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Our guest: high GPU utilization and small batch sizes

Problem: Current methods for training large language models need a to
achieve a high (computational efficiency), yet runs faster
with

Small batch, low efficiency

Larger batch sizes slow down the convergence of SGD. More Large batch, high eficiency
training samples are needed to reach the same validation loss.

Optimal

Empirical model: The training length depends on the ratio
between the batch size and the empirical
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Scaling the cluster: \When scaling the cluster, the GPU
utilization mainly depends on the :
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Trade-off: The training time and cost
. We want to by
for a

Training time (relative)
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The good old methods won't do!

Data parallelism: needs help...
At small batch sizes, data-parallel training is bottlenecked by the

Breadth-First Pipeline Parallelism
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Pipeline parallelism: still struggling...
At small batch sizes, adding pipeline parallelism ( or
Good pipeline overla Large bubble
pIp \IO ge r

) leads to a
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Shorter reductign, bad overlap
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Bending the pipes

The solution: looping the pipeline
We replace the few large stages by

, looping around the pipeline multiple times. This allows for a

, even

with a . This comes at the cost of
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Depth-first (interleaved): almost there!
The depth-first schedule (Megatron-LM), running , shrinks the bubble but has a
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Our method: Breadth-First Pipeline Parallelism

Breadth-first schedule: that’s the one!

A breadth-first, running , schedule keeps the small bubble but has a
Good pipeline overlap  Small bubble Great reduction overlap
GPU O
(Stages 0, 4, 8, 12) G G G G
GPU 1
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GPU 2
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GPU 3
(Stages 3, 7, 11, 15) G G G G F
Device / stream Layers 0-3 Layers 4-7 Layers 8-11 Layers 12-15
’ Forward (0-7) Backward (0-7) / Reduce (G) = Optimizer step (S) Idle
Time

How about memory?

For , our method has the of all pipeline-parallel methods, providing for choosing better
training configurations:

Weights, gradients and training state: Unlike other pipeline-parallel methods, Breadth-First pipeline parallelism
(ZeRO-3). This allows training very large models with small pipelines.

Activations and checkpoints: At small batch sizes, all pipeline-parallel methods use the
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How far we went

Data-parallel

Looooong gragient reduction
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Breadth-first loops better
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Figure 2. Comparison of looping schedule efficiencies for different number of loops. Both methods help with the pipeline
bubble, which is higher for small batch sizes, but the depth-first does it at the expense of network overhead. (52 B model,
TP = PP =8, DP = 1, micro-batch size = 1)

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected
with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).
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Breadth-first is better at small batch sizes
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Figure 3. Comparison the efficiency of each method as a function of the batch size (per GPU). Each data point represents an
optimal configuration found through an extensive search over the configuration space. Breadth-First Pipeline Parallelism
outperforms other methods for smaller batch sizes.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected
with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).
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Breadth-first trains faster and for cheaper
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Figure 4. Breadth-First Pipeline Parallelism outperforms other methods for smaller batch sizes per GPU, resulting in smaller
training times and costs.

Setup
We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM
(depth-first, 1F1B).
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