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Our quest: high GPU utilization and small batch sizes
Problem: Current methods for training large language models need a high batch size per GPU to

achieve a high GPU utilization (computational efficiency), yet Stochastic Gradient Descent runs faster

with small batch sizes.

Larger batch sizes slow down the convergence of SGD. More

training samples are needed to reach the same validation loss.

� Empirical model: The training length depends on the ratio

between the batch size and the empirical critical batch

size:

Samples ∝ 1 + Batch Size
Critical Batch

� Scaling the cluster: When scaling the cluster, the GPU

utilization mainly depends on the batch size per GPU β:

Cost ∝ Utilization
−1(β)

(
1 + β Num GPUs

Critical Batch

)
,

Time ∝ Cost
Num GPUs

.

� Trade-off: The training time and cost cannot be minimized

together. We want tomitigate the trade-off bymaximizing

the GPU utilization for a small batch size per GPU.
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The good old methods won’t do!

Data parallelism: needs help...

At small batch sizes, data-parallel training is bottlenecked by the long gradient reduction.
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Pipeline parallelism: still struggling...

At small batch sizes, adding pipeline parallelism (GPipe or 1F1B) leads to a large pipeline bubble and poor gradient reduction overlap.
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Bending the pipes

The solution: looping the pipeline

We replace the few large stages by many small stages, looping around the pipeline multiple times. This allows for a smaller pipeline bubble, even

with a small batch size. This comes at the cost of extra pipeline-parallel communication
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Depth-first (interleaved): almost there!

The depth-first schedule (Megatron-LM), running earlier micro-batches first, shrinks the bubble but has a limited data- and pipeline-parallel

network overlap.
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Our method: Breadth-First Pipeline Parallelism

Breadth-first schedule: that’s the one!

A breadth-first, running earlier stages first, schedule keeps the small bubble but has a great data- and pipeline-parallel network overlap.
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How about memory?

For small batch sizes, our method has the lowest memory usage of all pipeline-parallel methods, providing extra flexibility for choosing better

training configurations:

� Weights, gradients and training state: Unlike other pipeline-parallel methods, Breadth-First pipeline parallelism combines well with Fully Sharded

Data-Parallel (ZeRO-3). This allows training very large models with small pipelines.

� Activations and checkpoints: At small batch sizes, all pipeline-parallel methods use the same activation memory.
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How far we went Data-parallel
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Breadth-first loops better
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(a) Batch size 16
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Figure 2. Comparison of looping schedule efficiencies for different number of loops. Both methods help with the pipeline

bubble, which is higher for small batch sizes, but the depth-first does it at the expense of network overhead. (52 B model,

TP = PP = 8, DP = 1, micro-batch size = 1)

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).
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Breadth-first is better at small batch sizes
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Figure 3. Comparison the efficiency of each method as a function of the batch size (per GPU). Each data point represents an

optimal configuration found through an extensive search over the configuration space. Breadth-First Pipeline Parallelism

outperforms other methods for smaller batch sizes.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).
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Breadth-first trains faster and for cheaper
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Figure 4. Breadth-First Pipeline Parallelism outperforms other methods for smaller batch sizes per GPU, resulting in smaller

training times and costs.

Setup

We tested our methods for two models, with 52 and 6.6 billion parameters, on a cluster of 8 Nvidia DGX servers (64x V100-32GB GPUs) connected

with InfiniBand. We used our custom implementation when possible (breadth-first, GPipe non-pipelined), otherwise we used Megatron-LM

(depth-first, 1F1B).
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