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Motivation
GPU DRAM bandwidth and power efficiency limit DL workload performance

• Memory bandwidth scales slower than compute capability (FP16) for DL workloads on GPUs.

• Memory power consumption becomes more significant especially in inference-oriented GPUs (could be >40%).

Memory BW to FP16 throughput ratio (GB/s/TFLOPs) on NVIDIA GPU generations.
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Observation
The LLC (last-level cache) capacity on GPUs and DL accelerators keeps increasing

Q: Can we make more efficient use of the LLC to save more DRAM BW and power consumption?
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Memory Access Pattern in DL Inference
Repetitive producer-consumer pattern for activations 

Store Activations in L2 (ideally)Store Activations in DRAM
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Ideally, storing activations in L2 can completely eliminate DRAM traffic on activations.
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L2 cache residency control is a new HW feature 
allowing programmers to explicitly control data 
residency (first introduced in NVIDIA Ampere GPUs).

Pros:

• More flexible L2 cache replacement.

• Inline with increasing L2 capacity.

• Well-suited for deep learning workloads.

Cons:

• Requires non-negligible programming effort.

• Difficult to reason about and optimize.

• Sensitive to L2 capacity & memory footprint.

L2 residency control defines 3 types of L2 access properties.

L2 Cache Residency Control
New HW feature for explicit control of data residency in L2

L2 Access Property
Priority of Staying 

in the L2

Persisting High

Normal Medium

Streaming Low

L2-resident 
Data
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An L2 residency configuration can be represented by an N-dimensional binary 
vector (1MB per bit in our case). 

The maximum number of L2-resident positions cannot pass the HW limit.

Optimization options:

1. Exhaustive search on the activation memory address space.

• The search space grows exponentially with N.

2. Heuristic-based tuning.

• Need in-depth investigation on HW & workload characteristics.

3. This work: Automatically learn and optimize L2 residency configurations.

• No need to understand detailed HW & workload characteristics.

• Could discover better solutions than heuristics-based ones.

L2 residency selections within the shared 
activation buffer.

How To Program L2 Residency Control for DL Inference?
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AutoScratch Framework
Integration with NVIDIA’s TensorRT SDK

• Works with arbitrary inference applications without any code 
modifications.

• Trained once per combination of an application and HW 
configuration.

• Once trained, the optimal L2 residency control configuration 
is stored and deployed (no additional training needed).

• The training process can also take place on-the-fly after 
deployment to hide the training overhead.
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Options for ML-based Optimization in AutoScratch

We explore two types of ML-based optimizers in AutoScratch:

• Optimizing with Reinforcement Learning (RL)

• We leverage off-the-shelf Proximal Policy Optimization (PPO) 
algorithm [1] .

• Optimizing with Evolutionary algorithms (EA)

• We leverage the regularized evolutionary algorithm [2] originally 
developed for neural architecture search.

1) Schulman et al. “Proximal policy optimization algorithms”, ArXiv, 2017.

2) Real et al. “Regularized Evolution for Image Classifier Architecture Search”, AAAI, 2019.

AutoScratch’s

ML-based 

optimization

RL Optimizer

Evolutionary 

Optimizer
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RL Optimizer
Automatic optimization with Reinforcement Learning (RL)

RL-based optimization pipeline.

Environment: A TensorRT-compiled DL inference application 

with L2 residency control APIs.

Agent: A small MLP network consisting of two hidden layers.

State: Current L2 residency configuration represented by an 

N-dimensional binary vector.

Action: An (N+1)-dimension one-hot vector to indicate which 

memory location to promote or taking no action.

Reward: Execution time difference before and after an action.
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Evolutionary Optimizer
Automatic optimization with Evolutionary Algorithm (EA)

EA-based optimization pipeline.

Initialization: 

Generate M random L2 residency 

configuration vectors

Selection: 

Select best performing vector 

from a random subset (S) of the 

population

Termination:

Terminate after K steps, choose 

best overall configuration

Mutation: 

Create and insert a new 

child, remove oldest

Shared 
activation buffer
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Main loop: repeat K steps

N

1) Initialization: Generate the initial population of M random L2 
residency configurations and put them into a FIFO queue. 

2) Main Loop: Repeat the following re-generational steps until 
termination: (max 20,000 steps in our case)

• Select the best-performing configuration from a random 
subset of the population.

• Breed a child configuration through a mutation operation.

• Insert the child configuration and remove the oldest one.

3) Termination: Choose the best one across all configurations.
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AutoScratch Evaluation

Silicon based evaluation.

• NVIDIA’s L4 GPU with 48MB of L2 capacity, a maximum TDP of 72W and 300GB/s of memory bandwidth. 

Comparing methods:

• Baseline: Default HW-based L2 management scheme with no L2 residency control.

• AutoScratch-RL (AS-RL): Using reinforcement learning as the ML optimizer in AutoScratch.

• AutoScratch-EA (AS-EA): Using evolutionary algorithm as the ML optimizer in AutoScratch.

Evaluating on MLPerf inference applications.

Application Precision Batch size
Activation buffer size 

(MB)

resnet50 int8 32 63

ssd-resnet34 int8 6 104

ssd-mobilenet int8 64 140

3d-unet int8 1 278

bert int8 32 81

dlrm int8 51200 106

rnnt fp16 2048 4175
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DRAM Traffic Reduction
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DRAM Traffic Reduction

• Both AS-RL and AS-EA result in significant (29% and 27%) DRAM traffic reduction.

• DRAM WR traffic reductions are more significant because AutoScratch effectively prevent activations 
from being written back to DRAM.
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Performance Speedup

• Both AS-RL and AS-EA result in good (9.3% and 8.8%) performance speedup, up to 21% and 22% for bert.

• MLP-based workloads (bert and dlrm) benefit more from AutoScratch than Conv-based workloads because 
MLP operators are more memory-bound on GPUs.
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The Cost of AutoScratch Training

• AS-EA results in 58x reduction in training time compared to AS-RL.

• The training time of AS-EA is comparable to TensorRT compilation time, making it practical for deployment.

Workload
AS-RL

(minutes)

AS-EA

(minutes)
Time Reduction

resnet50 241 6.8 35x

ssd-resnet34 421 5.8 72x

ssd-mbnet 260 8.0 33x

3d-unet 390 4.4 88x

bert 765 10.2 75x

dlrm 238 5.4 44x

rnnt 227 2.5 90x

geomean 330 5.7 58x
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Comparing Against Other Optimization Methods
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Comparing Against Other Optimization Methods
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• Comparing method:

• Random Search (RS): Picking the best L2 residency configuration within a random set.

• The geomean speedup of RS is close to 0 compared to the baseline, making it a useless solution.
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Comparing Against Other Optimization Methods

• Comparing method:

• Human-Designed Heuristic (HDH): Designed by GPU experts at NVIDIA and integrated into the latest 
TensorRT SDK. An L2 residency budget ranging from 0 to 1 needs to be provided by the user.

• HDH can perform well, but additional parameter tuning on the L2 residency budget is required.
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Conclusions

• Applying ML for cache management is promising for improving performance and energy efficiency.

• AutoScratch achieves a DRAM traffic reduction of 29% and performance speedup of 9% for MLPerf
inference workloads on an NVIDIA’s L4 GPU.

• AutoScratch with Evolutionary Optimizer is 58x faster than AutoScratch with RL Optimizer while 
providing similar performance, making it a suitable choice for practical deployment.
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