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RELATED WORK: NEUREWRITER

NeuRewriter
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Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial 
optimization



opt  program.c   –flag1 –flag2 …

RELATED WORK: AUTOPHASE
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AutoPhase



RELATED WORK: DEVICE PLACEMENT
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Zhou et al. 2019. Gdp: Generalized device placement for dataflow graphs.



• Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial 
optimization

• Huang, Q. et al. 2020. AutoPhase: Juggling HLS Phase Orderings in Random 
Forests with Deep Reinforcement Learning

• Haj-Ali, A. et al. 2020. NeuroVectorizer: End-to-End Vectorization with Deep 
Reinforcement Learning

• Trofin, M. et al. 2021. MLGO: a Machine Learning Guided Compiler 
Optimizations Framework

• Mirhoseini, A. et al. 2017. Device Placement Optimization with Reinforcement 
Learning

• And many more…

MORE RELATED WORKS
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RL BASICS

RL framework:
• Markov decision process (MDP)

Advantages:
• Sequential decision-making

• Optimality: optimised for long-
term rewards

• Generalisation: can learn to 
optimise in unseen environments
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NEW CHALLENGES

• Recent advances in ML compilers 
present graph-level transformation
• New challenge to RL-driven compiler 

optimisation: graph domain
• Existing program features are not 

expressive enough to represent 
graph relationship
• Graph changes dynamically
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Dataflow Graph 
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GNN + RL = X-RLflow

Velickovic et al. 2018. Graph attention networks

OUR IDEA



X-RLFLOW

• The environment encapsulates the 
dataflow graph transformation

• A list of candidates generated by 
applying rewrite rules are 
concatenated to a meta-graph

• The meta-graph is fed into a GNN for 
embedding

• The policy head and value head 
produce actions and value estimates 
respectively
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STATE SPACE
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Node features: one-hot encoding tensor operators

Edge features: tensor shapes
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THE GNN

• Update nodes via edge 
features

• Several GAT layers to update 
node representation 

• A finally global layer to update 
the global representation

• Similar ideas exist for cost 
modelling
• Kaufman et al. 2021. A learned 

performance model for tensor processing 
units
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Velickovic et al. 2018. Graph attention networks



ACTION SPACE
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𝑃𝑟(AcQon 1)

…

• Append the current dataflow 
graph to the end as a No-Op 
action to allow early 
termination

• Action masking for dynamically 
changing graph

𝑃𝑟(AcQon 𝑛)



REWARD FUNCTION

Relative runtime improvement %

𝑟! =
𝑅𝑇!"# − 𝑅𝑇!

𝑅𝑇$
∗ 100

• 𝑟!: the reward for iteration 𝑡
• 𝑅𝑇!"#: the current graph runtime

• 𝑅𝑇!: the last graph runtime

• 𝑅𝑇$: the initial graph runtime
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ON-POLICY TRAINING

Learning algorithm:
• PPO

• Gradients are backpropagated to all learnable components end-to-end
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EXPERIMENT RESULTS

• Workloads: 7 different DNNs

• Platform: NVIDIA GeForce GTX 1080

• Dataflow graph transformation baselines: TASO and Tensat
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END-TO-END 
SPEEDUPS

• X-RLflow has better 
speedups in almost all cases

• The special case ViT shows 
more opportunities by 
combining the optimisation
pipeline
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GENERALISATION

• X-RLflow can optimise in 
unseen environments

• Larger tensors result in less 
optimisation opportunities
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TENSAT

• Tensat: E-graphs to optimise 
transformation sequences
• Build E-graph

• Extract from E-graph

• X-RLflow outperforms in 2 
out of 4 test cases

• RL favours complex 
subgraph patterns
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MCTS FOR BUILDING E-GRAPH

He, G. et al. 2023. MCTS-GEB: Monte Carlo Tree Search is a Good E-graph Builder. Willsey, M. et al. 2021. egg: Fast and Extensible 
Equality Saturation
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SUMMARY
X-RLflow: 
• Enable RL-driven compiler optimisation to 

dataflow graph transformation domain

Future works:
• Combine the optimisation pipeline

• Evaluate on more graph transformation 
domains

https://github.com/ucamrl/xrlflow

Questions? 

Email: gh512@cam.ac.uk Thank you!
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