
spcl.ethz.
ch

@spcl_eth
@spcl

KAZUKI OSAWA1*, SHIGANG LI2, TORSTEN HOEFLER1

1: ETH Zurich (*: currently with Google DeepMind), 2: Beijing University of Posts and Telecommunications

PipeFisher: Efficient Training of Large Language Models Using
Pipelining and Fisher Information Matrices

@spcl_eth
@spcl

spcl.ethz.
ch

Data scale ⤴
> 1T tokens

(e.g., Chinchilla, LLaMA)

2

Large Language Models
ChatGPT, https://chat.openai.com/ Image: Yang et al., “Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond”, 2023.

Model size ⤴
> 1T parameters

(e.g., GLaM)

Cost ⤴
> 40K A100 GPU days

(e.g., BLOOM)

(GPT-3:
300B tokens)

+ ⇨

https://chat.openai.com/

@spcl_eth
@spcl

spcl.ethz.
ch

3

Parallelism for massive data and models
Backward pass

error

gradient

Forward pass

activation

pre activation

lossinput

and more model parallelism (ZeRO, Megatron, MoE, etc)

Pipeline parallelism
(w/ 2 devices)

@spcl_eth
@spcl

spcl.ethz.
ch

4

Bubbles in pipeline

▪ Pipelining creates bubbles of time in which accelerators become idle.
▪ The overhead of pipelining mainly comes from the low utilization of accelerators.
▪ 💡We can assign extra work to the bubbles to gain auxiliary benefits.
▪ [Our approach] PipeFisher automatically assigns the work of K-FAC (a second-order optimization

method based on the Fisher information matrix) to the bubbles for accelerating training.

 (4 pipeline stages, 4 micro-batches)
(Huang et al.,2018)

(2 pipeline stages, 2 micro-batches)

@spcl_eth
@spcl

spcl.ethz.
ch

5

Why second-order optimization?

First-order Optimization (gradient descent)

Second-order Optimization

Precondition the gradient by the curvature matrix

Faster convergence

Figure from J. Martens, 2010

@spcl_eth
@spcl

spcl.ethz.
ch

6

Why second-order optimization?

First-order Optimization (gradient descent)

Second-order Optimization

Precondition the gradient by the curvature matrix

Faster convergence

Figure from J. Martens, 2010

Hessian -> Newton method

Fisher information matrix -> Natural gradient method [Amari, 1998]

(= positive-semi definite approx. of Hessian)

@spcl_eth
@spcl

spcl.ethz.
ch

7

Why is second-order optimization unpopular in DL?

First-order optimization Second-order optimization

Forward/backward

Update

Curvature

Inverse

Precondition

Overhead

@spcl_eth
@spcl

spcl.ethz.
ch

8

Why is second-order optimization unpopular in DL?

First-order optimization Second-order optimization

Forward/backward

Update

Curvature

Inverse

Precondition

Overhead

Iterations to converge ✕ Time / iteration = Total time

Training a 3-layered MLP on MNIST

faster! slower…

@spcl_eth
@spcl

spcl.ethz.
ch

9

Kronecker-factored Approximate Curvature (K-FAC) Martens and Grosse, 2015

Step1. Layer-wise block-diagonal

1

2

3

4

Full
(4 x 4 blocks)

1 2 3 4

Neural network
(4 layers)

1

2

3

4

Layer-wise
(4 blocks)

((

Kronecker product

Step2. Kronecker-factorization (for each layer)

@spcl_eth
@spcl

spcl.ethz.
ch

10

Kronecker-factored Approximate Curvature (K-FAC) Martens and Grosse, 2015

Step1. Layer-wise block-diagonal

1

2

3

4

Full
(4 x 4 blocks)

1 2 3 4

Neural network
(4 layers)

1

2

3

4

Layer-wise
(4 blocks)

((

Kronecker product

Step2. Kronecker-factorization (for each layer)

Iterations to converge ✕ Time / iteration = Total time
still faster!still faster! lower cost!

@spcl_eth
@spcl

spcl.ethz.
ch

11

PipeFisher

What exactly are the work of K-FAC?

@spcl_eth
@spcl

spcl.ethz.
ch

12

Work of K-FAC
batched activation

batched error

SGD
(mini-batch)

K-FAC

: mini-batch size

Fisher block for l-th layer

@spcl_eth
@spcl

spcl.ethz.
ch

13

Work of K-FAC
batched activation

batched error

SGD
(mini-batch)

K-FAC

A = Ua @ Ua.T
B = Ue @ Ue.T

Curvature work
Ainv = inverse(A)
Binv = inverse(B)

Inversion work

Gkfac = Binv @ G @ Ainv

Precondition work

: mini-batch size

@spcl_eth
@spcl

spcl.ethz.
ch

14

K-FAC with parallelism

1. Less memory consumption.
2. Inversion work are split without

collective communication.
3. Better accelerator utilization.

Osawa et al., 2019

@spcl_eth
@spcl

spcl.ethz.
ch

15

Profiled results (1/2) [GPipe (Huang et al, 2018)]
▪ BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
▪ CUDA kernel execution times on NVIDIA P100 GPUs

❏ Step 1: Measure the times for the
forward/backward works and bubbles in a
training step.

PipeFisher

one training step

@spcl_eth
@spcl

spcl.ethz.
ch

16

Profiled results (1/2) [GPipe (Huang et al, 2018)]
▪ BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
▪ CUDA kernel execution times on NVIDIA P100 GPUs

❏ Step 1: Measure the times for the
forward/backward works and bubbles in a
training step.

❏ Step 2: Measure the times for the
curvature/inverse works in a training step.

PipeFisher

one training step

@spcl_eth
@spcl

spcl.ethz.
ch

17

Profiled results (1/2) [GPipe (Huang et al, 2018)]
▪ BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
▪ CUDA kernel execution times on NVIDIA P100 GPUs

❏ Step 1: Measure the times for the
forward/backward works and bubbles in a
training step.

❏ Step 2: Measure the times for the
curvature/inverse works in a training step.

❏ Step 3: Assign the curvature/inverse works to
the bubbles within a training step(s) and the
precondition work at the end of every step.

PipeFisher

⚠ the rato = (curvature+inverse) / bubbles determines the
frequency of updating the preconditioner (e.g., every 1-2 steps).

10-100x higher freq.
than common practice!

@spcl_eth
@spcl

spcl.ethz.
ch

18

Profiled results (2/2) [Chimera (Li and Hoefler, 2021)]
▪ BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches
▪ CUDA kernel execution times on NVIDIA P100 GPUs

“bidirectional pipelines” (cf. GPipe: 41.7%)

@spcl_eth
@spcl

spcl.ethz.
ch

19

BERT-Base Pretraining
▪ BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
▪ Pretraining on the English Wikipedia
▪ Time measured on 256 NVIDIA P100 GPUs

faster! still faster!

@spcl_eth
@spcl

spcl.ethz.
ch

20

BERT-Large Pretraining
▪ BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches
▪ Pretraining on the English Wikipedia
▪ Time measured on 8 NVIDIA P100 GPUs (total training time is simulated)

@spcl_eth
@spcl

spcl.ethz.
ch

21

Conclusions

We can fill pipeline bubbles with extra work!

@spcl_eth
@spcl

spcl.ethz.
ch

22

Conclusions

Faster convergence (loss vs # steps) !

@spcl_eth
@spcl

spcl.ethz.
ch

23

Conclusions

● PipeFisher -> K-FAC in pipeline bubbles
● K-FAC (layer-wise preconditioning) is

compatible with pipelining!

@spcl_eth
@spcl

spcl.ethz.
ch

24

Conclusions

● Higher GPU utilization!
● Faster training (F1 vs time)

(reduction to 50-70%)!

@spcl_eth
@spcl

spcl.ethz.
ch

25

Conclusions

Image: Yang et al., “Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond”, 2023.

@spcl_eth
@spcl

spcl.ethz.
ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.3K+ Followers

github.com/spcl 2K+ Stars

26

Conclusions

More of SPCL’s research:

… or spcl.ethz.ch

 Paper link:
https://arxiv.org/abs/2211.14133

http://spcl.inf.ethz.ch
https://arxiv.org/abs/2211.14133

