
AdaQP: Adaptive Message Quantization and Parallelization for 
Distributed Full-graph Training 

Borui Wan, Juntao Zhao, Chuan Wu

The University of Hong Kong



GNN Message Passing Paradigm

Aggregate information from neighbors to produce node embeddings

Mathematic Form 

Ø ℎ!" : learned embedding of 

node 𝑣 at layer 𝑙

Ø 𝑁 𝑣 : neighbor set of node 𝑣

Ø 𝜙": aggregation function

Ø 𝜓": update function 

ℎ#(!)
" = 𝜙" ℎ&"'( 𝑢 ∈ 𝑁 𝑣
ℎ!" = 𝜓(ℎ!"'(, ℎ#(!)" )
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Pinterest: PinSage for web-sacle 
recommendation 

Google Maps: GNN for traffic 
forecasting

Efficient training on large-scale graphs is challenging but meaningful for industry applications 

Training on Large-scale Graphs 
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Sampling-based GNN training

Ø Use sampled neighbors for training, altering graph topology (lower model accuracy)

Ø Transfer k-hop features for a k-layer GNN (time-consuming)

Ø Run (sophisticated) sampling algorithms (extra overhead)

GraphSAGE

Sampling-based GNN Training
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Distributed full-graph training

Ø Each worker holds one graph partition and remote 1-hop HALO node indices in GPU  

Ø Large data transfer across devices due to exchanging remote messages [features and embeddings in 

forward, embedding gradients in backward] for computation in each GNN layer
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Ø Communication cost (dividing 

average communication time 

by average per-epoch training 

time among all devices) can 

be up to 78.22%

Ø As parallelism level increases, 

communication overhead 

becomes more severe

Ø Unbalanced number of 

messages transferred across 

difference device pairs

Communication Bottleneck 

M – Machines             D – Devices per Machine

Careful design to alleviate such graph data transfer overhead is the key for training acceleration 
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PipeGCN

Ø hide communication overhead by pipelining 

computation with communication across 

epochs

SOTA Works

SANCUS

Ø Check embedding staleness before 

broadcast in each epoch

Ø Reuse stale embedding from Results Cache 

SOTA works adopt staleness-based communication-hiding design, which hurts training convergence
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Ø Divide local nodes into central nodes (without remote neighbors) and marginal nodes

(with remote neighbors)

Ø Central nodes computation can be hidden within marginal nodes communication 

Opportunity for Hiding Computation Time

Training GCN on ogbn-products with 8 partitions
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Vanilla Distributed Full-graph Training

AdaQP

Parallelization + Message Quantization Design
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Ø Use adaptive message quantization to 

balance and reduce message exchange 

sizes among devices 

Ø Hide central nodes computation within 

marginal nodes communication 
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I. Each local graph is decomposed into 

central graph and marginal graph; 

computation of the former overlaps with 

communication of the latter

II. Each remote message is quantized to 

certain bit-width set by the Assigner

III. The Assigner traces input data in each 

layer and periodically assigns bit-width 

for remote message quantization

Workflow of AdaQP
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Quantization to compress sending messages 

Dequantization to restore received messages 

Stochastic Integer Message Quantization

-h!!
" = /𝑞) ℎ!" = 𝑟𝑜𝑢𝑛𝑑*+(

ℎ!" − 𝑍!"

𝑆!!
" )

8ℎ!" = 𝑑𝑞) -ℎ!!
" = -ℎ!!

" 𝑆!!
" + 𝑍!"

Ø ℎ!" : message of node 𝑣 at layer 𝑙

Ø 𝑍!" = min(ℎ!" ): zero point, the minimum value 

among input vector

Ø 𝑠!!
" = ,-. /"# ',01 /"#

2!"'(
: scaling factor, mapping 

floating point ℎ!" to integer >ℎ!!
"

For message vector ℎ!" , the reconstructed (after quantization and dequantization ) 8ℎ!" is:
Ø Unbiased estimation of input: E 8ℎ!" = ℎ!"

Ø Variance bounded and controlled by bit-width: 𝑉𝑎𝑟 8ℎ!" =
3"#*"!

# $

4
, 𝐷!" is the dimension of vector ℎ!"
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View full-graph training as empirical risk minimization problem

Convergence guarantee with gradient variance

Ø The convergence rate is 𝑂(𝑇'(), which is consistent with vanilla distributed full-graph training

Ø Training converges to the neighborhood of that of the vanilla distributed full-graph training in 

solution space, whose radius is determined by gradient variance upper bound 𝑸

Impact of Gradient Variance on Convergence

𝑚𝑖𝑛𝒘%∈7&𝐸 ℒ 𝒘+ =
1
𝑁L

8

#

ℒ8(𝒘+) 𝒘+9( = 𝒘+ − 𝛼N𝒈+

𝐸 ∇ℒ Q𝒘+
2 ≤

2 ℒ 𝒘( − ℒ∗

𝑇 2𝛼 − 𝑎2𝐿2
+
𝛼𝐿2𝑄2

2 − 𝛼𝐿2

Theorem. Suppose our distributed full-graph GNN training runs for T epochs using a fixed step size 𝑎 ≤ !
"!

.
Select t randomly from {1, · · · , T }. Under Assumption 1, we have 
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Connect Quantization to Gradient Variance 
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!
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𝑀 and 𝑁 are constants

① Size of remote neighbor set 𝑁7(𝑣): decided by graph topology and partition algorithm

② Aggregation coefficient 𝛼=,!: decided by GNN types (GCN or GraphSAGE)

③ Dimension size 𝐷=" and value range (numerator) in 𝑆=!
" : decided by graph datasets and training process 

④ Choices of bit-width 𝑏!: set it to adjust gradient variance upper bound and communication volume

Theorem. Given a distributed full-graph (V, E) and optional bit-width set B, for each layer l ∈ {1,··· ,L} in the 
GNN, the upper bound of the gradient variance 𝑄# in layer l is:

recall that: 𝑠!!
" = ,-. /"# ',01 /"#

2!"'(

Bit-width is here!
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convert the problem to an MILP and invoke an off-the-shelf solver to get the solution

Adaptive Bit-width Assignment 

𝑚𝑖𝑛))∈?,@AB 𝜆L
8

#

L
=

C* 𝛽=
(2)) − 1)2 + 1 − 𝜆 𝑍, 𝜆 ∈ [0,1]

𝑠. 𝑡.(D8D# 𝜃8L
=

C*

𝐷=" 𝑏= + 𝛾8 ≤ 𝑍,

Assigner solves a variance-time bi-objective problem to assign bit-width for remote 
messages sent in each layer, to strike a convergence-throughput trade-off 

added gradient variance bound 
in each communication round 
when quantizing sending 
messages 

Ø K8: total number of messages transferred in device pair 𝑖
Ø 𝐷=" : dimension of the remote message vector ℎ="
Ø 𝜃8 and 𝛾8: the parameters of cost model 

Communication cost

𝛽= =
∑!
#+ = 𝛼=,!2 𝐷=" (max ℎ=" −min(ℎ=" ))2

6

𝛽= reflects the total influence of transferring 
message 𝑘 between device pair 𝐾8 on 
gradient variance 
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Datasets:

GNN models: GCN, full-batch GraphSAGE (with mean aggregator )

Hardware Configurations: 2 servers, each has 4 GPUs

CPU GPU Inter-node 
connection 

Intra-node 
connection 

Intel Xeon Gold 6230 
2.1GHz

Nvidia Tesla V100 
SXM2 32GB

100Gps Ethernet NVLink

Experimental Evaluation  

Baselines: Vanilla distributed full-graph training, PipeGCN, SANCUS
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AdaQP achieves highest throughput in most cases (2.19~3.01X faster than Vanilla) & 
comparable accuracy (within - 0.30% ∼ + 0.19% of Vanilla’s accuracy)

Throughput and Accuracy

15



AdaQP preserves 𝑂(𝑇'() convergence rate, verifying theoretical results

Convergence Curve
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Accuracy-Throughput Trade-off and Time Breakdown
Adaptive quantization vs. uniform random bit-

width sampling 

AdaQP consistently achieves higher accuracy than 
random sampling with close throughput, striking 

better accuracy-throughput trade-off

Per-epoch training time breakdown

quantization/dequantization overhead of AdaQP is 
small (5.53%~13.88%)
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Compared to wall-clock time reduction, bit-width assignment overhead is negligible (5.43% 
in average)

End-to-end Wall-clock Time Breakdown  
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ØTwo key designs:

Message quantization with time-variance-aware bit-width assignment

Communication-computation parallelization on each local graph

ØConvergence guarantee and theoretical analysis on relationship between message 

quantization and gradient variance

ØReduce communication cost by 79.98% on average and achieve 2.19~3.01X 

training throughput improvement

Takeaway: GNNs are robust to quantization, even when loss compression is performed 

on all messages (features, embeddings, embedding gradients) of each GNN layer

Summary
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Thank You
The Artifact of AdaQP:

https://doi.org/10.5281/zenodo.7783787

Contact: 
wanborui@connect.hku.hk

https://doi.org/10.5281/zenodo.7783787
mailto:wanborui@connect.hku.hk
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Implement message exchange with Ring all2all

Ø K8: total number of messages transferred in device pair 𝑖

Ø 𝜃8 and 𝛾8: the parameters of cost model 

Ø 𝐵: the optional bit-width set, set to [2,4,8] in our work 

Message Transferring Modeling 

𝑚𝑖𝑛))∈?𝑚𝑎𝑥(D8D#𝜃8L
8

C*

𝐷=" 𝑏= + 𝑦8

Objective 1: minimize struggler in each communication round 



Objective2: minimize added variance upper bound in each communication 
round due to  message quantization 

Variance Upper Bound Modeling 

𝑚𝑖𝑛))∈?L
8

#

L
=

C* 𝛽=
(2)) − 1)2

𝛽= =
∑!
#+ = 𝛼=,!2 𝐷=" (max ℎ=" −min(ℎ=" ))2
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𝑁E(𝑘) denotes 𝑘’s neighbors in the target device to which 
𝑘’s message is to be sent  



Solve the variance-time bi-objective problem to strike a convergence-efficiency trade-off 

Each worker gather needed data and 
periodically send it to Master, then 

waiting for results 

Master assigns bit-width for remote 
messages sent in each layer and 

dispatches the results 

Step2: 
Master Assigner gathers all
traced data and formulates

the variance-time bi-objective
problem

Step1: 
Each assigner traces the

dynamic changes in the input
data of GNN layers during

training 

Step3: 
Master Assigner solves the

bi-objective problem to obtain
bit-width assignment

solutions

Step4: 
Master assigner scatters

assignment results to each
device, each assigner

updates the buffers

Adaptive Bit-width Assignment 



quantization 
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computation 
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de-quantization 
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 communication

CPU

GPU

kernel
function 

kernel
function 
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function 

Marginal Graph  
Quantization

Marginal Graph Communication 
& Central Graph Computation 

Marginal Graph 
De-quantization

CUDA Kernel Launch Data Movement

Control CUDA kernel launching time to avoid GPU resources contention 

Quantization Kernel and 
Computation Kernel content 
for GPU compute resources

GPU Resources Isolation 



End-to-end Wall-clock Time Comparison   

AdaQP Achieve highest shortest wall-clock time (14/16) in most cases



Ø Empirically, GNN training is robust to stochastic integer quantization, even when it is 

performed to each part and each layer of GNN

Ø Stochastic integer quantization can reduce the data transferring overhead in all kinds of 

GNN training systems

Takeaway 

sampling

Host-to-device
transfer

trainingquantization

Sampling-based GNN Training Offloading-based GNN Training 

Disk CPU GPU

quantization


