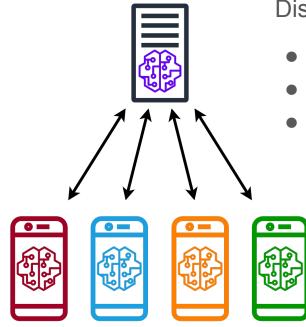
On Noisy Evaluation in Federated Hyperparameter Tuning

*Kevin Kuo, *Pratiksha Thaker, *Mikhail Khodak,
*John Nguyen, *Daniel Jiang, *Ameet Talwalkar, *Virginia Smith

^{*}Carnegie Mellon University

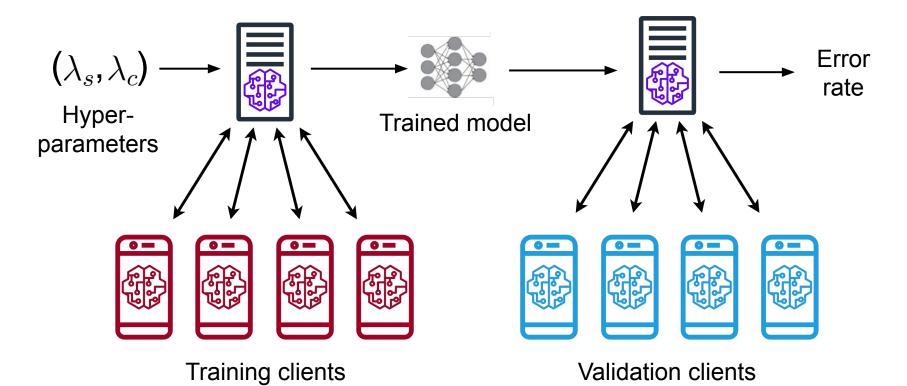
Federated Learning (FL)



Distributed ML across heterogeneous networks

- Potentially massive networks
- Communicates model rather than data
- Applications include data from e.g. mobile phones, medical records, and remote sensors

Cross-Device FL: Training / Evaluation



Federated Training

Within an FL round: clients fine-tune a global model, producing local models which the server aggregates. $\theta = \texttt{ServerOPT}(\theta, \{\theta_k\}_{k \in K}, \lambda_s) \\ \lambda_s = \{\texttt{learning rate, beta1, beta2}\} (\texttt{Adam})$ $\theta_k = \texttt{ClientOPT}(\theta, X_k, \lambda_c)$ λ_c = {learning rate, momentum, batch size} (SGD)

Federated Evaluation

Evaluation sample

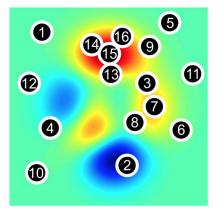
Federated Evaluation

Federated Evaluation

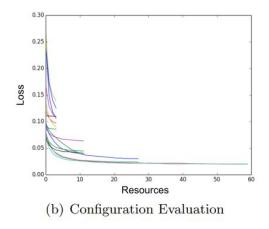
Evaluation sample

Hyperparameter (HP) Tuning

In FL, **HPs** for **client optimization** and **server aggregation** are critical to train a good model.



(a) Configuration Selection

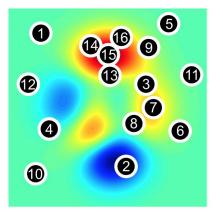


Hyperparameter (HP) Tuning

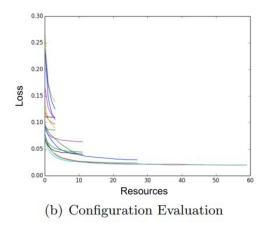
In FL, **HPs** for **client optimization** and **server aggregation** are critical to train a good model.

Standard HP tuning methods work well for classic ML (centralized training).

- random search
- adaptive HP selection
- adaptive resource allocation



⁽a) Configuration Selection



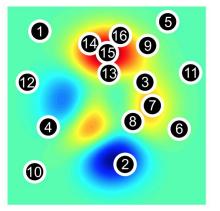
Hyperparameter (HP) Tuning

In FL, **HPs** for **client optimization** and **server aggregation** are critical to train a good model.

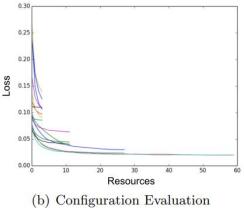
Standard HP tuning methods work well for classic ML (centralized training).

- random search
- adaptive HP selection
- adaptive resource allocation

However, many sources of **noise** in **FL** contribute to **low-quality evaluations** and **severely impact** these HP tuning methods.



(a) Configuration Selection



Questions

Question 1: To what extent does **subsampling** validation clients degrade the performance of HP tuning algorithms?

Question 2: How, and to what extent, do the factors of data heterogeneity, systems heterogeneity, and privacy exacerbate issues of subsampling?

Question 3: In **noisy settings**, how do popular HP tuning algorithms compare to simple baselines?

Questions

Question 1: To what extent does **subsampling** validation clients degrade the performance of HP tuning algorithms?

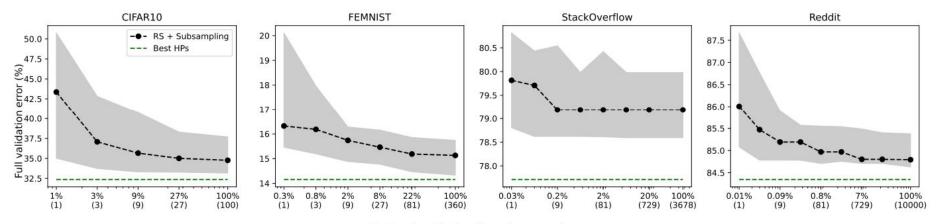
Question 2: How, and to what extent, do the factors of data heterogeneity, systems heterogeneity, and privacy exacerbate issues of subsampling?

Question 3: In **noisy settings**, how do popular HP tuning algorithms compare to simple baselines?

We show there are multiple sources of compounding noise in FL, and under this noise, state-of-the-art HPO methods can perform catastrophically poorly, even worse than simple baselines (random search).

Subsampling

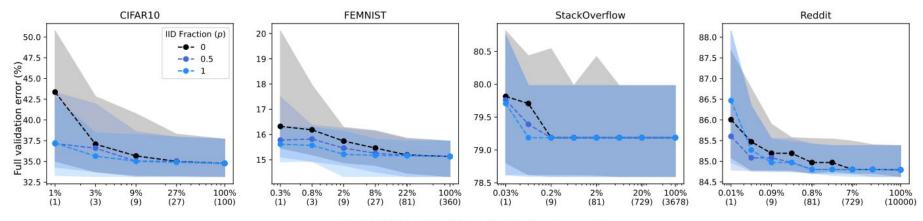
Subsampling very few clients hurts HP tuning performance.



% of total evaluation clients (raw count)

Data Heterogeneity

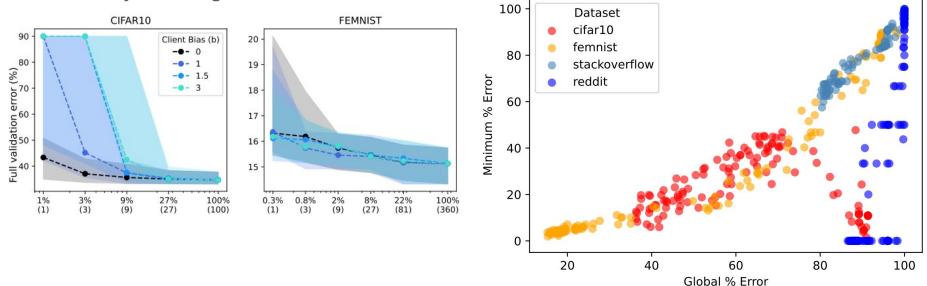
Data heterogeneity exacerbates the negative effects of subsampling.



% of total evaluation clients (raw count)

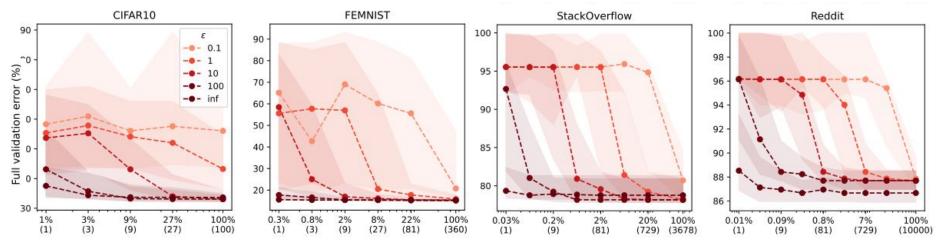
Systems Heterogeneity

Systems heterogeneity can be catastrophic when the clients' evaluations are sufficiently heterogeneous.



Privacy

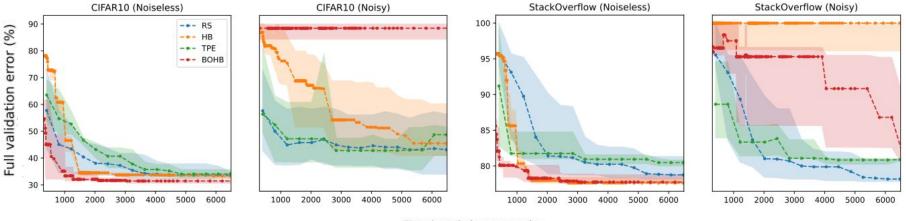
DP noise, even under a generous privacy budget, severely deteriorates performance unless a sufficient number of clients are sampled.



% of total evaluation clients (raw count)

Impact on HP Tuning

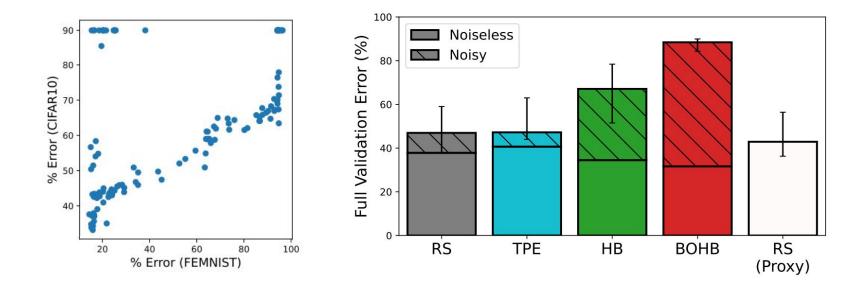
In high-noise regimes, popular methods may perform as poorly as naive baselines.



Total training rounds

Proxy Data

In high-noise regimes, a suitable proxy dataset can assist hyperparameter search.



Conclusion

We highlight several best practices for federated HP tuning:

- 1. Use simple HPO methods.
- 2. Sample a sufficiently large number of validation clients.
- 3. Evaluate a representative set of clients.
- 4. If available, proxy data can be an effective solution.

Conclusion

We highlight several best practices for federated HP tuning:

- 1. Use simple HPO methods.
- 2. Sample a sufficiently large number of validation clients.
- 3. Evaluate a representative set of clients.
- 4. If available, proxy data can be an effective solution.

Future directions include:

- Improving / tailoring early-stopping methods for DP and FL
- Investigating HPO methods specific for noisy evaluation
- Combining proxy and client data for HPO

Thank you!

Questions?

Contact: kkuo2@andrew.cmu.edu

Website: https://imkevinkuo.github.io

Image sources

Wikipedia: https://en.wikipedia.org/wiki/Federated_learning

Hyperband: https://www.jmlr.org/papers/volume18/16-558/16-558.pdf

FontAwesome: <u>https://fa2png.app/</u>

Our arXiv: https://arxiv.org/abs/2212.08930