPU 2

G G G G(Stages 2, 6, 10, 14)
SGPU 3

G G G G(Stages 3, 7, 11, 15)

Breadth-first
Small bubbleGood pipeline overlap Great reduction overlap

SGPU 0
G G G G(Stages 0, 4, 8, 12)

SGPU 1
G G G G(Stages 1, 5, 9, 13)

SGPU 2
G G G G(Stages 2, 6, 10, 14)

SGPU 3
G G G G(Stages 3, 7, 11, 15)

Time
Device / stream Layers 0-3

Forward (0-7)
Layers 4-7
Backward (0-7) / Reduce (G)

Layers 8-11
Optimizer step (S)

Layers 12-15
Idle



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first loops better

1 2 4 8
Stages per device

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

GP
U 
ut
iliz

at
io
n 
(%

)

(a) Batch size 16

1 2 4 8
Stages per device

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

GP
U 

ut
iliz

at
io

n 
(%

)

Breadth-first
Depth-first

(b) Batch size 64

Figure 2. Comparison of looping schedule efficiencies for different number of loops. Both methods help with the pipeline

bubble, which is higher for small batch sizes, but the depth-first does it at the expense of network overhead. (52 B model,

TP = PP = 8, DP = 1, micro-batch size = 1)

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first is better at small batch sizes

1/8 1/4 1/2 1 2 4 8
Batch size / GPU

20

25

30

35

40

45

50

GP
U 
ut
iliz

at
io
n 
(%

)

(a) 52 B model

1/2 1 2 4 8
Batch size / GPU

20

25

30

35

40

45

50

GP
U 
ut
iliz

at
io
n 
(%

)

Breadth-first (ours)
Depth-first (Megatron-LM)
Non-looped (GPipe/1F1B)
No pipeline (Sharded)

(b) 6.6 B model

Figure 3. Comparison the efficiency of each method as a function of the batch size (per GPU). Each data point represents an

optimal configuration found through an extensive search over the configuration space. Breadth-First Pipeline Parallelism

outperforms other methods for smaller batch sizes.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).



Breadth-First Pipeline Parallelism Joel Lamy-Poirier

Breadth-first trains faster and for cheaper

4 8 16 32 64 128 256
Training time (days)

30

40

50

60

70

Tr
ai
ni
ng

 c
os
t (
x1

00
0 
GP

U-
da

ys
)

25
6 
GP

Us

10
24

 G
PU

s

40
96

 G
PU

s

16
38

4 
GP

Us

(a) 52 B model

1 2 4 8 16 32
Training time (days)

2

3

4

5

6

7

Tr
ai
ni
ng

 c
os

t (
x1
00

0 
GP

U-
da
ys
)

25
6 
GP

Us

10
24
 G
PU

s

40
96
 G
PU

s

Breadth-first (ours)
Depth-first (Megatron-LM)
Non-looped (GPipe/1F1B)
No pipeline (Sharded)

(b) 6.6 B model

Figure 4. Breadth-First Pipeline Parallelism outperforms other methods for smaller batch sizes per GPU, resulting in smaller

training times and costs.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).


	Proposed solution

