

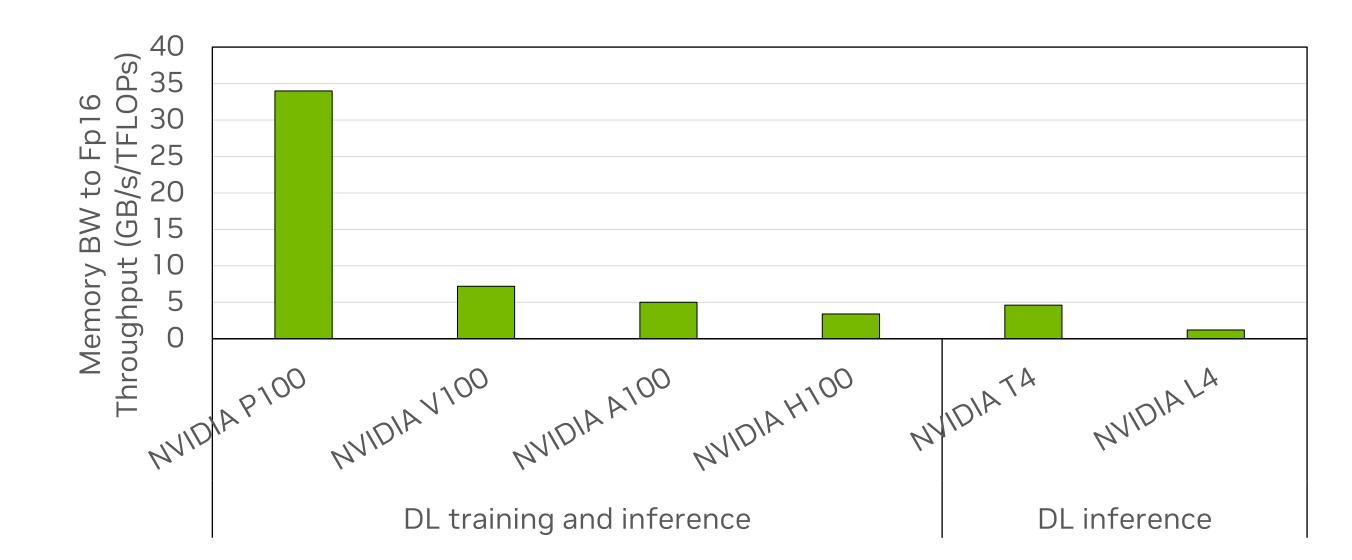
AUTOSCRATCH: ML-OPTIMIZED CACHE MANAGEMENT FOR INFERENCE-ORIENTED GPUS

Yaosheng Fu, Evgeny Bolotin, Aamer Jaleel, Gal Dalal, Shie Mannor, Jacob Noam Korem, Michael Behar and David Nellans.

NVIDIA

Motivation

GPU DRAM bandwidth and power efficiency limit DL workload performance



Memory BW to FP16 throughput ratio (GB/s/TFLOPs) on NVIDIA GPU generations.

- Memory bandwidth scales slower than compute capability (FP16) for DL workloads on GPUs.
- Memory power consumption becomes more significant especially in inference-oriented GPUs (could be >40%).

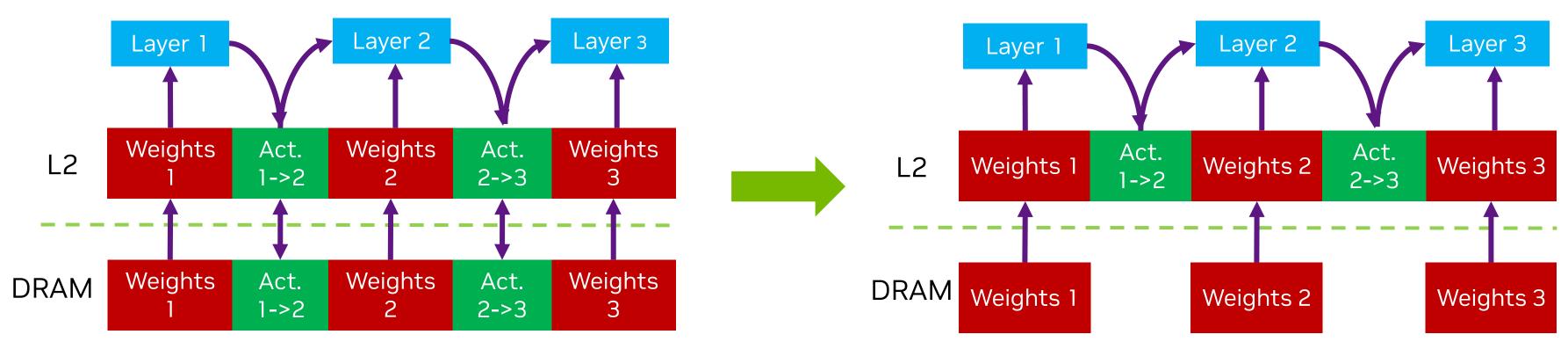
Observation

The LLC (last-level cache) capacity on GPUs and DL accelerators keeps increasing

Q: Can we make more efficient use of the LLC to save more DRAM BW and power consumption?

Memory Access Pattern in DL Inference

Repetitive producer-consumer pattern for activations

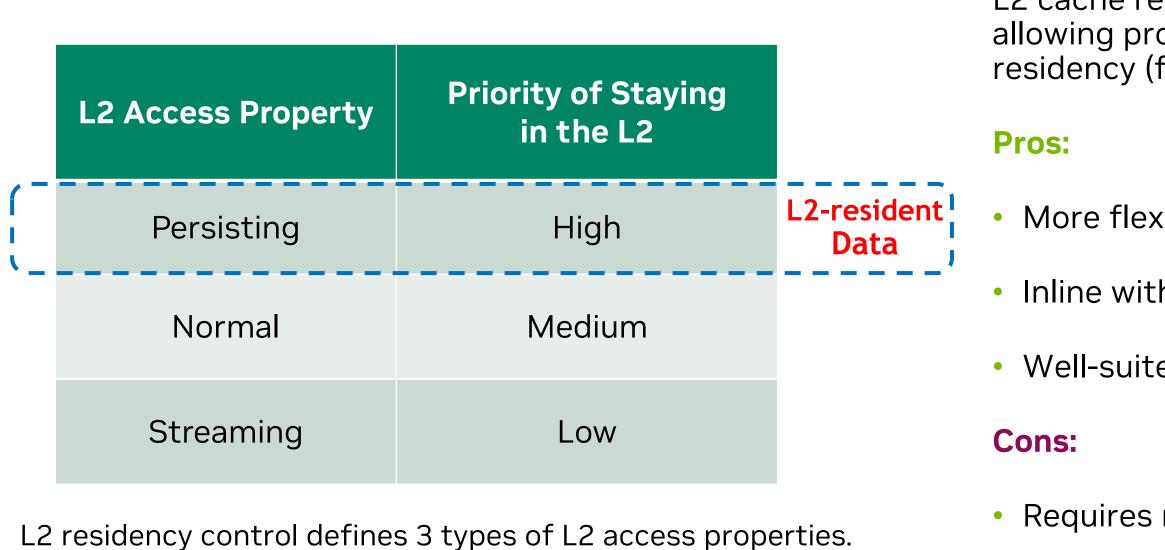


Store Activations in DRAM

Ideally, storing activations in L2 can completely eliminate DRAM traffic on activations.

Store Activations in L2 (ideally)

L2 Cache Residency Control New HW feature for explicit control of data residency in L2



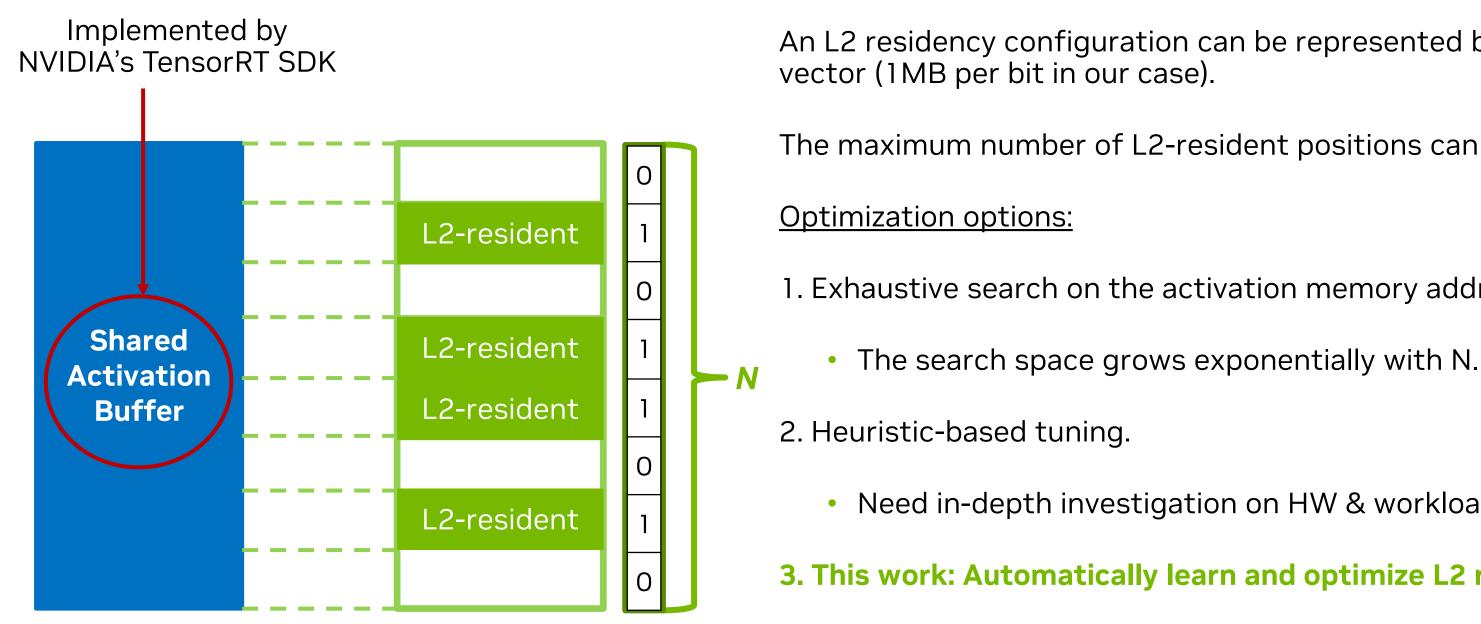
- Difficult to reason about and optimize.
- Sensitive to L2 capacity & memory footprint.

L2 cache residency control is a new HW feature allowing programmers to explicitly control data residency (first introduced in NVIDIA Ampere GPUs).

- More flexible L2 cache replacement.
- Inline with increasing L2 capacity.
- Well-suited for deep learning workloads.

Requires non-negligible programming effort.

How To Program L2 Residency Control for DL Inference?



L2 residency selections within the shared activation buffer.

An L2 residency configuration can be represented by an N-dimensional binary

The maximum number of L2-resident positions cannot pass the HW limit.

1. Exhaustive search on the activation memory address space.

Need in-depth investigation on HW & workload characteristics.

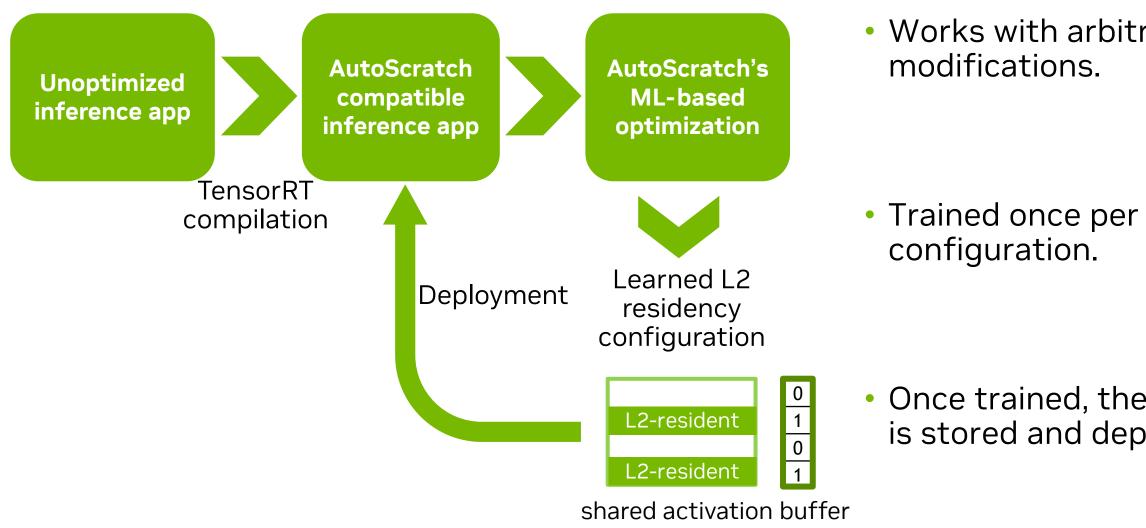
3. This work: Automatically learn and optimize L2 residency configurations.

No need to understand detailed HW & workload characteristics.

Could discover better solutions than heuristics-based ones.

AutoScratch Framework

Integration with NVIDIA's TensorRT SDK



The AutoScratch optimization flow.

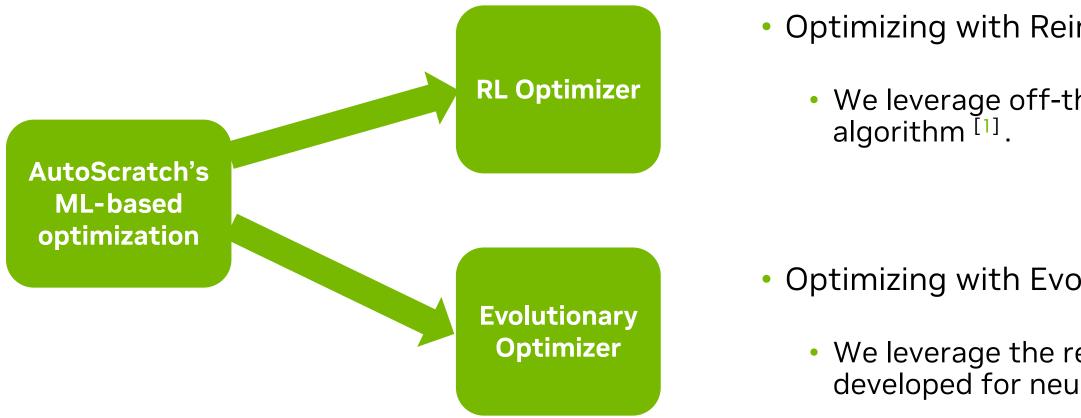
• The training process can also take place on-the-fly after deployment to hide the training overhead.

Works with arbitrary inference applications without any code

Trained once per combination of an application and HW

• Once trained, the optimal L2 residency control configuration is stored and deployed (no additional training needed).

Options for ML-based Optimization in AutoScratch



- Schulman et al. "Proximal policy optimization algorithms", ArXiv, 2017. 1)
- Real et al. "Regularized Evolution for Image Classifier Architecture Search", AAAI, 2019. 2)

We explore two types of ML-based optimizers in AutoScratch:

Optimizing with Reinforcement Learning (RL)

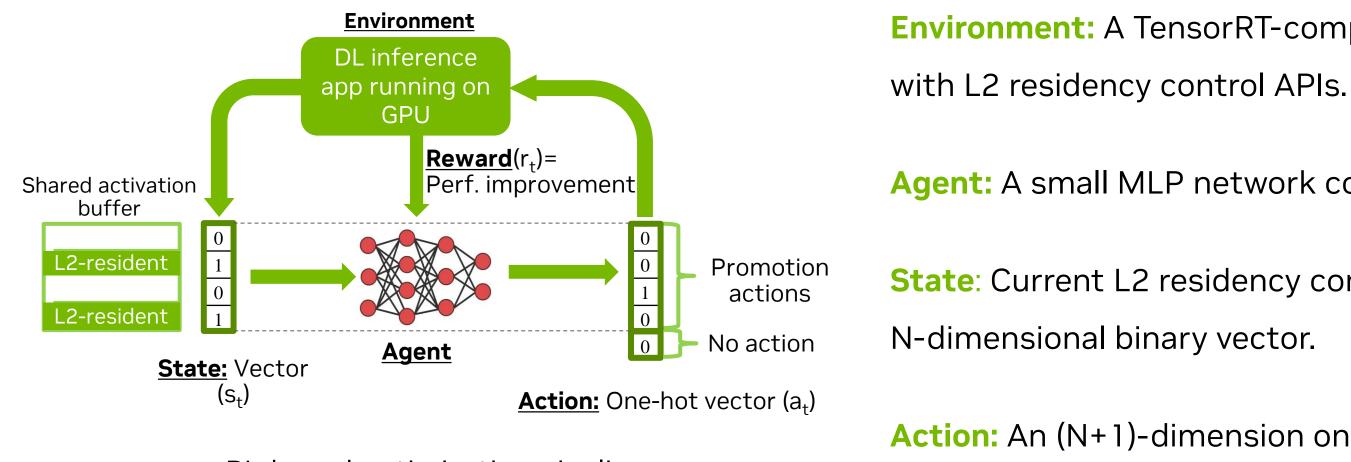
• We leverage off-the-shelf Proximal Policy Optimization (PPO)

Optimizing with Evolutionary algorithms (EA)

• We leverage the regularized evolutionary algorithm ^[2] originally developed for neural architecture search.

RL Optimizer

Automatic optimization with Reinforcement Learning (RL)

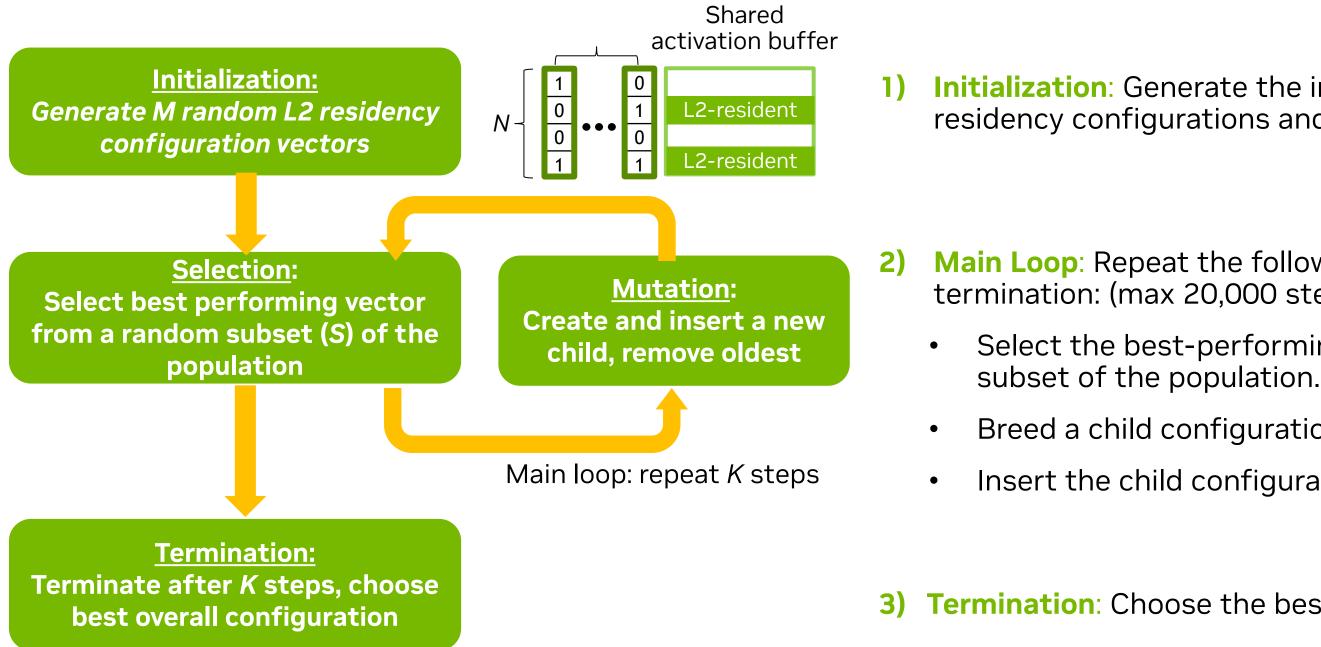


RL-based optimization pipeline.

- **Environment:** A TensorRT-compiled DL inference application
- Agent: A small MLP network consisting of two hidden layers.
- **State**: Current L2 residency configuration represented by an
- Action: An (N+1)-dimension one-hot vector to indicate which memory location to promote or taking no action.
- **Reward:** Execution time difference before and after an action.

Evolutionary Optimizer

Automatic optimization with Evolutionary Algorithm (EA)



EA-based optimization pipeline.

Initialization: Generate the initial population of M random L2 residency configurations and put them into a FIFO queue.

- **Main Loop**: Repeat the following re-generational steps until termination: (max 20,000 steps in our case)
 - Select the best-performing configuration from a random
 - Breed a child configuration through a mutation operation.
 - Insert the child configuration and remove the oldest one.
- 3) Termination: Choose the best one across all configurations.

AutoScratch Evaluation

Silicon based evaluation.

• NVIDIA's L4 GPU with 48MB of L2 capacity, a maximum TDP of 72W and 300GB/s of memory bandwidth.

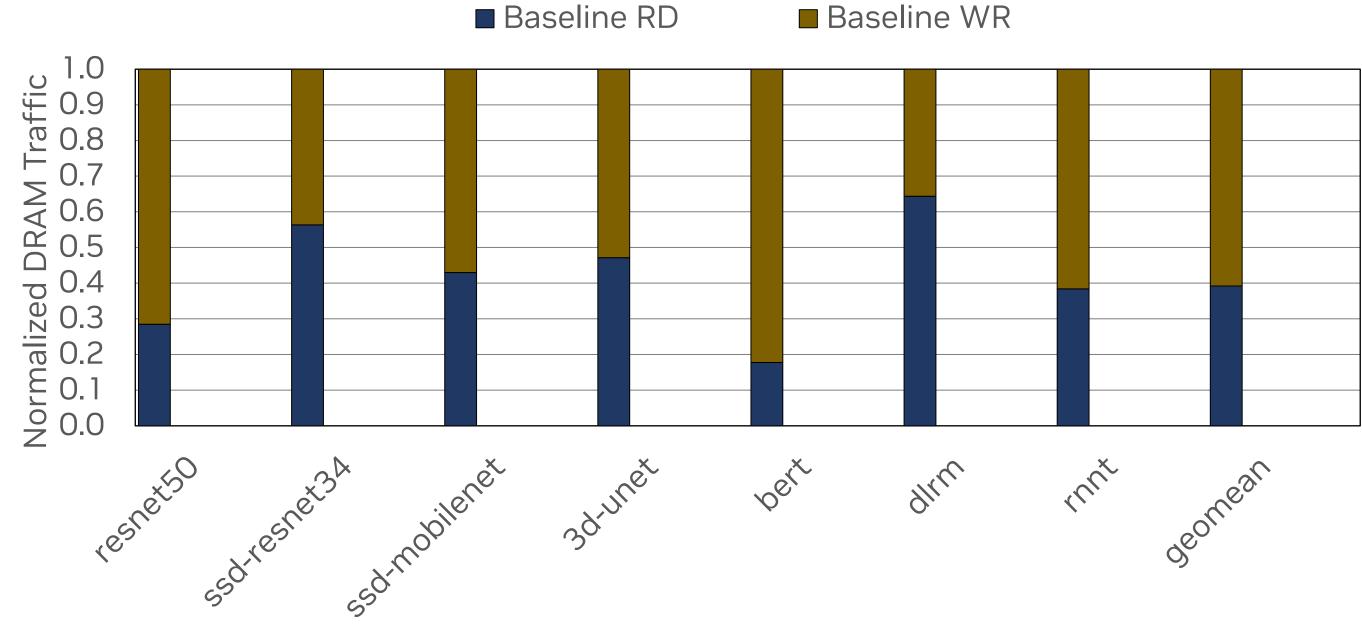
Comparing methods:

- **Baseline:** Default HW-based L2 management scheme with no L2 residency control.
- AutoScratch-RL (AS-RL): Using reinforcement learning as the ML optimizer in AutoScratch.
- AutoScratch-EA (AS-EA): Using evolutionary algorithm as the ML optimizer in AutoScratch.

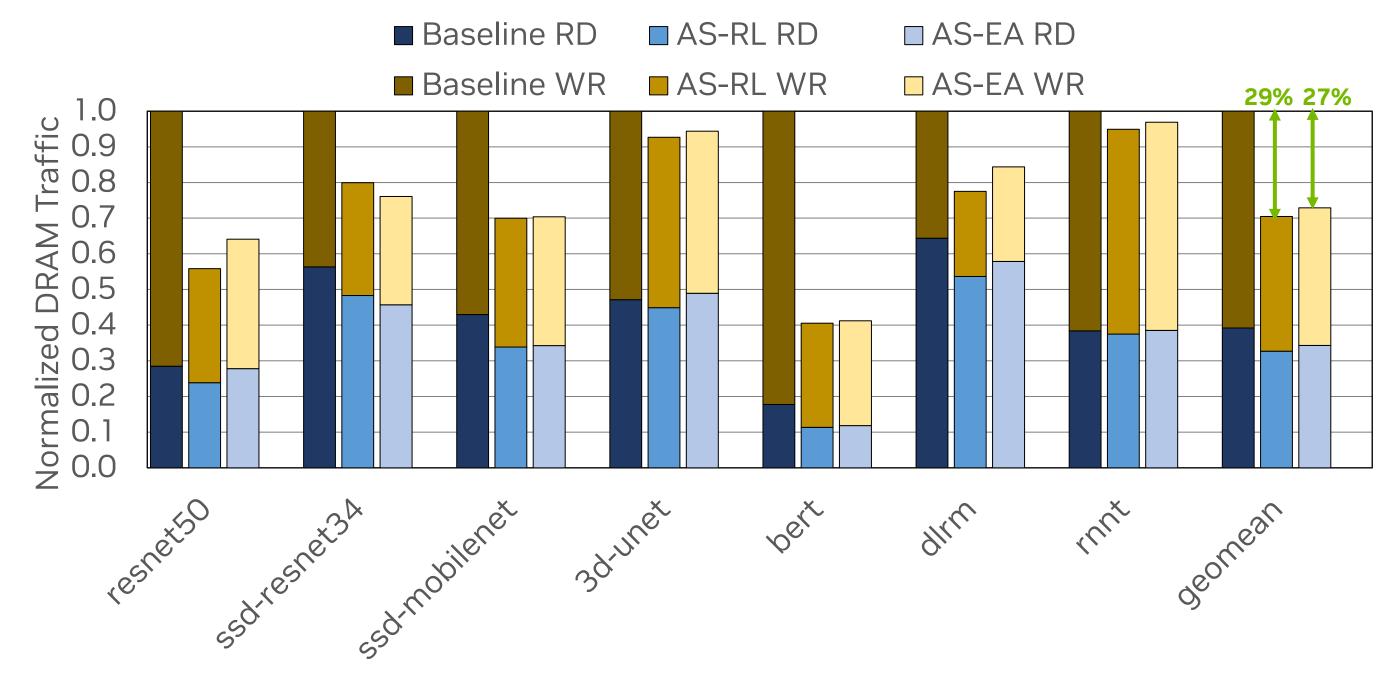
Evaluating on MLPerf inference applications.

Application	Precision	Batch size	Activation buffer size (MB)
resnet50	int8	32	63
ssd-resnet34	int8	6	104
ssd-mobilenet	int8	64	140
3d-unet	int8	1	278
bert	int8	32	81
dlrm	int8	51200	106
rnnt	fp16	2048	4175

DRAM Traffic Reduction



DRAM Traffic Reduction

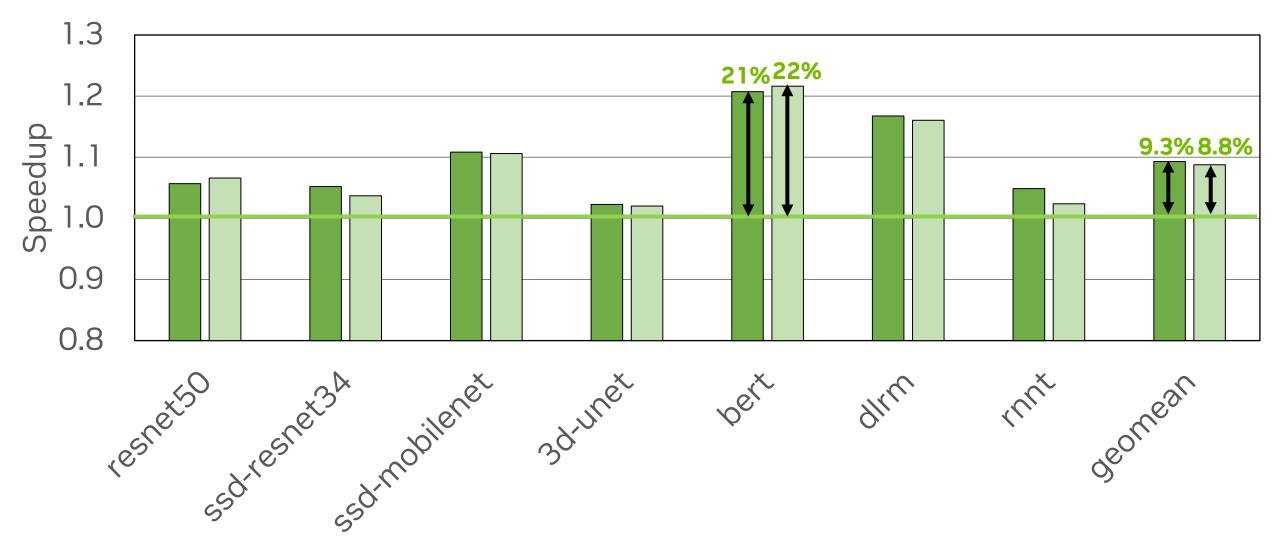


- Both AS-RL and AS-EA result in significant (29% and 27%) DRAM traffic reduction.
- DRAM WR traffic reductions are more significant because AutoScratch effectively prevent activations from being written back to DRAM.

13

Performance Speedup Measured on NVIDIA's L4 GPU Silicon

■ AS-RL ■ AS-EA



- Both AS-RL and AS-EA result in good (9.3% and 8.8%) performance speedup, up to 21% and 22% for bert.
- MLP-based workloads (*bert* and *dlrm*) benefit more from AutoScratch than Conv-based workloads because MLP operators are more memory-bound on GPUs.

The Cost of AutoScratch Training

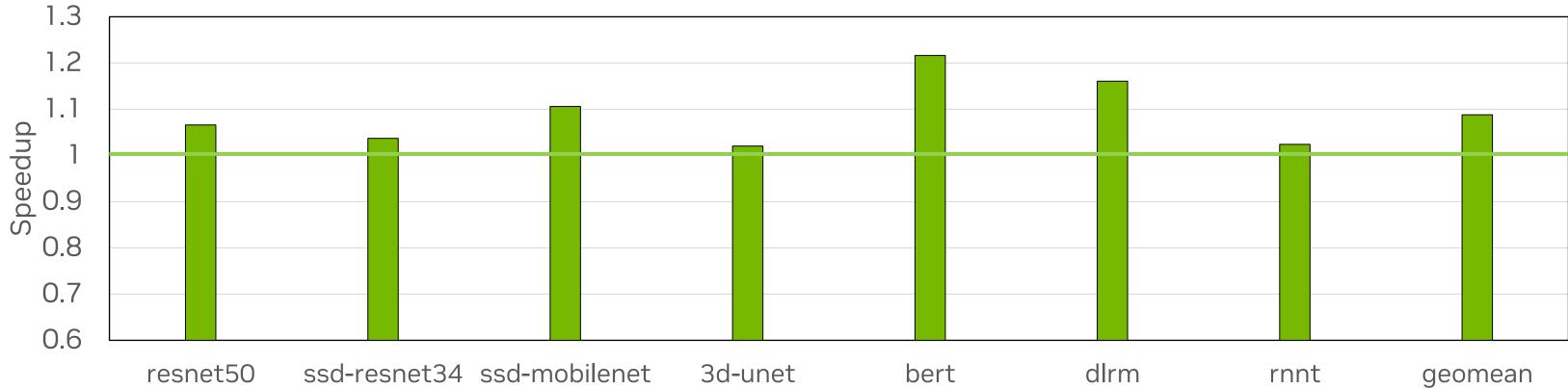
Workload	AS-RL (minutes)	AS-EA (minutes)
resnet50	241	6.8
ssd-resnet34	421	5.8
ssd-mbnet	260	8.0
3d-unet	390	4.4
bert	765	10.2
dlrm	238	5.4
rnnt	227	2.5
geomean	330	5.7

- AS-EA results in 58x reduction in training time compared to AS-RL.
- The training time of AS-EA is comparable to TensorRT compilation time, making it practical for deployment.

Time Reduction
35x
72x
33x
88x
75x
44x
90x
58x

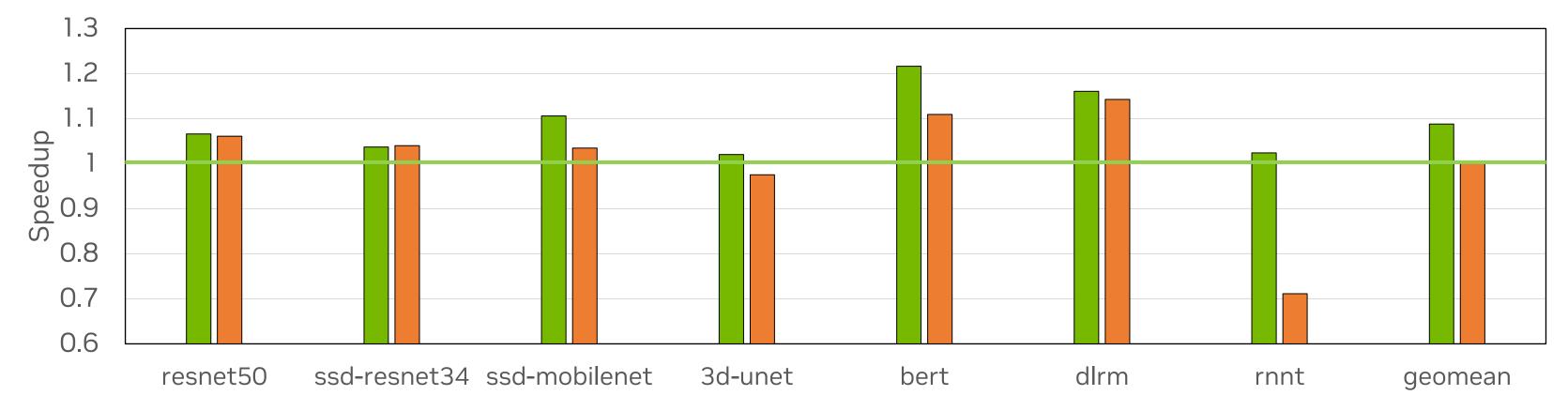
Comparing Against Other Optimization Methods

AS-EA



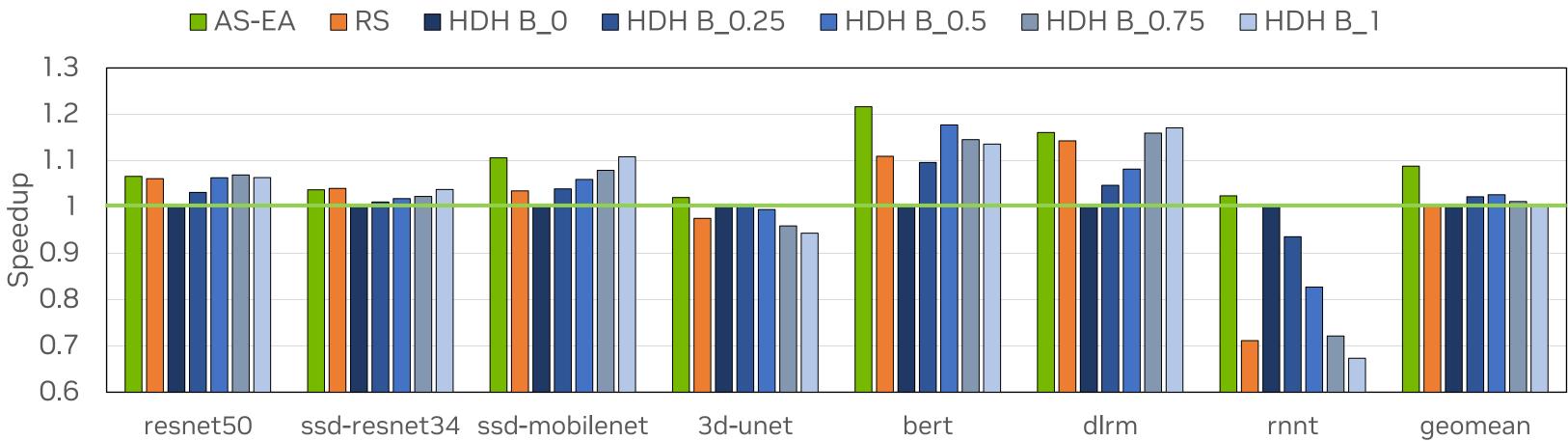
Comparing Against Other Optimization Methods

■ AS-EA ■ RS



- Comparing method:
 - Random Search (RS): Picking the best L2 residency configuration within a random set.
- The geomean speedup of RS is close to 0 compared to the baseline, making it a useless solution.

Comparing Against Other Optimization Methods



- Comparing method:
 - Human-Designed Heuristic (HDH): Designed by GPU experts at NVIDIA and integrated into the latest TensorRT SDK. An L2 residency budget ranging from 0 to 1 needs to be provided by the user.
- HDH can perform well, but additional parameter tuning on the L2 residency budget is required.

18

Conclusions

• Applying ML for cache management is promising for improving performance and energy efficiency.

 AutoScratch achieves a DRAM traffic reduction of 29% and performance speedup of 9% for MLPerf inference workloads on an NVIDIA's L4 GPU.

• AutoScratch with Evolutionary Optimizer is 58x faster than AutoScratch with RL Optimizer while providing similar performance, making it a suitable choice for practical deployment.

