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Task: autonomous     

row-following for various 

agricultural applications

Agricultural Robot TerraSentia
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TerraSentia Navigation Pipeline
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IMU Sensor

TerraSentia Navigation Pipeline

Sensor 
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Front Camera Image
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Expensive to run on 
edge hardware
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Optimizing NN-based Edge Applications

Collisions == 0

Valid

Collisions > 0

Invalid

Quality Requirement: Optimize For:

High performance

Good battery life

Low cost of hardware

Lightweight

…
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ApproxCaliper: Key Contributions

ApproxCaliper optimizes NNs while meeting application-specific

goals & delivers higher benefits than application-agnostic tuning

Automates the optimization & minimizes the search time for 

approximations when application QoS checking is expensive
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Neural Network Approximations
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Lower latency, smaller model size, etc. at the cost of NN accuracy

…
Low-rank

Factorization
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Manual Tuning is Too Expensive
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“Same NN Accuracy” is Too Conservative

NN1 NN2

20% pruning

~0% 𝜟acc

30% low-rank factorization

~0% 𝜟acc
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The Rest of the Application



Automatic Application-aware NN Optimization

NN1 NN2

Non-NN 
Component 1

Non-NN 
Component 2

Output
Output meets QoS 

requirement 

40% pruning

-3% 𝜟acc

50% low-rank fact.

-2% 𝜟acc

Approximation is 

acceptable
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Automatic Application-aware NN Optimization
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60% pruning
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60% low-rank fact.

-7% 𝛥acc
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Approximation is 

unacceptable

Output does not meet 

QoS requirement 



ApproxCaliper Workflow

ApproxCaliper

Error Calibration 

Framework

Available 
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ApproxCaliper Workflow

NNs Definition

(PyTorch/Keras)

Application QoS 

Evaluator & Goal

NN-specific 

metrics

Regression tasks

L1/L2 error

Classification tasks

Accuracy (%)

…
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Approximation Tuning in ApproxCaliper

NN1

Initial NN Variants

Approximation

Techniques

Space of 
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(Objective)
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Approximation Tuning in ApproxCaliper

Key Challenge: 

Empirical QoS evaluations 

are expensive

NN1

NN2

…
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App. Performance

(Objective)
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Error Calibration

Goal: predict if application QoS is met from NN errors

Heading NN

Distance NN
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L1 error
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Error Calibration
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Error Injection
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Distance L1 error

Error Injection

Measure app. QoS

+Heading 
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Valid QoS Invalid QoS
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Acceptable Accuracy Budgets

Determine which region yields acceptable app QoS

Distance L1 error

Heading
L1 error

Valid QoS

Invalid QoSInvalid QoS
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Guided Approximation Tuning

50% Low-rank 
factorization

…

Use Error Calibration results to filter candidates

Valid QoS; skip QoS measurement

(only measure performance)

Invalid QoS; discarded

(no QoS measurement)

Measure QoS empirically only 

when uncertain

50% Pruning

30% Pruning
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Guided Approximation Tuning

Low

High

App. Performance

Select candidates with valid QoS and best performance
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ApproxCaliper Programming Interface
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User Inputs

Phase 1

Phase 2



Cart simulator

Polaris-GEM

Task: lane-following on paved roads

Evaluation Setup: Applications Optimized

Agricultural Robot

TerraSentia

Task: autonomous     

row-following for various 

agricultural applications
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TerraSentia Navigation Pipeline
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Polaris-GEM Pipeline
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Evaluation Setup: Approximations

Structured Pruning 
with LRW [1]

[1] Renda, Alex, Jonathan Frankle, and Michael Carbin. "Comparing Rewinding and Fine-tuning in Neural 

Network Pruning." International Conference on Learning Representations. 2019

[2] Tai, C., Xiao, T., Zhang, Y., Wang, X., et al. Convolutional neural networks with low-rank regularization. 

International Conference on Learning Representations (ICLR), 2016

Low-rank Factorization [2] 
of layer weights 
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Baseline: application-agnostic approximation – retain accuracy

Optimization Results – Terrasentia
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Baseline: application-agnostic approximation – retain accuracy
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2.9X improvement 

over today’s practice

Optimization Results – Polaris-GEM
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Valid QoS Configurations Invalid QoS Configurations

ApproxCaliper models error interactions across NNs

Error Calibration Results – TerraSentia
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ApproxCaliper Takeaways

31
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