
Virtual Machine Allocation with Lifetime

Predictions

Hugo Barbalho, Patricia Kovaleski, Beibin Li, Luke Marshall, Marco

Molinaro, Abhisek Pan, Eli Cortez, Matheus Leao, Harsh Patwari, Zuzu

Tang, Tamires V. C. Santos, Larissa R. Gonçalves, David Dion, Thomas

Moscibroda, Ishai Menache

Motivation

 Allocation decisions have a direct impact on resource efficiency

 Inefficient placement might result in fragmentation and unnecessary

over-provisioning

 Improvements of 1% in packing efficiency can lead to cost savings

of hundreds of millions of dollars (Hadary et al., 2020)

Goal: Increase Azure’s packing efficiency with lifetime-aware

algorithms

Problem: Dynamic multi-dimensional bin packing problem

CPU MEM

Node 1

??

VM

CPU MEM

Node 2

Motivation

N
o

d
e
s

Time

Lifetime

VM request

lifetime

 Allocation decisions have a direct impact on resource efficiency

 Inefficient placement might result in fragmentation and unnecessary

over-provisioning

 Improvements of 1% in packing efficiency can lead to cost savings

of hundreds of millions of dollars (Hadary et al., 2020)

Goal: Increase Azure’s packing efficiency with lifetime-aware

algorithms

Problem: Dynamic multi-dimensional bin packing problem

Example

Why lifetime-aware allocations?

. . .

N
o

d
e
s

Time

. . .

x 100

Example

Why lifetime-aware allocations?

. . .

N
o

d
e
s

Time

. . .

N
o

d
e
s

Time

Inefficient packing:

low density,

 wasted resources

Right packing:

no waste

VM lifetime characterization

 How are lifetimes in our system?

 High variance of lifetimes

 Median: 16 minutes

 Average: +1 day

 Lifetime temporal patterns

 Feasibility of VM lifetime prediction

Our

contributions

1. Lifetime-aware algorithm

2. ML model for VM lifetime predictions

3. System to support it on real-time

Lifetime Alignment (LA) algorithm

For each incoming request:

• If the request is predicted class 0:

• assign to any node using Best Fit

• If the request is predicted class j:

• assign to a class j node (if exists), using Best Fit,

else,

• assign to any node using Best Fit

 Dynamically updates lifetime classification of nodes

 Predicted remaining lifetime

 Theoretical indication that LA is robust to prediction errors

N
o

d
e
s

Time

Class j

Class i

Incoming request: Class 0

Idea: "Prioritize putting jobs with similar lifetimes together“

 Lifetime ranges are partitioned into classes (where class 0 contains the smallest lifetimes)

Lifetime Alignment (LA) algorithm

For each incoming request:

• If the request is predicted class 0:

• assign to any node using Best Fit

• If the request is predicted class j:

• assign to a class j node (if exists), using Best Fit,

else,

• assign to any node using Best Fit

 Dynamically updates lifetime classification of nodes

 Predicted remaining lifetime

 Theoretical indication that LA is robust to prediction errors

N
o

d
e
s

Time

Class j

Class i

Incoming request: Class 0

BestFit

Idea: "Prioritize putting jobs with similar lifetimes together“

 Lifetime ranges are partitioned into classes (where class 0 contains the smallest lifetimes)

Lifetime Alignment (LA) algorithm

Idea: "Prioritize putting jobs with similar lifetimes together“

 Lifetime ranges are partitioned into classes (where class 0 contains the smallest lifetimes)

For each incoming request:

• If the request is predicted class 0:

• assign to any node using Best Fit

• If the request is predicted class j:

• assign to a class j node (if exists), using Best Fit,

else,

• assign to any node using Best Fit

 Dynamically updates lifetime classification of nodes

 Predicted remaining lifetime

 Theoretical indication that LA is robust to prediction errors

N
o

d
e
s

Time

Class j

Class i

Incoming request: Class j

Lifetime Alignment (LA) algorithm

Idea: "Prioritize putting jobs with similar lifetimes together“

 Lifetime ranges are partitioned into classes (where class 0 contains the smallest lifetimes)

For each incoming request:

• If the request is predicted class 0:

• assign to any node using Best Fit

• If the request is predicted class j:

• assign to a class j node (if exists), using Best Fit,

else,

• assign to any node using Best Fit

 Dynamically updates lifetime classification of nodes

 Predicted remaining lifetime

 Theoretical indication that LA is robust to prediction errors

N
o

d
e
s

Time

Class j

Class i

Incoming request: Class j

BestFit

Predicting lifetime

Challenges:

 Small feature set

 Fast inference time

 Missing data (loss or pruning)

 Skewed and long-tailed lifetime distribution

Features:

 VM centric (VM type, OS, request time)

 Customer centric (temporal distribution)

LightGBM model

Binary classification

Short/long threshold

System architecture

Challenge: How to predict on real time without causing delays?

Real-world production results

 Initial version (ML model + algorithm) in production

 20 Million daily prediction requests
 200+ datacenters

 60+ regions

 60% cache hit on inference results

 99.2% predictions within time budget
 Limit of 30ms

 ML model on production achieves expected performance

Experiments

1.5%

Packing Density: Measures the average number of allocated cores on non-empty machines

Conclusion

We designed and implemented:

 Lifetime-aware packing algorithm robust to prediction errors

 ML model for VM lifetime predictions

 System infrastructure to support ML predictions in the critical path

➢Packing improvements expected to save hundreds of millions of dollars per year

General methodology for resource management:

1. Produce data-driven intelligence (ML training, simulations) – offline, slower time-scale

2. Utilize the intelligence at real-time (“inference”)

3. Applies to other scenarios, e.g., admission control (OSDI’23)

References

Hadary, O., Marshall, L., Menache, I., Pan, A., Greeff, E. E., Dion, D., Dorminey, S., Joshi, S., Chen, Y., Russinovich, M., et al.

Protean: VM Allocation Service at Scale. In 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), pp. 845–861, 2020.

Azar, Y. and Vainstein, D. Tight bounds for clairvoyant dynamic bin packing. ACM Trans. Parallel Comput., 6 (3), oct 2019.

ISSN 2329-4949. doi: 10.1145/3364214.

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, I., and Naor, J. Online virtual machine allocation with lifetime and load

predictions. ACM SIGMETRICS Performance Evaluation Review, 49(1):9–10, 2021.

Thank you

Appendix

Lifetime Alignment (LA) algorithm

 Theoretical indication that LA is robust to prediction errors

Simplified setting:

- 1 resource (e.g., #CPU cores)

 - Defined lifetime intervals (e.g., 𝐼𝑗 ∈ [2𝑗 −1, 2𝑗))

- Objective: Minimize average number of nodes used over a time horizon

Theorem: Assume the predicted lifetimes are in expectation within a factor of 𝛼 from

true lifetimes. Then

 avg #nodes used by “theoretical” algorithm ≤ 𝑂 𝛼2 ⋅ log 𝜇 ⋅ optimal number of nodes

𝝁 = Ratio

longest/shortest

lifetime

System architecture

 Prefer Best Fit Rule (PBFR)
 Scores the nodes based on how well they will be packed after the insertion of the requested VM

 Output score is quantized in a small number of buckets

 V1 V2

 Safeguard
 Returns to default PBFR if distribution change

Dynamic PBFR (DPBFR)

If long-lived, “pack better”,

be more selective

Lifetime Awareness Rule

(LAR)

LA algorithm → PBFR

Simpler &

Closer to default

Evaluation

Features ML t(µs) AP F1 AUC

Small

LGB 0.1 46% 45% 89%

CAM 0.3 73% 47% 84%

LGB + GRU 0.2 47% 45% 89%

LGB + CAM 0.2 50% 47% 90%

Large

LGB 0.2 62% 62% 94%

CAM 0.4 63% 63% 93%

LGB + GRU 0.2 63% 63% 94%

LGB + CAM 0.2 63% 64% 95%

Table 1. Machine learning performance over 3 months. Random coin flip

would result in a F-1 score of 17%.

ML performance:

 Limited inference time

 LGB exhibits:
 Low latency

 Smallest memory footprint (40X less)

 20 MB (small set) and 51 MB (large set)

 Does not load temporal features embedding

 Competitive prediction accuracy

Evaluation

Potential benefits under unrealistic setting:

 Perfect lifetime predictions

 PBFR at the limit
 No quantization

 Offline heuristic as upper bound

 Packing Density (PD): Average number of allocated cores on non-empty machines

Method
Density

Avg. (STD)

Improvement

(%)

PBFR

(no quant.)

82.12%

(+/- 1.80%)
-

Lifetime

Alignment

85.06%

(+/- 0.05%)
3.58%

Offline

heuristic
90.11% 9.73%

Table 2. Performance under idealized setting. Results are

averaged over ten different instances.

	Slide 1: Virtual Machine Allocation with Lifetime Predictions
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Example
	Slide 5: Example
	Slide 6: VM lifetime characterization
	Slide 7: Our contributions
	Slide 8: Lifetime Alignment (LA) algorithm
	Slide 9: Lifetime Alignment (LA) algorithm
	Slide 10: Lifetime Alignment (LA) algorithm
	Slide 11: Lifetime Alignment (LA) algorithm
	Slide 12: Predicting lifetime
	Slide 13: System architecture
	Slide 14: Real-world production results
	Slide 15: Experiments
	Slide 16: Conclusion
	Slide 17: References
	Slide 18: Thank you
	Slide 19: Appendix
	Slide 20: Lifetime Alignment (LA) algorithm
	Slide 21: System architecture
	Slide 22: Evaluation
	Slide 23: Evaluation

