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Federated Learning (FL)

Distributed ML across heterogeneous networks

● Potentially massive networks
● Communicates model rather than data
● Applications include data from e.g. mobile 

phones, medical records, and remote sensors
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Cross-Device FL: Training / Evaluation
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= {learning rate, momentum, batch size} (SGD)

= {learning rate, beta1, beta2} (Adam)
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Federated Training

Within an FL round: clients fine-tune a global model, 
producing local models which the server aggregates.



Federated Evaluation
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Federated Evaluation
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Federated Evaluation
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Hyperparameter (HP) Tuning
In FL, HPs for client optimization and server 
aggregation are critical to train a good model.

8



Hyperparameter (HP) Tuning
In FL, HPs for client optimization and server 
aggregation are critical to train a good model.

Standard HP tuning methods work well for 
classic ML (centralized training).
● random search
● adaptive HP selection
● adaptive resource allocation
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Hyperparameter (HP) Tuning
In FL, HPs for client optimization and server 
aggregation are critical to train a good model.

Standard HP tuning methods work well for 
classic ML (centralized training).
● random search
● adaptive HP selection
● adaptive resource allocation

However, many sources of noise in FL contribute 
to low-quality evaluations and severely impact 
these HP tuning methods.
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Questions
Question 1: To what extent does subsampling validation clients degrade the 
performance of HP tuning algorithms? 

Question 2: How, and to what extent, do the factors of data heterogeneity, 
systems heterogeneity, and privacy exacerbate issues of subsampling? 

Question 3: In noisy settings, how do popular HP tuning algorithms compare to 
simple baselines?
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Questions
Question 1: To what extent does subsampling validation clients degrade the 
performance of HP tuning algorithms? 

Question 2: How, and to what extent, do the factors of data heterogeneity, 
systems heterogeneity, and privacy exacerbate issues of subsampling? 

Question 3: In noisy settings, how do popular HP tuning algorithms compare to 
simple baselines?

We show there are multiple sources of compounding noise in FL, and under this 
noise, state-of-the-art HPO methods can perform catastrophically poorly, even 
worse than simple baselines (random search).
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Subsampling
Subsampling very few clients hurts HP tuning performance.
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Data Heterogeneity
Data heterogeneity exacerbates the negative effects of subsampling.
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Systems Heterogeneity
Systems heterogeneity can be catastrophic when the clients’ evaluations are 
sufficiently heterogeneous.
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Privacy
DP noise, even under a generous privacy budget, severely deteriorates 
performance unless a sufficient number of clients are sampled.
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Impact on HP Tuning
In high-noise regimes, popular methods may perform as poorly as naive baselines.
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Proxy Data
In high-noise regimes, a suitable proxy dataset can assist hyperparameter search.
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Conclusion
We highlight several best practices for federated HP tuning:

1. Use simple HPO methods.
2. Sample a sufficiently large number of validation clients.
3. Evaluate a representative set of clients.
4. If available, proxy data can be an effective solution.
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Conclusion
We highlight several best practices for federated HP tuning:

1. Use simple HPO methods.
2. Sample a sufficiently large number of validation clients.
3. Evaluate a representative set of clients.
4. If available, proxy data can be an effective solution.

Future directions include:

● Improving / tailoring early-stopping methods for DP and FL
● Investigating HPO methods specific for noisy evaluation
● Combining proxy and client data for HPO
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Thank you!
Questions?

Contact: kkuo2@andrew.cmu.edu

Website: https://imkevinkuo.github.io
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