
AdaQP: Adaptive Message Quantization and Parallelization for
Distributed Full-graph Training

Borui Wan, Juntao Zhao, Chuan Wu

The University of Hong Kong

GNN Message Passing Paradigm

Aggregate information from neighbors to produce node embeddings

Mathematic Form

Ø ℎ!" : learned embedding of

node 𝑣 at layer 𝑙

Ø 𝑁 𝑣 : neighbor set of node 𝑣

Ø 𝜙": aggregation function

Ø 𝜓": update function

ℎ#(!)
" = 𝜙" ℎ&"'(𝑢 ∈ 𝑁 𝑣
ℎ!" = 𝜓(ℎ!"'(, ℎ#(!)")

1

Pinterest: PinSage for web-sacle
recommendation

Google Maps: GNN for traffic
forecasting

Efficient training on large-scale graphs is challenging but meaningful for industry applications

Training on Large-scale Graphs

2

Sampling-based GNN training

Ø Use sampled neighbors for training, altering graph topology (lower model accuracy)

Ø Transfer k-hop features for a k-layer GNN (time-consuming)

Ø Run (sophisticated) sampling algorithms (extra overhead)

GraphSAGE

Sampling-based GNN Training

3

Distributed full-graph training

Ø Each worker holds one graph partition and remote 1-hop HALO node indices in GPU

Ø Large data transfer across devices due to exchanging remote messages [features and embeddings in

forward, embedding gradients in backward] for computation in each GNN layer

0

2
3

6

1
4

5
8

7

0

3

6

1
4

5

2

8

7

0

3

6

1
4

5

2

8

7

Original Graph
Inter-device

Communication

Intra-device

Computation
1

2

5

8

0 2

6

0

1

6

device 0 device 1 device 2

intra-device edge inter-device edge messages exchange messages passing

Partition via

METIS

Distributed Full-graph GNN Training

4

Ø Communication cost (dividing

average communication time

by average per-epoch training

time among all devices) can

be up to 78.22%

Ø As parallelism level increases,

communication overhead

becomes more severe

Ø Unbalanced number of

messages transferred across

difference device pairs

Communication Bottleneck

M – Machines D – Devices per Machine

Careful design to alleviate such graph data transfer overhead is the key for training acceleration
5

PipeGCN

Ø hide communication overhead by pipelining

computation with communication across

epochs

SOTA Works

SANCUS

Ø Check embedding staleness before

broadcast in each epoch

Ø Reuse stale embedding from Results Cache

SOTA works adopt staleness-based communication-hiding design, which hurts training convergence
6

Ø Divide local nodes into central nodes (without remote neighbors) and marginal nodes

(with remote neighbors)

Ø Central nodes computation can be hidden within marginal nodes communication

Opportunity for Hiding Computation Time

Training GCN on ogbn-products with 8 partitions

7

Vanilla Distributed Full-graph Training

AdaQP

Parallelization + Message Quantization Design

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

Forward Pass Backward Pass
...

...

...

q.

q.

q.

dq. q.

dq.

dq.

comp. comp.

comp.

comp.comp.

communication

computation on marginal graph

computation on central graph

quantization or de-quantization

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

...

...

...

q.

q.

q.

dq. q.

dq.

dq.

comp. comp.

comp.

comp.comp.

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

comm.

comm.

comm.

comp.

comp.

comp.

comm.

comm.

comm.

Forward Pass Backward Pass
...

...

...

...

...

...

Ø Use adaptive message quantization to

balance and reduce message exchange

sizes among devices

Ø Hide central nodes computation within

marginal nodes communication

8

I. Each local graph is decomposed into

central graph and marginal graph;

computation of the former overlaps with

communication of the latter

II. Each remote message is quantized to

certain bit-width set by the Assigner

III. The Assigner traces input data in each

layer and periodically assigns bit-width

for remote message quantization

Workflow of AdaQP

9

Quantization to compress sending messages

Dequantization to restore received messages

Stochastic Integer Message Quantization

-h!!
" = /𝑞) ℎ!" = 𝑟𝑜𝑢𝑛𝑑*+(

ℎ!" − 𝑍!"

𝑆!!
")

8ℎ!" = 𝑑𝑞) -ℎ!!
" = -ℎ!!

" 𝑆!!
" + 𝑍!"

Ø ℎ!" : message of node 𝑣 at layer 𝑙

Ø 𝑍!" = min(ℎ!"): zero point, the minimum value

among input vector

Ø 𝑠!!
" = ,-. /"# ',01 /"#

2!"'(
: scaling factor, mapping

floating point ℎ!" to integer >ℎ!!
"

For message vector ℎ!" , the reconstructed (after quantization and dequantization) 8ℎ!" is:
Ø Unbiased estimation of input: E 8ℎ!" = ℎ!"

Ø Variance bounded and controlled by bit-width: 𝑉𝑎𝑟 8ℎ!" =
3"#*"!

$

4
, 𝐷!" is the dimension of vector ℎ!"

10

View full-graph training as empirical risk minimization problem

Convergence guarantee with gradient variance

Ø The convergence rate is 𝑂(𝑇'(), which is consistent with vanilla distributed full-graph training

Ø Training converges to the neighborhood of that of the vanilla distributed full-graph training in

solution space, whose radius is determined by gradient variance upper bound 𝑸

Impact of Gradient Variance on Convergence

𝑚𝑖𝑛𝒘%∈7&𝐸 ℒ 𝒘+ =
1
𝑁L

8

#

ℒ8(𝒘+) 𝒘+9(= 𝒘+ − 𝛼N𝒈+

𝐸 ∇ℒ Q𝒘+
2 ≤

2 ℒ 𝒘(− ℒ∗

𝑇 2𝛼 − 𝑎2𝐿2
+
𝛼𝐿2𝑄2

2 − 𝛼𝐿2

Theorem. Suppose our distributed full-graph GNN training runs for T epochs using a fixed step size 𝑎 ≤ !
"!

.
Select t randomly from {1, · · · , T }. Under Assumption 1, we have

11

Connect Quantization to Gradient Variance

𝑄" =L
!

|<|

L
='

#((!)

L
=$

#((!)

𝛼=(,!2 𝛼=2,!2 𝐷=("'(𝐷=2" 𝑆=(!
"'(𝑆=2!

" 2

6 +𝑀2 L
=

#((!)

𝛼=,!2
𝐷=" (𝑆=!

")2

6 + 𝑁2 L
=

#((!)

𝛼=,!2
𝐷="'((𝑆=!

"'()2

6

𝑀 and 𝑁 are constants

① Size of remote neighbor set 𝑁7(𝑣): decided by graph topology and partition algorithm

② Aggregation coefficient 𝛼=,!: decided by GNN types (GCN or GraphSAGE)

③ Dimension size 𝐷=" and value range (numerator) in 𝑆=!
" : decided by graph datasets and training process

④ Choices of bit-width 𝑏!: set it to adjust gradient variance upper bound and communication volume

Theorem. Given a distributed full-graph (V, E) and optional bit-width set B, for each layer l ∈ {1,··· ,L} in the
GNN, the upper bound of the gradient variance 𝑄# in layer l is:

recall that: 𝑠!!
" = ,-. /"# ',01 /"#

2!"'(

Bit-width is here!

12

convert the problem to an MILP and invoke an off-the-shelf solver to get the solution

Adaptive Bit-width Assignment

𝑚𝑖𝑛))∈?,@AB 𝜆L
8

#

L
=

C* 𝛽=
(2)) − 1)2 + 1 − 𝜆 𝑍, 𝜆 ∈ [0,1]

𝑠. 𝑡.(D8D# 𝜃8L
=

C*

𝐷=" 𝑏= + 𝛾8 ≤ 𝑍,

Assigner solves a variance-time bi-objective problem to assign bit-width for remote
messages sent in each layer, to strike a convergence-throughput trade-off

added gradient variance bound
in each communication round
when quantizing sending
messages

Ø K8: total number of messages transferred in device pair 𝑖
Ø 𝐷=" : dimension of the remote message vector ℎ="
Ø 𝜃8 and 𝛾8: the parameters of cost model

Communication cost

𝛽= =
∑!
#+ = 𝛼=,!2 𝐷=" (max ℎ=" −min(ℎ="))2

6

𝛽= reflects the total influence of transferring
message 𝑘 between device pair 𝐾8 on
gradient variance

13

Datasets:

GNN models: GCN, full-batch GraphSAGE (with mean aggregator)

Hardware Configurations: 2 servers, each has 4 GPUs

CPU GPU Inter-node
connection

Intra-node
connection

Intel Xeon Gold 6230
2.1GHz

Nvidia Tesla V100
SXM2 32GB

100Gps Ethernet NVLink

Experimental Evaluation

Baselines: Vanilla distributed full-graph training, PipeGCN, SANCUS

14

AdaQP achieves highest throughput in most cases (2.19~3.01X faster than Vanilla) &
comparable accuracy (within - 0.30% ∼ + 0.19% of Vanilla’s accuracy)

Throughput and Accuracy

15

AdaQP preserves 𝑂(𝑇'() convergence rate, verifying theoretical results

Convergence Curve

16

Accuracy-Throughput Trade-off and Time Breakdown
Adaptive quantization vs. uniform random bit-

width sampling

AdaQP consistently achieves higher accuracy than
random sampling with close throughput, striking

better accuracy-throughput trade-off

Per-epoch training time breakdown

quantization/dequantization overhead of AdaQP is
small (5.53%~13.88%)

17

Compared to wall-clock time reduction, bit-width assignment overhead is negligible (5.43%
in average)

End-to-end Wall-clock Time Breakdown

18

ØTwo key designs:

Message quantization with time-variance-aware bit-width assignment

Communication-computation parallelization on each local graph

ØConvergence guarantee and theoretical analysis on relationship between message

quantization and gradient variance

ØReduce communication cost by 79.98% on average and achieve 2.19~3.01X

training throughput improvement

Takeaway: GNNs are robust to quantization, even when loss compression is performed

on all messages (features, embeddings, embedding gradients) of each GNN layer

Summary

19

Thank You
The Artifact of AdaQP:

https://doi.org/10.5281/zenodo.7783787

Contact:
wanborui@connect.hku.hk

https://doi.org/10.5281/zenodo.7783787
mailto:wanborui@connect.hku.hk

3

0

1

2

3

0

1

2

3

0

1

2

round 1 round 2 round 3

Implement message exchange with Ring all2all

Ø K8: total number of messages transferred in device pair 𝑖

Ø 𝜃8 and 𝛾8: the parameters of cost model

Ø 𝐵: the optional bit-width set, set to [2,4,8] in our work

Message Transferring Modeling

𝑚𝑖𝑛))∈?𝑚𝑎𝑥(D8D#𝜃8L
8

C*

𝐷=" 𝑏= + 𝑦8

Objective 1: minimize struggler in each communication round

Objective2: minimize added variance upper bound in each communication
round due to message quantization

Variance Upper Bound Modeling

𝑚𝑖𝑛))∈?L
8

#

L
=

C* 𝛽=
(2)) − 1)2

𝛽= =
∑!
#+ = 𝛼=,!2 𝐷=" (max ℎ=" −min(ℎ="))2

6

𝑁E(𝑘) denotes 𝑘’s neighbors in the target device to which
𝑘’s message is to be sent

Solve the variance-time bi-objective problem to strike a convergence-efficiency trade-off

Each worker gather needed data and
periodically send it to Master, then

waiting for results

Master assigns bit-width for remote
messages sent in each layer and

dispatches the results

Step2:
Master Assigner gathers all
traced data and formulates

the variance-time bi-objective
problem

Step1:
Each assigner traces the

dynamic changes in the input
data of GNN layers during

training

Step3:
Master Assigner solves the

bi-objective problem to obtain
bit-width assignment

solutions

Step4:
Master assigner scatters

assignment results to each
device, each assigner

updates the buffers

Adaptive Bit-width Assignment

quantization
kernel

computation
kernel

de-quantization
kernel

 communication

CPU

GPU

kernel
function

kernel
function

kernel
function

Marginal Graph
Quantization

Marginal Graph Communication
& Central Graph Computation

Marginal Graph
De-quantization

CUDA Kernel Launch Data Movement

Control CUDA kernel launching time to avoid GPU resources contention

Quantization Kernel and
Computation Kernel content
for GPU compute resources

GPU Resources Isolation

End-to-end Wall-clock Time Comparison

AdaQP Achieve highest shortest wall-clock time (14/16) in most cases

Ø Empirically, GNN training is robust to stochastic integer quantization, even when it is

performed to each part and each layer of GNN

Ø Stochastic integer quantization can reduce the data transferring overhead in all kinds of

GNN training systems

Takeaway

sampling

Host-to-device
transfer

trainingquantization

Sampling-based GNN Training Offloading-based GNN Training

Disk CPU GPU

quantization

