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§ New ML Workload: Realtime MTMM (Multi-Task Multi-Model)

§ XRBench: Realtime MTMM Benchmark Suite in XR (AR/VR) 

§ New Scoring Metric for Real-time MTMM

§ Case Studies

§ Conclusion



ML Workload Taxonomy
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Example: Multi-tenancy in data centers

Multi-task Multi-model (MTMM) ML Workloads
AR/VR Autonomous Driving

…

Example: AR/VR



Characteristics of Real-time MTMM ML Workloads
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To guide ML system design for this new class of ML workloads, 
we need a well-defined benchmark driven by practical use case with all the characteristics
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XRBench v0.1: Unit Models
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§ Three key task classes and unit models in XRBench
• 1) User-device Interaction
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XRBench v0.1: Unit Models
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§ Three key task classes and unit models in XRBench
• 3) World-locking: Identify how to draw AR objects on real world scenes

Plane 
Detection

Depth
Estimation

Where to draw AR objects? What is the proper size of AR objects?

Note: This covers a subset of AR/VR workloads. More to be updated in the future version!



Usage Scenarios: How to combine unit models?
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§ Example: Social Interaction B Scenario in XRBench
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e.g., action-based AR emoji drawing 
during in-person conversation



XRBench v0.1: Overview
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§ 11 Unit Models

§ 7 Usage Scenarios

• Considerations for Model Selection
• Realistic workload: Recommendation from ML engineers/researchers in industry
• Model efficiency: Consider battery / compute power-limited wearable devices
• Model performance: Reported accuracy, mIoU, etc.

Please refer to our paper for details!



Benchmark Harness
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§ Goal
○ Provide a research platform for academia and industry researchers

§ Development Plan
○ Available Today: DNN accelerator analytical model (MAESTRO*)-based benchmark harness
○ Under development: XRBench-Desktop and XRBench-Mobile
○ Please refer to our homepage for the latest info: https://xrbench.ai

• H. Kwon et al., “Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach.” MICRO 2019.

How should we compare ML systems running XRBench?

https://xrbench.ai/
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Score Metric: Unit Scores
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All formulated to be higher-is-better metrics in [0,1] range
focusing on what matters to users
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A Comprehensive Score Metric: XRBench Score
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(Frame drop rate)

Combine unit scores via product

§ Hierarchical Formulation
• Score for each inference run -> … -> 

Score for the entire benchmark

§ Composable Formulation
• All scores in [0,1] range as higher-is-

better metrics

Why is the single metric (XRBench Score) useful?

• Easier comparison across models
• Facilitate benchmark result submissions 

from industry
Break-down scores are reported to users

(Not mandatory to submit them)



Score Metrics: Formal Definitions
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Please refer to our paper for details!

…

Paper Link: https://arxiv.org/pdf/2211.08675.pdf

https://arxiv.org/pdf/2211.08675.pdf
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Case Study
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§ Key Questions we answered
• Why new benchmark score?
• Why different usage scenarios?
• What are the implications to ML hardware design? We will focus on this in this talk

Please refer to our paper for other key insights!

Paper Link: https://arxiv.org/pdf/2211.08675.pdf
Project Homepage: https://xrbench.ai

https://arxiv.org/pdf/2211.08675.pdf
https://xrbench.ai/


An Insight: HW Utilization as a Metric
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• ~100% Utilization
• 47% Frame drop

• ~90% Utilization
• 3% Frame drop

Utilization as an absolute metric is an incorrect approach for real-time MTMM ML Workloads!
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Evaluation Results

18• Assumes no optimizations affecting the model performance (accuracy); Fix accuracy score == 1

More of interesting analysis and insights are presented in the paper!
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Conclusion
§ Emerging Realtime MTMM ML Workloads (e.g., AR/VR)

• Unique characteristics leading to new challenges to ML system design, ML algorithm, etc.
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§ XRBench: An effort to publicize the research problem in MTMM ML workloads
• Vision: Keep XRBench as an open project to foster research in ML system design for real-

time MTMM ML workloads

We worked to open the new research problem domain: ML System Design for RT-MTMM ML workloads
We look forward to working on this problem together!
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