



### KAZUKI OSAWA<sup>1\*</sup>, SHIGANG LI<sup>2</sup>, TORSTEN HOEFLER<sup>1</sup>

### 1: ETH Zurich (\*: currently with Google DeepMind), 2: Beijing University of Posts and Telecommunications PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices









# Large Language Models

#### ChatGPT, https://chat.openai.com/

#### k What are Large Language Models?

Large Language Models (LLMs) are powerful artificial intelligence systems that are designed  $\square \square \square \nabla$ to understand and generate human-like text. These models, such as OpenAI's GPT-3, are trained on vast amounts of text data to learn the statistical patterns and structures of language.

LLMs are based on deep learning techniques, particularly using a type of neural network called a transformer. Transformers allow LLMs to process and generate text in a hierarchical manner, taking into account the relationships between words, phrases, and sentences.

The training process for LLMs involves exposing the model to massive amounts of text from diverse sources such as books, websites, and articles. By predicting the next word in a 300B sentence or completing a given prompt, the model learns to generate coherent and contextually appropriate responses.

LLMs have a wide range of applications. They can be used for natural language processing tasks such as text classification, sentiment analysis, language translation, summarization, and question answering. They can also be employed in creative tasks like generating human-like text, poetry, or even composing music.

GPT-3, for example, with 175 billion parameters, is one of the largest LLMs developed to date. These massive models have demonstrated impressive language understanding and generation capabilities, although they also raise concerns related to ethical considerations, biases, and potential misuse. Image: Yang et al., "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond", 2023.

Contra and Street Parts





# Parallelism for massive data and models

(i) No parallelism (w/ 1 device)



pre activation

Forward pass

 $\begin{array}{l} h_l = W_l a_{l-1} \\ (a_0 = x) \end{array} \quad \frac{\partial \mathcal{L}}{\partial a_{l-1}} = W_l^T \frac{\partial \mathcal{L}}{\partial h_l} \end{array}$ 

activation

 $a_l = \phi(h_l)$   $e_l = \frac{1}{d}$ 

$$e_l = \frac{\partial \mathcal{L}}{\partial h_l} = \phi' \left( \frac{\partial \mathcal{L}}{\partial a_l} \right)$$

**Backward** pass



(ii) Data parallelism (w/ 2 devices)



(iii) Pipeline parallelism (w/ 2 devices)



and more model parallelism (ZeRO, Megatron, MoE, etc)

- gradient  $G_l = \frac{\partial \mathcal{L}}{\partial W_l} = e_l a_{l-1}^T$
- O Mini- or micro-batch



Forward/backward at x-th layer for  $\bigcirc$ 

 $Q_x$  Quantity for x-th layer calculated for  $\bigcirc$ 



Collective communication

Point-to-point communication (send/recv)



# **Bubbles in pipeline**

- Pipelining creates **bubbles** of time in which accelerators become idle.
- The overhead of pipelining mainly comes from the low utilization of accelerators.
- We can assign extra work to the bubbles to gain auxiliary benefits.
- [Our approach] PipeFisher automatically assigns the work of K-FAC (a second-order optimization method based on the Fisher information matrix) to the bubbles for accelerating training.

The second





# Why second-order optimization?

First-order Optimization (gradient descent)

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)})$$

Second-order Optimization

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla \mathcal{L}(\theta^{(t)})$$

Precondition the gradient by the curvature matrix



Figure from J. Martens, 2010



# Why second-order optimization?

First-order Optimization (gradient descent)

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)})$$

Second-order Optimization

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla \mathcal{L}(\theta^{(t)})$$

Precondition the gradient by the curvature matrix



(= positive-semi definite approx. of Hessian)



# Why is second-order optimization *unpopular* in DL?

|               | First-order optimization                                                         | Seco           | ond-order optimization                                                          |
|---------------|----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------|
| Forward/backv | vard $ abla \mathcal{L} \in \mathbb{R}^P$                                        |                | $ abla \mathcal{L} \in \mathbb{R}^P$                                            |
|               |                                                                                  | Curvature      | $C \in \mathbb{R}^{P \times P}$                                                 |
|               |                                                                                  | Inverse        | $C^{-1} \in \mathbb{R}^{P \times P}$ > Overhead                                 |
|               |                                                                                  | Precondition   | $C^{-1} abla \mathcal{L} \in \mathbb{R}^P ig)  \mathcal{O}(P^3)$                |
| Update        | $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)})$ | $	heta^{(t+)}$ | $^{(1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla \mathcal{L}(\theta^{(t)})$ |

The section



# Why is second-order optimization *unpopular* in DL?



ma and and and



# Kronecker-factored Approximate Curvature (K-FAC)

Martens and Grosse, 2015



Step1. Layer-wise block-diagonal





 $\approx$ 

 $\mathcal{O}(P^3) \longrightarrow \mathcal{O}(P_l^3)$ 

Step2. Kronecker-factorization (for each layer)

and the second second





# **Kronecker-factored Approximate Curvature (K-FAC)**

Martens and Grosse, 2015







# **PipeFisher**



A DESCRIPTION OF THE OWNER

What exactly are the work of K-FAC?



# Work of K-FAC





The second second

K-FAC

$$g_l^{kfac} \approx F_l^{-1} g_l$$

Fisher block for I-th layer

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla \mathcal{L}(\theta^{(t)})$$

Precondition the gradient by the curvature matrix







# Work of K-FAC



K-FAC

 $\mathbf{C} \qquad g_l^{kfac} \approx \mathbf{F}_l^{-1} g_l \approx (A_l \otimes B_l)^{-1} g_l = (A^{-1}_l \otimes B^{-1}_l) g_l = vec(B^{-1}_l G_l A^{-1}_l)$ 



(a) SGD







ma and and the



# **K-FAC** with parallelism





-→ Point-to-point communication (send/recv)

- 1. Less memory consumption.
- 2. Inversion work are split without collective communication.
- 3. Better accelerator utilization.



# Profiled results (1/2) [GPipe (Huang et al, 2018)]

- BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
- CUDA kernel execution times on NVIDIA P100 GPUs



### **PipeFisher**

P. La Starte

Step 1: Measure the times for the forward/backward works and <u>bubbles</u> in a training step.





# Profiled results (1/2) [GPipe (Huang et al, 2018)]

- BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
- CUDA kernel execution times on NVIDIA P100 GPUs



one training step

### **PipeFisher**

- Step 1: Measure the times for the forward/backward works and <u>bubbles</u> in a training step.
- □ Step 2: **Measure** the times for the curvature/inverse works in a training step.





# Profiled results (1/2) [GPipe (Huang et al, 2018)]

- BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches
- CUDA kernel execution times on NVIDIA P100 GPUs



### **PipeFisher**

- Step 1: Measure the times for the forward/backward works and <u>bubbles</u> in a training step.
- □ Step 2: **Measure** the times for the curvature/inverse works in a training step.
- □ Step 3: **Assign** the curvature/inverse works to the <u>bubbles</u> within a training step(s) and the precondition work at the end of every step.

the rato = (curvature+inverse) / <u>bubbles</u> determines the frequency of updating the preconditioner (e.g., every 1-2 steps).

precondition

10-100x higher freq. than common practice!

17



# Profiled results (2/2) [Chimera (Li and Hoefler, 2021)]

- BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches
- CUDA kernel execution times on NVIDIA P100 GPUs





# **BERT-Base Pretraining**

BERT-Base (12 Transformer layers) w/ 4 pipeline stages (3 layers per stage) and 4 micro-batches

- Pretraining on the English Wikipedia
- Time measured on 256 NVIDIA P100 GPUs





# **BERT-Large Pretraining**

- BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches
- Pretraining on the English Wikipedia
- Time measured on 8 NVIDIA P100 GPUs (total training time is simulated)

| Optimizer | Pipeline scheme       |       | Phase 1    | Phase 2   | 171   |        |
|-----------|-----------------------|-------|------------|-----------|-------|--------|
|           |                       | Steps | Time/step* | Time*     | Steps | FI     |
| NVLAMB    | Chimera               | 7038  | 2345.6 ms  | 275.1 min | 1563  | 90.1%  |
| K-FAC     | Chimera w/ PipeFisher | 5000  | 2499.5 ms  | 208.3 min | 1563  | 90.15% |





The second

## Conclusions











Faster convergence (loss vs # steps) !





🖁 🕬 ett ETH zürich

| SPEL<br>spelethz                                                                                                                                                                                                                                     | ₽ @spci<br>y @spci_eth <b>ETH</b> ZÜrich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vhy second-order optimization?                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| First-order Optimization (gradient descent)<br>$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)})$ Second-order Optimization<br>$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla \mathcal{L}(\theta^{(t)})$ | $\mathcal{L}(\theta^{(t)}) \stackrel{10^{0}}{\longrightarrow} \stackrel{10^{-1}}{\longrightarrow} \stackrel{10^{-1}}{\longrightarrow} \stackrel{200}{\longrightarrow} \stackrel{400}{\longrightarrow} \stackrel{600}{\longrightarrow} \stackrel{800}{\longrightarrow} \stackrel{1000}{\longrightarrow} $ |
| Precondition the gradient by the curvature                                                                                                                                                                                                           | matrix<br>Figure from J. Martens, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### K-FAC with parallelism

\*\*\*SPCL



| • |  |
|---|--|

**PipeFisher** -> K-FAC in pipeline bubbles K-FAC (layer-wise preconditioning) is compatible with pipelining!







#### 

#### **BERT-Large Pretraining**

BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches

Sapel ETH ZÜrj

- Pretraining on the English Wikipedia
- Time measured on 8 NVIDIA P100 GPUs (total training time is simulated)

| Optimizer | Pipeline scheme       | Phase 1 |            |           | Phase 2 |        |
|-----------|-----------------------|---------|------------|-----------|---------|--------|
|           |                       | Steps   | Time/step* | Time*     | Steps   | FI     |
| NVLAMB    | Chimera               | 7038    | 2345.6 ms  | 275.1 min | 1563    | 90.1%  |
| K-FAC     | Chimera w/ PipeFisher | 5000    | 2499.5 ms  | 208.3 min | 1563    | 90.15% |







Image: Yang et al., "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond", 2023.







#### More of SPCL's research:



#### Send eth ETH zürich \*\*\*SPCL K-FAC with parallelism (a) SGD (b) K-FAC (i) No parallelism $\bigcirc \Box_1 = 2 = 1 \Rightarrow G_1 = G_2$ (w/1 device) Mini- or micro-batch rd at x-th layer for 〇 Quantity for x-th layer calculated for ( 4**1**00 6 6 6 6 6 (ii) Data parallelism (w/2 devices (iii) Pipeline parallelism w/2 dm

- BERT-Large Pretraining
- BERT-Large (24 Transformer layers) w/ 8 pipeline stages (3 layers per stage) and 8 micro-batches
- Pretraining on the English Wikipedia
- Time measured on 8 NVIDIA P100 GPUs (total training time is simulated)

| Optimizer | Pipeline scheme | Phase 1 |            |           | Phase 2 | <b>F1</b> |
|-----------|-----------------|---------|------------|-----------|---------|-----------|
|           |                 | Steps   | Time/step* | Time*     | Steps   | FI        |
| NVLAMB    | Chimera         | 7038    | 2345.6 ms  | 275.1 min | 1563    | 90.1%     |



### Paper link:

#### https://arxiv.org/abs/2211.14133

