AdaQP: Adaptive Message Quantization and Parallelization for
Distributed Full-graph Training

Borui Wan, Juntao Zhao, Chuan Wu

The University of Hong Kong

GNN Message Passing Paradigm

TARGET NODE @ Mathematic Form
l hllV(v) = ¢'(hiy Hu e N(v))
FE htl? = w(hilJ_li h]lv(v))
I é > hl:learned embedding of

==
‘ Q node v at layer [
‘ i “ » N(v): neighbor set of node v

o AN ”‘&‘ > ¢! aggregation function
® Xu== g . ,
INPUT GRAPH Y'Y X » ' update function

Aggregate information from neighbors to produce node embeddings

Training on Large-scale Graphs

7/
Annot.

A
/ &

\6{ \ _
Predictions

(00000 |
Graph neural
network

f
e L% ¢ R
Pixie

Pinterest: PinSage for web-sacle Google Maps: GNN for traffic
recommendation forecasting

Efficient training on large-scale graphs is challenging but meaningful for industry applications

Sampling-based GNN Training

/ label

e
@)
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

GraphSAGE
Sampling-based GNN training

» Use sampled neighbors for training, altering graph topology (lower model accuracy)
» Transfer k-hop features for a k-layer GNN (time-consuming)

» Run (sophisticated) sampling algorithms (extra overhead)

N

Distributed Full-graph GNN Training

0 S ‘;._-____._-_.____-_..Q

/ . O i AN .
3 N 7 Inter-device
Original Graph ~
Partition via \ 5 : / Communication
0))
L A 0 o 0 —'9
6— g 3 : ni ! 1 / 7 Intra-device
s / .
5 o~ Computation
— 6 6 — 8
\ 6 ~— 8
device 0 device 1 device 2

intra-device edge inter-device edge messages exchange messages passing

Distributed full-graph training
» Each worker holds one graph partition and remote 1-hop HALO node indices in GPU

» Large data transfer across devices due to exchanging remote messages [features and embeddings in

forward, embedding gradients in backward] for computation in each GNN layer

Communication Bottleneck

Dataset Partition Setting Communication Cost Remote Neighbor Ratio > Communication cost (d|V|d|ng
. . 2M-1D 66.78% 41.54% L .
Reddit (Hamilton et al., 2017a) YM-2D 75.20% 62.60% average communication time
2M-2D 75.59% 31.09% .
ogbn-products (Hu et al., 2020) SMAD 76.67% 10.529% by average per-epoch training
2M-2D 75.58% 39.75% : :
AmazonProducts (Zeng et al., 2020) AYM-AD 78.92% 53.00% time among all deVICeS) can
o
M - Machines D - Devices per Machine be up to 78.22%
01 > As parallelism level increases,
0_2 . .
2_(3)_ communication overhead
_ 1_0 I
S —— becomes more severe
22 0
32]1 — > Unbalanced number of
2_3
3.0 messages transferred across
32

difference device pairs

20 40 60 80 100 120 140
Data size (MB)

o

[Careful design to alleviate such graph data transfer overhead is the key for training acceleration J

5

SOTA Works

Time—>
- a et et i e s CUITENt [Eration -+ c et >
Inner Feature L1 Feat. ' Keep %222% Received from i
E} BeinHEE :eat.{ ot -} . Feature Gradient { 777 J}}Send % other subgraphs o Resilts ° Recalte
] | | | !] C Cache
| Communicate |L1 Fon~ard| Communicate | L2 Forward| | L2 Backward | Communicate |L1 Back. | Updatel W il = w L
(a) Vanilla partltlon parallel training of GCNs (per-partition view) ' % %]
isfhecenmnecennenennsd Previous Iteration -« pigmrersrsrrrn Current lteration -y > @ OModel @l OModel
From Current lteration %-» Pr 1) Compute Pr 2) Compute
From Previous Iteration :[. tl © Embedding Broadcast tl
L1 For. | L2 For. | ... | L2 Back. | L1 Back. |Up.| L1 Forward [L2 Forward | ... | L2 Backward | L1 Backward | Update |
Communicate for Next L1 Forward] Communicate | @ @
| Communicate for Next L2 Forward | | Communicate | © Results © Result:
esults S
Cache|) Cache
I Communicate for Next L1 Backward | | Communicate Igj G i I%
OModel @ Omodel
MM) Compute M) Compute)
PipeGCN SANCUS
» hide communication overhead by pipelining » Check embedding staleness before
computation with communication across broadcast in each epoch
epochs > Reuse stale embedding from Results Cache

SOTA works adopt staleness-based communication-hiding design, which hurts training convergence

Opportunity for Hiding Computation Time

100 All Nodes mmm Marginal Nodes

o deviceO devicel device2 device3 device4 device5 deviceb device7
. Central Node Marginal Node | ' Remote Node Device

Training GCN on ogbn-products with 8 partitions

Local Graph

S ()] 0
o o o

Ratio of Comp. Time (%)
N
o

» Divide local nodes into central nodes (without remote neighbors) and marginal nodes

(with remote neighbors)
» Central nodes computation can be hidden within marginal nodes communication

Parallelization + Message Quantization Design

Forward Pass

comm.

dq.comp. q.

comm.

Backward Pass

g.

comm. dq.

comp. q.

comm.

. .comm.dq.

comp.

comm.

.. comm. dq.

comp.

comm.

g.

comm. dg.comp.comm.

qg.

comm. dqg.comp.

comm.

AdaQP
Forward Pass Backward Pass
comm. comp. comm. comm. comp. comm.
comm. comp. comm. comm. comp. comm.
comm. comp. comm. comm. comp. comm.

Vanilla Distributed Full-graph Training

communication

computation on marginal graph
- computation on central graph

quantization or de-quantization

» Use adaptive message quantization to
balance and reduce message exchange
sizes among devices

» Hide central nodes computation within

marginal nodes communication

Workflow of AdaQP

Trace Input

Adaptive Bit-width
Assigner

Layer Input

Marginal Graph Communication &

N

‘\ w‘ Periodically Assign

N/ Bit-width SN

__

5 Nargi‘nal Graph
2

Central Graph

2<—1

\\0

3

Central graph Computation

Central Message

Central Node Marginal Node

Marginal Message

Central Graph
2—1

:{> \3 \0

----; Full-precision
----'Remote Message

Local Graph

Layer Output

Central graph Computation

Remote Node

Quantized
Remote Message

II.

IIL.

Each local graph is decomposed into
central graph and marginal graph;
computation of the former overlaps with
communication of the latter

Each remote message is quantized to
certain bit-width set by the Assigner
The Assigner traces input data in each
layer and periodically assigns bit-width

for remote message quantization

Stochastic Integer Message Quantization

Quantization to compress sending messages / \
l > hl: message of node v at layer [
—Z,

h,, = gy(hy) = Toundst(o) > Z! = min(hl): zero point, the minimum value

(%
o _ ’ among input vector
Dequantization to restore received messages

R _ B 1 max(h})-min(h}).
AL = dq,(RL,) = BL, SL + 7 > Sy, = - : scaling factor, mapping

K floating point hl, to integer i;z;b /

For message vector hl, the reconstructed (after quantization and dequantization) Al is:
> Unbiased estimation of input: E[A}]| = k!

plgl 2
> Variance bounded and controlled by bit-width: Var|hl] = S— , D} is the dimension of vector h/,

Impact of Gradient Variance on Convergence

View full-graph training as empirical risk minimization problem
1 N
minwteRDE[L(Wt)] = NE Li(We) Wiy =W — agy
i

Convergence guarantee with gradient variance

Theorem. Suppose our distributed full-graph GNN training runs for T epochs using a fixed step size a < Li

2

Select t randomly from {1, - - -, T }. Under Assumption I, we have

> The convergence rate is 0(T™1), which is consistent with vanilla distri

E|[Ive@my)l|’|

ted full-graph training
» Training converges to the neighborhood of that of the vanilla distributed fult~graph training in

solution space, whose radius is determined by gradient variance upper bound @

11

Connect Quantization to Gradient Variance

Theorem. Given a distributed full-graph (V, E) and optional bit-width set B, for each layer | € {1,--- L} in the
GNN, the upper bound of the gradient variance Q* in layer [is:

IVl /Nr(W) Nr(v) -1l (cl-1cl)2 Ngr(v) Lol N2 Nr(®) 1-1,cl-142
Di1" Diz (Ski;Skz,) Dy (Sk,) Dy (S,)
Ql :y< S“ S“ al%l,valiz,v 6 : : +M2 2 al%,va_l'Nz Z al%,v 6 :
K K

v kl kz
L max(hy,)—min(hy)
M and N are constants recall that: s, = 2bv—1
T
Bit-width is here!
N J

@ Size of remote neighbor set N;(v): decided by graph topology and partition algorithm
@ Aggregation coefficient a; ,: decided by GNN types (GCN or GraphSAGE)

® Dimension size D;, and value range (numerator) in Sy, : decided by graph datasets and training process

@ Choices of bit-width b,,: set it to adjust gradient variance upper bound and communication volume

12

Adaptive Bit-width Assignment

Assigner solves a variance-time bi-objective problem to assign bit-width for remote
messages sent in each layer, to strike a convergence-throughput trade-off

added gradient variance bound

. X in each communication round
MMbyeB,z>0 ’1 -z, A€[0]] when quantizing sending
i L

messages

3o g2 , Dl (max(h}) — min(h))?
6
By reflects the total influence of transferring

Communication cost message k between device pair K; on
gradient variance

Br =

> K;: total number of messages transferred in device pair i
> Dj:dimension of the remote message vector hl
» 0; and y;: the parameters of cost model
convert the problem to an MILP and invoke an off-the-shelf solver to get the solution

13

Experimental Evaluation

GNN models: GCN, full-batch GraphSAGE (with mean aggregator)

Baselines: Vanilla distributed full-graph training, PipeGCN, SANCUS

Datasets: Dataset #Nodes #Edges #Features #Classes Size
Reddit 232,965 114,615,892 602 41 3.53GB
Yelp (Zeng et al., 2020) 716,847 6,977,410 300 100 2.10GB
ogbn-products 2,449,029 61,859,140 100 47 1.38GB
AmazonProducts 1,569,960 264,339,468 200 107 2.40GB

Hardware Configurations: 2 servers, each has 4 GPUs

CPU GPU Inter-node Intra-node
connection connection
Intel Xeon Gold 6230 Nvidia Tesla V100 100Gps Ethernet NVLink

2.1GHz SXM2 32GB

Throughput and Accuracy

Dataset | Partitions | Model Method Accuracy(%) Throughput (epoch/s) | Dataset | Partitions | Model Method Accuracy(%) Throughput (epoch/s)
Vanilla 95.3620.03 0.99 Vanilla 44.24£0.19 118
PipeGCN t t PipeGCN t T
GCN SANCUS 94.7320.17 111 (1.12x) GCN SANCUS 20.75+2.44 0.80
VLD AdaQP 95.36£0.02 217 (2.19%) MD AdaQP 43.9620.15 3.04 (2.58x)
Vanilla 96.500.03 0.04 Vanilla 64.65£0.08 111
PipeGCN 96.62+0.00 3.72 (3.96x) PipeGCN 63.88+0.06 2.63 (2.37x)
GraphSAGE SANCUS t t GraphSAGE SANCUS t t
Reddit AdaQP 96.49+0.02 2.13 2.27x) vl AdaQP 64.7220.13 3.15 (2.83x)
Vanilla 95.3520.04 1.13 P Vanilla 43.86£0.62 157
GCN PipeGCN 1 T GCN PipeGCN t T
SANCUS 94.900.02 1.48 (131x) SANCUS 20.78+0.2.45 0.66
M2D AdaQP 95.38+0.03 2.65 (2.35x) MAD AdaQP 43.8420.63 3.64 (2.32x)
Vanilla 96.5520.03 1.16 Vanilla 64.6720.12 1.1
PipeGCN 96.670.01 3.13 (2.70x) PipeGCN 63.730.14 232 (1.95x)
GraphSAGE SANCUS + t GraphSAGE SANCUS t +
AdaQP 96.53 +0.04 2.65 (2.28%) AdaQP 64.780.05 3.58 (3.01x)
Vanilla 75142041 0.61 Vanilla 51.45£0.12 042
PipeGCN 1 t PipeGCN ¢ t
GCN SANCUS 71.5220.13 0.26 GCN SANCUS 20.830.18 032
M2D AdaQP 75.32+0.28 1.65 (2.70x) M.2D AdaQP 51.500.08 1.16 (2.76x)
Vanilla 78.90%0.17 0.63 Vanilla 75.69:1.32 046
PipeGCN 77.82+0.01 1.10 (1.75%) PipeGCN 71.96+0.00 0.99 (2.15x)
GraphSAGE SANCUS t t GraphSAGE SANCUS f t
AdaQP 78.8540.20 1.67 (2.65x) AdaQP 75.69 133 1.21 2.63x)
ogbn-products Vanilla 75.1120.09 0.79 AmazonProducts Vanilla 51.3820.16 058
PipeGCN T t PipeGCN t 1
GCN SANCUS 71.9920.16 021 GCN SANCUS 21.220.07 027
AdaQP 75.30£0.17 2.18 (276 %) AdaQP 51.5620.20 1.60 (2.76x)
2M-4D Vanilla 78.89%0.09 0.77 2M-4D Vanilla 75.80:1.16 0.62
PipeGCN 76.670.01 1.10 (1.43x) PipeGCN 71.9120.00 1.02 (1.65)
GraphSAGE SANCUS t + GraphSAGE SANCUS t t
AdaQP 78.90+0.08 215 (2.79x) AdaQP 75.98+1.18 1.61 (2.60%)

AdaQP achieves highest throughput in most cases (2.19~3.01X faster than Vanilla) &

comparable accuracy (within - 0.30% ~ + 0.19% of Vanilla’ s accuracy)

Convergence Curve

GCN Reddit 2M-1D GraphSAGE Reddit 2M-2D

/<

100 O R S 100

100

N

GCN Reddit 2M-2D

S

~
w
~
O]

~
ul

S
~
(6]

—— Vanilla —— Vanilla —— Vanilla —— Vanilla

Val. Acc. (%)
(9]
o

Val. Acc. (%)
wm
o

Val. Acc. (%)
wm
o

Val. Acc. (%)
wm
o

55 —=-— SANCUS 25 —«- PipeGCN 25 —=-— SANCUS 25 ~=- PipeGCN
AdaQP AdaQP = AdaQP = AdaQP
0 0 200 400 0 0 200 400 0 0 200 400 0 0 200 400
Epoch Epoch Epoch Epoch
100 GCN Yelp 2M-1D 100 GraphSAGE Yelp 2M-1D 100 GCN Yelp 2M-2D 100 GraphSAGE Yelp 2M-2D

~
w
~
w
~
w
~
w

—— Vanilla

—— Vanilla —— Vanilla

Val. Acc. (%)
[0,
o

Val. Acc. (%)
w
o

Val. Acc. (%)
w
o

Val. Acc. (%)
w
o

25 - SANCUS 25 | - PipeGCN 25 —=-- SANCUS 25 - PipeGCN
AdaQP AdaQP = AdaQP =~ AdaQP
0 0 0 0
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Epoch Epoch Epoch Epoch
100 GCN ogbn-products 2M-2I?_. 1065raphSAGE ogbn-products 2M-.2D 100 GCN ogbn-products 2M-4D 10&raphSAGE ogbn-products 2M-4D

8 75 SRSy E 5/ R 75 /
G g ' J g S
g 50 —— Vanilla & 50 —— Vanilla & 50 —— Vanilla g 50 —— Vanilla
% 25 e SANCUS Z 5s e PipeGCN % 5o e SANCUS Z o - PipeGCN
> AdaQP > AdaQP > - AdaQP > - AdaQP
0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200
Epoch Epoch Epoch Epoch
100 GCN AmazonProducts 2M-2D 1&{aphSAGE AmazonProducts 2M-2D 100 GCN AmazonProducts 2M-4D 1&faphSAGE AmazonProducts 2M-4D

SE S R 75 R 75
] J J U
g 50 g 50 —— Vanilla g 50 Vanilla g 50 —— Vanilla
% o5 Se SANCUS s e+ PipeGCN o5 S SANCUS E 5 -+ PipeGCN
= AdaQP = - AdaQP = AdaQP = - AdaQP
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Epoch Epoch Epoch Epoch

AdaQP preserves 0(T~1) convergence rate, verifying theoretical results

Accuracy-Throughput Trade-off and Time Breakdown

Adaptive quantization vs. uniform random bit-
width sampling

Partitions Model Method Accuracy (%) Throughput (epoch/s)
GCN Unifom 75.03+0.36 1.70
YM-2D Ada.lptlve 75.32+0.28 1.65
GraphSAGE Uniform 78.84+0.23 1.64
Adaptive 78.85+0.20 1.67
GCN Unifo;m 75.16+0.16 2.14
IYM-AD Adgptlve 75.30+0.17 2.18
GraphSAGE Unlfom 78.85+0.08 2.07
Adaptive 78.90+0.08 2.15

AdaQP consistently achieves higher accuracy than

random sampling with close throughput, striking
better accuracy-throughput trade-off

0.8

©o.6

e

0.4
0.2

0.0

Time (s)
i
o

0.0

Per-epoch training time breakdown

Reddit Yelp
B Comm. I mm Comm
B == comp. 06 m= Comp
mmm Quant. o mmm Quant
004
£
'_
0.2 I
1
2M-1D Vanilla 2M-1D AdaQP 2M-2D Vanilla 2M-2D AdaQP 0.0 2M-1D Vanilla 2M-1D AdaQP 2M-2D Vanilla 2M-2D AdaQP
Partitions Partitions
ogbn-products AmazonProducts
_ mmm Comm 2.0 mmm Comm
E— ™ ComP. 15 = Comp
w []
EmE Quant v EmE Quant
g1.0
=
05 I
[]
2M-2D Vanilla 2M-2D AdaQP 2M-4D Vanilla 2M-4D AdaQP 0.0 2M-2D Vanilla 2M-2D AdaQP 2M-4D Vanilla 2M-4D AdaQP

Partitions Partitions

quantization/dequantization overhead of AdaQP is
small (5.53%~13.88%)

17

End-to-end Wall-clock Time Breakdown

Reddit

2M-1D Vanilla 2M-1D AdaQP 2M-2D Vanilla 2M-2D AdaQP
Partitions

ogbn-products

0 Train
B Assign

2M-2D Vanilla 2M-2D AdaQP 2M-4D Vanilla 2M-4D AdaQP
Partitions

Time (s)

2000

1000

Yelp

2M-1D Vanilla 2M-1D AdaQP 2M-2D Vanilla 2M-2D AdaQP
Partitions

AmazonProducts

[Train
Bl Assign

2M-2D Vanilla 2M-2D AdaQP 2M-4D Vanilla 2M-4D AdaQP
Partitions

Compared to wall-clock time reduction, bit-width assignment overhead is negligible (5.43%

in average)

18

Summary

» Two key designs:
Message quantization with time-variance-aware bit-width assignment
Communication-computation parallelization on each local graph

» Convergence guarantee and theoretical analysis on relationship between message

quantization and gradient variance

» Reduce communication cost by 79.98% on average and achieve 2.19~3.01X

training throughput improvement

Takeaway: GNNs are robust to quantization, even when loss compression is performed

on all messages (features, embeddings, embedding gradients) of each GNN layer
19

Thank You

The Artifact of AdaQP:
https://doi.org/10.5281/zenodo.7783787

Contact:
wanborui@connect.hku.hk

https://doi.org/10.5281/zenodo.7783787
mailto:wanborui@connect.hku.hk

Message Transferring Modeling

VRN VAR T\
/o\ [0) /o\
3 1 —> (3 1 = (3 1
round 1 round 2 round 3

Implement message exchange with Ring all2all

Objective 1. minimize struggler in each communication round
Kl
ming, egMax,<i<n0; Z Dllcbk + Vi
i

> K;: total number of messages transferred in device pair i
> 0; and y;: the parameters of cost model
» B:the optional bit-width set, set to [2,4,8] in our work

Variance Upper Bound Modeling

Objective2: minimize added variance upper bound in each communication
round due to message quantization

N K;

. B
mlnbkeB (zbk _ 1)2
I k

_2ar® a2 | Dl (max(hf) — min(h}))?
By = -

N7 (k) denotes k' s neighbors in the target device to which
k' s message is to be sent

Adaptive Bit-width Assignment

\4

Step1: Step2: Step3: Step4:

Each assigner traces the Master Assigner gathers all Master Assigner solves the Master assigner scatters
dynamic changes in the input traced data and formulates bi-objective problem to obtain assignment results to each
data of GNN layers during the variance-time bi-objective bit-width assignment device, each assigner

training problem solutions updates the buffers
Each worker gather needed data and Master assigns bit-width for remote
periodically send it to Master, then messages sent in each layer and
waiting for results dispatches the results

Solve the variance-time bi-objective problem to strike a convergence-efficiency trade-off

GPU Resources Isolation

| CPU |
| communication]

Quantization Kernel and fkem_el fkern_el 1:kelrn_el

Computation Kernel content N unction ; {_function , (_ function
for GPU compute resources \ ~
\ S ¢ |ePu [

¥ \\v ! v
quantizationj computation de-quantization’
kernel kernel kernel

Marginal Graph Marginal Graph Communication Marginal Graph
Quantization & Central Graph Computation De-quantization

— >

CUDA Kernel Launch Data Movement

Control CUDA kernel launching time to avoid GPU resources contention

End-to-end Wall-clock Time Comparison

Dataset | Partitions | Model Method Wall-clock Time (s) | Dataset | Partitions | Model Method Wall-clock Time (s)
Vanilla 505.79 Vanilla 846.79
GeN oRCUs 447T.28 6N TS 124T9.89
2M-1D Vit L 2M-2D Vit 9728
GraphSAGE Spjf;%%@ 135{29 GraphSAGE Spg)gc(;%\sl 38#‘“
Reddit Vil 5 Yelp Vil 7T
GON ORNCUS 335T.56 GON oANCUS 150T9.41
2M-2D Vit % 2M-4D Vit 355
GraphSAGE ¢ Pe0CH 159T'66 GraphSAGE L0 43(;'63
AdaQP 208.34 AdaQP 289.23
Vanilla 409.54 Vanilla 287477
GCN gf;%%bsl 943.16 GCN gg);cg%lg 378T2.44
2M-2D Vil ot 2M-2D Vil 25571
GraphSAGE ¢ PeiCl 229{11 GraphSAGE £ PeuCN 121?'65
ogbn-products é:;ll(l)ll; ;?’Slzg AmazonProducts é:ﬁl(ﬁ: ;ggg%
GEN ORNCUS 185,68 TS S 3580.68
2M-4D Vit 32503 2M-4D Vaziih pas
GraphSAGE gg’;%%ﬁ 229];31 GraphSAGE Spg’l’ff(}:%lg 17]3'38
AdaQP 133.93 AdaQP 771.52

AdaQP Achieve highest shortest wall-clock time (14/16) in most cases

Takeaway

» Empirically, GNN training is robust to stochastic integer quantization, even when it is

performed to each part and each layer of GNN

» Stochastic integer quantization can reduce the data transferring overhead in all kinds of

GNN training systems

Sampling-based GNN Training Offloading-based GNN Training

Disk Koy CPU [

hwzd

[quantization]

/ . .
[quantization J g

