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GNN Message Passing Paradigm
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Aggregate information from neighbors to produce node embeddings



Training on Large-scale Graphs
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Pinterest: PinSage for web-sacle Google Maps: GNN for traffic
recommendation forecasting

Efficient training on large-scale graphs is challenging but meaningful for industry applications



Sampling-based GNN Training
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

GraphSAGE
Sampling-based GNN training

» Use sampled neighbors for training, altering graph topology (lower model accuracy)
» Transfer k-hop features for a k-layer GNN (time-consuming)

» Run (sophisticated) sampling algorithms (extra overhead)
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Distributed Full-graph GNN Training
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Distributed full-graph training
» Each worker holds one graph partition and remote 1-hop HALO node indices in GPU

» Large data transfer across devices due to exchanging remote messages [features and embeddings in

forward, embedding gradients in backward] for computation in each GNN layer



Communication Bottleneck

Dataset Partition Setting Communication Cost Remote Neighbor Ratio > Communication cost (d|V|d|ng
. . 2M-1D 66.78% 41.54% L .
Reddit (Hamilton et al., 2017a) YM-2D 75.20% 62.60% average communication time
2M-2D 75.59% 31.09% .
ogbn-products (Hu et al., 2020) SMAD 76.67% 10.529% by average per-epoch training
2M-2D 75.58% 39.75% : :
AmazonProducts (Zeng et al., 2020) AYM-AD 78.92% 53.00% time among all deVICeS) can
o
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[ Careful design to alleviate such graph data transfer overhead is the key for training acceleration J
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SOTA Works
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» hide communication overhead by pipelining » Check embedding staleness before
computation with communication across broadcast in each epoch
epochs > Reuse stale embedding from Results Cache

SOTA works adopt staleness-based communication-hiding design, which hurts training convergence



Opportunity for Hiding Computation Time
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Training GCN on ogbn-products with 8 partitions

Local Graph

S ()] 0
o o o

Ratio of Comp. Time (%)
N
o

» Divide local nodes into central nodes (without remote neighbors) and marginal nodes

(with remote neighbors)
» Central nodes computation can be hidden within marginal nodes communication



Parallelization + Message Quantization Design
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Vanilla Distributed Full-graph Training

communication

computation on marginal graph
- computation on central graph

quantization or de-quantization

» Use adaptive message quantization to
balance and reduce message exchange
sizes among devices

» Hide central nodes computation within

marginal nodes communication



Workflow of AdaQP
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Each local graph is decomposed into
central graph and marginal graph;
computation of the former overlaps with
communication of the latter

Each remote message is quantized to
certain bit-width set by the Assigner
The Assigner traces input data in each
layer and periodically assigns bit-width

for remote message quantization



Stochastic Integer Message Quantization

Quantization to compress sending messages / \
l > hl: message of node v at layer [
—Z,

h,, = gy(hy) = Toundst( o ) > Z! = min(hl): zero point, the minimum value

(%
o _ ’ among input vector
Dequantization to restore received messages

R _ B 1 max(h})-min(h}).
AL = dq,(RL, ) = BL, SL + 7 > Sy, = - : scaling factor, mapping

K floating point hl, to integer i;z;b /

For message vector hl, the reconstructed (after quantization and dequantization ) Al is:
> Unbiased estimation of input: E[A}]| = k!

plgl 2
> Variance bounded and controlled by bit-width: Var|hl] = S— , D} is the dimension of vector h/,



Impact of Gradient Variance on Convergence

View full-graph training as empirical risk minimization problem
1 N
minwteRDE[L(Wt)] = NE Li(We) Wiy =W — agy
i

Convergence guarantee with gradient variance

Theorem. Suppose our distributed full-graph GNN training runs for T epochs using a fixed step size a < Li

2

Select t randomly from {1, - - -, T }. Under Assumption I, we have

> The convergence rate is 0(T™1), which is consistent with vanilla distri

E|[Ive@my)l|’|

ted full-graph training
» Training converges to the neighborhood of that of the vanilla distributed fult~graph training in

solution space, whose radius is determined by gradient variance upper bound @
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Connect Quantization to Gradient Variance

Theorem. Given a distributed full-graph (V, E) and optional bit-width set B, for each layer | € {1,--- L} in the
GNN, the upper bound of the gradient variance Q* in layer [ is:

IVl /Nr(W) Nr(v) -1l (cl-1cl )2 Ngr(v) Lol N2 Nr(®) 1-1,cl-142
Di1" Diz (Ski;Skz,) Dy (Sk,) Dy (S, )
Ql :y< S“ S“ al%l,valiz,v 6 : : +M2 2 al%,va_l'Nz Z al%,v 6 :
K K

v kl kz
L max(hy,)—min(hy)
M and N are constants recall that: s, = 2bv—1
T
Bit-width is here!
N J

@ Size of remote neighbor set N;(v): decided by graph topology and partition algorithm
@ Aggregation coefficient a; ,: decided by GNN types (GCN or GraphSAGE)

® Dimension size D;, and value range (numerator) in Sy, : decided by graph datasets and training process

@ Choices of bit-width b,,: set it to adjust gradient variance upper bound and communication volume
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Adaptive Bit-width Assignment

Assigner solves a variance-time bi-objective problem to assign bit-width for remote
messages sent in each layer, to strike a convergence-throughput trade-off

added gradient variance bound

. X in each communication round
MMbyeB,z>0 ’1 -z, A€[0]] when quantizing sending
i L

messages

3o g2 , Dl (max(h}) — min(h))?
6
By reflects the total influence of transferring

Communication cost message k between device pair K; on
gradient variance

Br =

> K;: total number of messages transferred in device pair i
> Dj:dimension of the remote message vector hl
» 0; and y;: the parameters of cost model
convert the problem to an MILP and invoke an off-the-shelf solver to get the solution
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Experimental Evaluation

GNN models: GCN, full-batch GraphSAGE (with mean aggregator)

Baselines: Vanilla distributed full-graph training, PipeGCN, SANCUS

Datasets: Dataset #Nodes #Edges #Features #Classes  Size
Reddit 232,965 114,615,892 602 41 3.53GB
Yelp (Zeng et al., 2020) 716,847 6,977,410 300 100 2.10GB
ogbn-products 2,449,029 61,859,140 100 47 1.38GB
AmazonProducts 1,569,960 264,339,468 200 107 2.40GB

Hardware Configurations: 2 servers, each has 4 GPUs

CPU GPU Inter-node Intra-node
connection connection
Intel Xeon Gold 6230 Nvidia Tesla V100 100Gps Ethernet NVLink

2.1GHz SXM2 32GB




Throughput and Accuracy

Dataset | Partitions | Model Method  Accuracy(%) Throughput (epoch/s) | Dataset | Partitions | Model Method  Accuracy(%) Throughput (epoch/s)
Vanilla  95.3620.03 0.99 Vanilla  44.24£0.19 118
PipeGCN t t PipeGCN t T
GCN SANCUS  94.7320.17 111 (1.12x) GCN SANCUS  20.75+2.44 0.80
VLD AdaQP  95.36£0.02 217 (2.19%) MD AdaQP  43.9620.15 3.04 (2.58x)
Vanilla  96.500.03 0.04 Vanilla  64.65£0.08 111
PipeGCN  96.62+0.00 3.72 (3.96x) PipeGCN  63.88+0.06 2.63 (2.37x)
GraphSAGE SANCUS t t GraphSAGE SANCUS t t
Reddit AdaQP  96.49+0.02 2.13 2.27x) vl AdaQP  64.7220.13 3.15 (2.83x)
Vanilla  95.3520.04 1.13 P Vanilla  43.86£0.62 157
GCN PipeGCN 1 T GCN PipeGCN t T
SANCUS  94.900.02 1.48 (131x) SANCUS  20.78+0.2.45 0.66
M2D AdaQP  95.38+0.03 2.65 (2.35x) MAD AdaQP  43.8420.63 3.64 (2.32x)
Vanilla  96.5520.03 1.16 Vanilla 64.6720.12 1.1
PipeGCN  96.670.01 3.13 (2.70x) PipeGCN  63.730.14 232 (1.95x)
GraphSAGE SANCUS + t GraphSAGE SANCUS t +
AdaQP  96.53 +0.04 2.65 (2.28%) AdaQP  64.780.05 3.58 (3.01x)
Vanilla 75142041 0.61 Vanilla  51.45£0.12 042
PipeGCN 1 t PipeGCN ¢ t
GCN SANCUS  71.5220.13 0.26 GCN SANCUS  20.830.18 032
M2D AdaQP  75.32+0.28 1.65 (2.70x) M.2D AdaQP  51.500.08 1.16 (2.76x)
Vanilla  78.90%0.17 0.63 Vanilla  75.69:1.32 046
PipeGCN  77.82+0.01 1.10 (1.75%) PipeGCN  71.96+0.00 0.99 (2.15x)
GraphSAGE SANCUS t t GraphSAGE SANCUS f t
AdaQP  78.8540.20 1.67 (2.65x) AdaQP  75.69 133 1.21 2.63x)
ogbn-products Vanilla  75.1120.09 0.79 AmazonProducts Vanilla 51.3820.16 058
PipeGCN T t PipeGCN t 1
GCN SANCUS  71.9920.16 021 GCN SANCUS  21.220.07 027
AdaQP  75.30£0.17 2.18 (276 %) AdaQP  51.5620.20 1.60 (2.76x)
2M-4D Vanilla  78.89%0.09 0.77 2M-4D Vanilla 75.80:1.16 0.62
PipeGCN  76.670.01 1.10 (1.43x) PipeGCN  71.9120.00 1.02 (1.65)
GraphSAGE SANCUS t + GraphSAGE SANCUS t t
AdaQP  78.90+0.08 215 (2.79x) AdaQP  75.98+1.18 1.61 (2.60%)

AdaQP achieves highest throughput in most cases (2.19~3.01X faster than Vanilla) &

comparable accuracy (within - 0.30% ~ + 0.19% of Vanilla’ s accuracy)



Convergence Curve
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AdaQP preserves 0(T~1) convergence rate, verifying theoretical results



Accuracy-Throughput Trade-off and Time Breakdown

Adaptive quantization vs. uniform random bit-
width sampling

Partitions Model Method Accuracy (%) Throughput (epoch/s)
GCN Unifom 75.03+0.36 1.70
YM-2D Ada.lptlve 75.32+0.28 1.65
GraphSAGE Uniform 78.84+0.23 1.64
Adaptive 78.85+0.20 1.67
GCN Unifo;m 75.16+0.16 2.14
IYM-AD Adgptlve 75.30+0.17 2.18
GraphSAGE Unlfom 78.85+0.08 2.07
Adaptive 78.90+0.08 2.15

AdaQP consistently achieves higher accuracy than

random sampling with close throughput, striking
better accuracy-throughput trade-off
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quantization/dequantization overhead of AdaQP is
small (5.53%~13.88%)
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End-to-end Wall-clock Time Breakdown
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Compared to wall-clock time reduction, bit-width assignment overhead is negligible (5.43%

in average)
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Summary

» Two key designs:
Message quantization with time-variance-aware bit-width assignment
Communication-computation parallelization on each local graph

» Convergence guarantee and theoretical analysis on relationship between message

quantization and gradient variance

» Reduce communication cost by 79.98% on average and achieve 2.19~3.01X

training throughput improvement

Takeaway: GNNs are robust to quantization, even when loss compression is performed

on all messages (features, embeddings, embedding gradients) of each GNN layer
19



Thank You

The Artifact of AdaQP:
https://doi.org/10.5281/zenodo.7783787

Contact:
wanborui@connect.hku.hk



https://doi.org/10.5281/zenodo.7783787
mailto:wanborui@connect.hku.hk

Message Transferring Modeling

VRN VAR T\
/o\ [0 ) /o\
3 1 —> (3 1 = (3 1
round 1 round 2 round 3

Implement message exchange with Ring all2all

Objective 1. minimize struggler in each communication round
Kl
ming, egMax,<i<n0; Z Dllcbk + Vi
i

> K;: total number of messages transferred in device pair i
> 0; and y;: the parameters of cost model
» B:the optional bit-width set, set to [2,4,8] in our work



Variance Upper Bound Modeling

Objective2: minimize added variance upper bound in each communication
round due to message quantization

N K;

. B
mlnbkeB (zbk _ 1)2
I k

_2ar® a2 | Dl (max(hf) — min(h}))?
By = -

N7 (k) denotes k' s neighbors in the target device to which
k' s message is to be sent



Adaptive Bit-width Assignment

\4

Step1: Step2: Step3: Step4:

Each assigner traces the Master Assigner gathers all Master Assigner solves the Master assigner scatters
dynamic changes in the input traced data and formulates bi-objective problem to obtain assignment results to each
data of GNN layers during the variance-time bi-objective bit-width assignment device, each assigner

training problem solutions updates the buffers
Each worker gather needed data and Master assigns bit-width for remote
periodically send it to Master, then messages sent in each layer and
waiting for results dispatches the results

Solve the variance-time bi-objective problem to strike a convergence-efficiency trade-off



GPU Resources Isolation

| CPU |
| communication ]

Quantization Kernel and fkem_el fkern_el 1:kelrn_el

Computation Kernel content N unction ; {_function , (_ function
for GPU compute resources \ ~
\ S ¢ |ePu [

¥ \\v ! v
quantizationj computation de-quantization’
kernel kernel kernel

Marginal Graph Marginal Graph Communication Marginal Graph
Quantization & Central Graph Computation De-quantization

— >

CUDA Kernel Launch Data Movement

Control CUDA kernel launching time to avoid GPU resources contention



End-to-end Wall-clock Time Comparison

Dataset | Partitions | Model Method  Wall-clock Time (s) | Dataset | Partitions | Model Method  Wall-clock Time (s)
Vanilla 505.79 Vanilla 846.79
GeN  oRCUs 447T.28 6N TS 124T9.89
2M-1D Vit L 2M-2D Vit 9728
GraphSAGE Spjf;%%@ 135{29 GraphSAGE Spg)gc(;%\sl 38#‘“
Reddit Vil 5 Yelp Vil 7T
GON  ORNCUS 335T.56 GON  oANCUS 150T9.41
2M-2D Vit % 2M-4D Vit 355
GraphSAGE ¢ Pe0CH 159T'66 GraphSAGE L0 43(;'63
AdaQP 208.34 AdaQP 289.23
Vanilla 409.54 Vanilla 287477
GCN gf;%%bsl 943.16 GCN gg);cg%lg 378T2.44
2M-2D Vil ot 2M-2D Vil 25571
GraphSAGE ¢ PeiCl 229{11 GraphSAGE £ PeuCN 121?'65
ogbn-products é:;ll(l)ll; ;?’Slzg AmazonProducts é:ﬁl(ﬁ: ;ggg%
GEN  ORNCUS 185,68 TS S 3580.68
2M-4D Vit 32503 2M-4D Vaziih pas
GraphSAGE gg’;%%ﬁ 229];31 GraphSAGE Spg’l’ff(}:%lg 17 ]3'38
AdaQP 133.93 AdaQP 771.52

AdaQP Achieve highest shortest wall-clock time (14/16) in most cases



Takeaway

» Empirically, GNN training is robust to stochastic integer quantization, even when it is

performed to each part and each layer of GNN

» Stochastic integer quantization can reduce the data transferring overhead in all kinds of

GNN training systems

Sampling-based GNN Training Offloading-based GNN Training
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