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Motivation

 Allocation decisions have a direct impact on resource efficiency

 Inefficient placement might result in fragmentation and unnecessary 

over-provisioning 

 Improvements of 1% in packing efficiency can lead to cost savings 

of hundreds of millions of dollars (Hadary et al., 2020)

Goal: Increase Azure’s packing efficiency with lifetime-aware 

algorithms

Problem: Dynamic multi-dimensional bin packing problem
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Example

Why lifetime-aware allocations?
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VM lifetime characterization 

 How are lifetimes in our system?

 High variance of lifetimes

 Median: 16 minutes

 Average: +1 day

 Lifetime temporal patterns

 Feasibility of VM lifetime prediction



Our 

contributions

1. Lifetime-aware algorithm

2. ML model for VM lifetime predictions

3. System to support it on real-time



Lifetime Alignment (LA) algorithm

For each incoming request:

• If the request is predicted class 0:

• assign to any node using Best Fit

• If the request is predicted class j:

• assign to a class j node (if exists), using Best Fit, 

else,

• assign to any node using Best Fit

 Dynamically updates lifetime classification of nodes

 Predicted remaining lifetime

 Theoretical indication that LA is robust to prediction errors
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Idea: "Prioritize putting jobs with similar lifetimes together“

 Lifetime ranges are partitioned into classes (where class 0 contains the smallest lifetimes)
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Predicting lifetime

Challenges:

 Small feature set 

 Fast inference time

 Missing data (loss or pruning) 

 Skewed and long-tailed lifetime distribution

Features:

 VM centric (VM type, OS, request time)

 Customer centric (temporal distribution)

LightGBM model

Binary classification

Short/long threshold



System architecture

Challenge: How to predict on real time without causing delays?



Real-world production results

 Initial version (ML model + algorithm) in production

 20 Million daily prediction requests
 200+ datacenters

 60+ regions

 60% cache hit on inference results

 99.2% predictions within time budget
 Limit of 30ms

 ML model on production achieves expected performance



Experiments 

1.5%

Packing Density: Measures the average number of allocated cores on non-empty machines



Conclusion

We designed and implemented:

 Lifetime-aware packing algorithm robust to prediction errors

 ML model for VM lifetime predictions

 System infrastructure to support ML predictions in the critical path

➢Packing improvements expected to save hundreds of millions of dollars per year

General methodology for resource management:

1. Produce data-driven intelligence (ML training, simulations) – offline, slower time-scale

2. Utilize the intelligence at real-time (“inference”)

3. Applies to other scenarios, e.g., admission control (OSDI’23)
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Appendix



Lifetime Alignment (LA) algorithm

 Theoretical indication that LA is robust to prediction errors

Simplified setting:

- 1 resource (e.g., #CPU cores)

 - Defined lifetime intervals (e.g., 𝐼𝑗 ∈ [2𝑗 −1, 2𝑗) ) 

- Objective: Minimize average number of nodes used over a time horizon

Theorem: Assume the predicted lifetimes are in expectation within a factor of 𝛼 from 

true lifetimes. Then

    avg #nodes used by “theoretical” algorithm ≤  𝑂 𝛼2 ⋅ log 𝜇 ⋅ optimal number of nodes

𝝁 = Ratio 

longest/shortest 

lifetime



System architecture

 Prefer Best Fit Rule (PBFR)
 Scores the nodes based on how well they will be packed after the insertion of the requested VM

 Output score is quantized in a small number of buckets

    V1                                                               V2

 Safeguard 
 Returns to default PBFR if distribution change

Dynamic PBFR (DPBFR)

If long-lived, “pack better”, 

be more selective

Lifetime Awareness Rule 

(LAR)

LA algorithm → PBFR

Simpler &

Closer to default



Evaluation

Features ML t(µs) AP F1 AUC

Small

LGB 0.1 46% 45% 89%

CAM 0.3 73% 47% 84%

LGB + GRU 0.2 47% 45% 89%

LGB + CAM 0.2 50% 47% 90%

Large

LGB 0.2 62% 62% 94%

CAM 0.4 63% 63% 93%

LGB + GRU 0.2 63% 63% 94%

LGB + CAM 0.2 63% 64% 95%

Table 1. Machine learning performance over 3 months. Random coin flip 

would result in a F-1 score of 17%.

ML performance:

 Limited inference time

 LGB exhibits:
 Low latency

 Smallest memory footprint (40X less)

 20 MB (small set) and 51 MB (large set)

 Does not load temporal features embedding

 Competitive prediction accuracy 



Evaluation 

Potential benefits under unrealistic setting:

 Perfect lifetime predictions

 PBFR at the limit
 No quantization

  Offline heuristic as upper bound

 Packing Density (PD): Average number of allocated cores on non-empty machines

Method
Density 

Avg. (STD)

Improvement 

(%)

PBFR 

(no quant.)

82.12% 

(+/- 1.80%)
-

Lifetime 

Alignment

85.06% 

(+/- 0.05%)
3.58%

Offline 

heuristic
90.11% 9.73%

Table 2. Performance under idealized setting. Results are 

averaged over ten different instances.
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