
ApproxCaliper: A Programmable Framework for
Application-aware Neural Network Optimization

Yifan Zhao* · Hashim Sharif* · Peter Pao-Huang · Vatsin Shah ·
Arun Narenthiran Sivakumar ·
Mateus Valverde Gasparino · Abdulrahman Mahmoud ·
Nathan Zhao · Sarita Adve · Girish Chowdhary ·
Sasa Misailovic · Vikram Adve

Task: autonomous

row-following for various

agricultural applications

Agricultural Robot TerraSentia

2

TerraSentia Navigation Pipeline

Motion

Controller

Sensor

Fusion

Velocity Commands

Heading 𝝓

Distance

ratio 𝒅𝟏/𝒅𝟐

Heading

Prediction CNN

Distance

Prediction CNN

Front Camera Image

IMU Sensor𝒅𝟏 𝒅𝟐

3

IMU Sensor

TerraSentia Navigation Pipeline

Sensor

Fusion

Velocity Commands

Heading 𝝓
Heading

Prediction CNN

Distance

Prediction CNN

Front Camera Image

𝒅𝟏 𝒅𝟐

Expensive to run on
edge hardware

4

Motion

Controller

Distance

ratio 𝒅𝟏/𝒅𝟐

Optimizing NN-based Edge Applications

Collisions == 0

Valid

Collisions > 0

Invalid

Quality Requirement: Optimize For:

High performance

Good battery life

Low cost of hardware

Lightweight

…

5

ApproxCaliper: Key Contributions

ApproxCaliper optimizes NNs while meeting application-specific

goals & delivers higher benefits than application-agnostic tuning

Automates the optimization & minimizes the search time for

approximations when application QoS checking is expensive

6

Neural Network Approximations

Convolution

Channels /

Filters

Fewer

Channels /

Filters

Structured

Pruning

Lower latency, smaller model size, etc. at the cost of NN accuracy

…
Low-rank

Factorization

7

Manual Tuning is Too Expensive

NN1 NN2

20%

Pr

20%

LRF

NN1 NN2

10% Pruning 10% Low-Rank

Factorization

NN1 NN2

20%

Pr

30%

Pr

NN1 NN2

40%

LRF

40%

Pr

8

“Same NN Accuracy” is Too Conservative

NN1 NN2

20% pruning

~0% 𝜟acc

30% low-rank factorization

~0% 𝜟acc

9

The Rest of the Application

Automatic Application-aware NN Optimization

NN1 NN2

Non-NN
Component 1

Non-NN
Component 2

Output
Output meets QoS

requirement

40% pruning

-3% 𝜟acc

50% low-rank fact.

-2% 𝜟acc

Approximation is

acceptable

10

Automatic Application-aware NN Optimization

NN1 NN2

Non-NN
Component 1

Non-NN
Component 2

Output

60% pruning

-5% 𝛥acc

60% low-rank fact.

-7% 𝛥acc

11

Approximation is

unacceptable

Output does not meet

QoS requirement

ApproxCaliper Workflow

ApproxCaliper

Error Calibration

Framework

Available

Approximations

Model Approximation

Autotuner
Application w/

Optimized NNs

NNs Definition

(PyTorch/Keras)

Application QoS

Evaluator + Goal
NN-specific

metrics

Performance

Evaluator

12

Error Constraint Space

ApproxCaliper Workflow

NNs Definition

(PyTorch/Keras)

Application QoS

Evaluator & Goal

NN-specific

metrics

Regression tasks

L1/L2 error

Classification tasks

Accuracy (%)

…

Collisions == 0

Valid

Collisions > 0

Invalid

13

Approximation Tuning in ApproxCaliper

NN1

Initial NN Variants

Approximation

Techniques

Space of
Approximated NNs

NN2

…
Optimized NN
Selection

???

App. QoS Goal

(Constraint)

App. Performance

(Objective)

14

Approximation Tuning in ApproxCaliper

Key Challenge:

Empirical QoS evaluations

are expensive

NN1

NN2

…

???

App. QoS Goal

(Constraint)

App. Performance

(Objective)

15

Error Calibration

Goal: predict if application QoS is met from NN errors

Heading NN

Distance NN

Heading
L1 error

Distance
L1 error

Number of
collisions

NNs Definition

(PyTorch/Keras)

Application QoS

Evaluator

NN-specific

metrics

16

Error Calibration

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Distance
L1 error

Space of NN metric values

Baseline NNs
(un-approximated)

Heading
L1 error

17

Error Injection

+Heading

NN

Distance

NN
+

Explore more points

18

Distance L1 error

Heading
L1 error

Distance L1 error

Error Injection

Measure app. QoS

+Heading

NN

Distance

NN
+

Valid QoS Invalid QoS

19

Heading
L1 error

Acceptable Accuracy Budgets

Determine which region yields acceptable app QoS

Distance L1 error

Heading
L1 error

Valid QoS

Invalid QoSInvalid QoS

20

Guided Approximation Tuning

50% Low-rank
factorization

…

Use Error Calibration results to filter candidates

Valid QoS; skip QoS measurement

(only measure performance)

Invalid QoS; discarded

(no QoS measurement)

Measure QoS empirically only

when uncertain

50% Pruning

30% Pruning

21

Guided Approximation Tuning

Low

High

App. Performance

Select candidates with valid QoS and best performance

22

ApproxCaliper Programming Interface

23

User Inputs

Phase 1

Phase 2

Cart simulator

Polaris-GEM

Task: lane-following on paved roads

Evaluation Setup: Applications Optimized

Agricultural Robot

TerraSentia

Task: autonomous

row-following for various

agricultural applications

24

TerraSentia Navigation Pipeline

Controller
Sensor

Fusion

Velocity Commands

Heading 𝝓

Distance 𝒅

Heading

Prediction CNN

Distance

Prediction CNN

Front Camera Image

Acc. Sensor

25

Polaris-GEM Pipeline

Lane Post-

processing

LaneNet

CNN

Stanley

controller

Control

Commands Sim. IMU

Lane pixel mask

Front Camera Image

26

Evaluation Setup: Approximations

Structured Pruning
with LRW [1]

[1] Renda, Alex, Jonathan Frankle, and Michael Carbin. "Comparing Rewinding and Fine-tuning in Neural

Network Pruning." International Conference on Learning Representations. 2019

[2] Tai, C., Xiao, T., Zhang, Y., Wang, X., et al. Convolutional neural networks with low-rank regularization.

International Conference on Learning Representations (ICLR), 2016

Low-rank Factorization [2]
of layer weights

27

Baseline: application-agnostic approximation – retain accuracy

Optimization Results – Terrasentia

28

H
ig

h
e
r

is
 B

e
tt

e
r

5.3X speedup over

today’s practice

Baseline: application-agnostic approximation – retain accuracy
L

o
w

e
r

is
 B

e
tt

e
r

2.9X improvement

over today’s practice

Optimization Results – Polaris-GEM

29

Valid QoS Configurations Invalid QoS Configurations

ApproxCaliper models error interactions across NNs

Error Calibration Results – TerraSentia

30

ApproxCaliper Takeaways

31

MPC EKF

Heading

CNN

Distance

CNN

IMU

Complex ML Pipelines

Identify Acceptable Accuracy Budgets Guided Approximation Tuning

https://github.com/uiuc-arc/approxcaliper
0

4

8

0 4 8

Valid QoS

Invalid QoS

Aggressive Accuracy Optimization

… App QoS

Goal

	Default Section
	Slide 1: ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

	Introduction
	Slide 2: Agricultural Robot TerraSentia
	Slide 3: TerraSentia Navigation Pipeline
	Slide 4: TerraSentia Navigation Pipeline
	Slide 5: Optimizing NN-based Edge Applications
	Slide 6: ApproxCaliper: Key Contributions
	Slide 7: Neural Network Approximations
	Slide 8: Manual Tuning is Too Expensive
	Slide 9: “Same NN Accuracy” is Too Conservative
	Slide 10: Automatic Application-aware NN Optimization
	Slide 11: Automatic Application-aware NN Optimization

	System Design
	Slide 12: ApproxCaliper Workflow
	Slide 13: ApproxCaliper Workflow
	Slide 14: Approximation Tuning in ApproxCaliper
	Slide 15: Approximation Tuning in ApproxCaliper
	Slide 16: Error Calibration
	Slide 17: Error Calibration
	Slide 18: Error Injection
	Slide 19: Error Injection
	Slide 20: Acceptable Accuracy Budgets
	Slide 21: Guided Approximation Tuning
	Slide 22: Guided Approximation Tuning
	Slide 23: ApproxCaliper Programming Interface

	Evaluation Setup
	Slide 24: Evaluation Setup: Applications Optimized
	Slide 25: TerraSentia Navigation Pipeline
	Slide 26: Polaris-GEM Pipeline
	Slide 27: Evaluation Setup: Approximations

	Evaluation
	Slide 28: Optimization Results – Terrasentia
	Slide 29: Optimization Results – Polaris-GEM
	Slide 30: Error Calibration Results – TerraSentia

	Conclusion
	Slide 31: ApproxCaliper Takeaways

