X-RLFLOW: GRAPH REINFORCEMENT
LEARNING FOR NEURAL NETWORK
SUBGRAPHS TRANSFORMATION

GUOLIANG HE, SEAN PARKER, EIKO YONEKI
UNIVERSITY OF CAMBRIDGE

: rust (11 branches, 92 tags)

.
. Ry
: . (/master)
i ; : 9844245 (master, origin/master
Sub-Collector 1 e : 3+
: 1.53.8
: 11 years ago
Collector 2 = = : Rust (97.4 %) Python (8.5 %)
o = = Javascript (8.4 %) CSS (8.3 %)
= N C+ (8.3 %) Markdown (8.3 %)
ARTIFIC = Other (8.7 %)
NEUR Collector 1 : 5% Brian Anderson 5259
4% Niko Matsakis 4874
3% Alex Crichton 3616
a day ago
: 4525
https: //github.com/rust-lang/rust
Sub-Collector 2 : Eumg o
: 16801429

: 63.53 MiB (29784 files)
: Apache-2.8, MIT

RL-driven compiler |
optimisation

backend

RELATED WORK: NEUREWRITER

Min/Max

Distribution

% NeuRewriter

Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial

Hal ide optimization

a language for fast, portable computation on images and tensors

RELATED WORK: AUTOPHASE

Clang command line argument reference

Introduction
Actions
Compilation flags
Preprocessor flags
Include path management
Dependency file generation
Dumping preprocessor state A u to P h a S e
Diagnostic flags
Target-independent compilation options
OpenCL flags
SYCL flags
Target-dependent compilation options
AARCH64
AMDGPU opt program.c —flagl —flag2 ...
ARM
Hexagon
SPARC
Hexagon
M68k
MIPS
PowerPC
WebAssembly
WebAssembly Driver
X86
RISC-V
> Long double flags
Optimization level

RELATED WORK: DEVICE PLACEMENT

/" Transformer-XL-based
GraphSAGE ‘; . Placer Network :

Segment1 Segment 2

Nxd

Node Feature:
Ops Type
Output Shape
Input Ops

Policy Output

: Concatenated i S Aggregator‘] . !
' Nodes Features i 3 —— Aggregator 2 : Node Embeddings !

1

--"" Device Placement
Probabilities

Zhou et al. 2019. Gdp: Generalized device placement for dataflow graphs.

™~
o
)
o
)
oy,
— =
)
o
)
=
o
o

Pipeline Parallel

MORE RELATED WORKS

Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial
optimization

Huang, Q. et al. 2020. AutoPhase: Juggling HLS Phase Orderings in Random
Forests with Deep Reinforcement Learning

Haj-Ali, A. et al. 2020. NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning

Trofin, M. et al. 2021. MLGO: a Machine Learning Guided Compiler
Optimizations Framework

Mirhoseini, A. et al. 2017. Device Placement Optimization with Reinforcement
Learning

And many more...

RL BASICS

RL framework:

Markov decision process (MDP)

Advantages:

Sequential decision-making

Optimality: optimised for long-
term rewards

Generalisation: can learn to
optimise in unseen environments

ENVIRONMENT
-State s €S

- Take action a € A

™

- Getreward 7
-New state s’ € S

NEW CHALLENGES

®
g>@

* Recent advances in ML compilers
present graph-level transformation

* New challenge to RL-driven compiler
optimisation: graph domain

 Existing program features are not
expressive enough to represent (Wathul
graph relationship

* Graph changes dynamically

OUR IDEA

GNN + RL = X-RLflow

concat/avg

Velickovic et al. 2018. Graph attention networks

X-RLFLOW

The environment encapsulates the
dataflow graph transformation

A list of candidates generated by
applying rewrite rules are
concatenated to'a meta-graph

The meta-graph is fed into a GNN for
embedding

The policy head and value head
produce actions and value estimates
respectively

I
I
I
I
I
I
I
I
I
I
I
|
\

Meta-graph

|
—z 5 - I
GNN £ Policy
|
| Action
|
|
|
S |
Value Value estimate
|
RL ,
7

\
< components

Transformation
Observation

Environment

STATE SPACE

Node features: one-hot encoding tensor operators

Edge features: tensor shapes

11

THE GNN

Update nodes via edge
features

Several GAT layers to update
node representation

A finally global layer to update
the global representation

Similar ideas exist for cost
modelling

* Kaufman et al. 2021. A learned
performance model for tensor processing
units

concat/avg

Velickovic et al. 2018. Graph attention networks

®)

12

ACTION SPACE

Pr(Action 1)

Pr(Action n)

* Append the current dataflow
graph to the end as a No-Op
action to allow early
termination

e Action masking for dynamically
changing graph

13

REWARD FUNCTION

Relative runtime improvement %
% RTt—l TR RTt

- 100
i B .

1. the reward for iteration t

RT;_4: the current graph runtime

RT;: the last graph runtime

RTy: the initial graph runtime

14

ON-POLICY TRAINING

-
!

|
' Training ' >
|

Rollouts
Data

Learning algorithm:
« PPO

* Gradients are backpropagated to all learnable components end-to-end

15

EXPERIMENT RESULTS

e Workloads: 7 different DNNs
 Platform: NVIDIA GeForce GTX 1080

* Dataflow graph transformation baselines: TASO and Tensat

16

END-TO-END
SPEEDUPS

* X-RLflow has better
speedups in almost all cases

* The special case ViT shows
more opportunities by
combining the optimisation
pipeline

Il TASO
X-RLflow

145/

11.2%
88/89A> q

17

GENERALISATION

| I TASO

X-RLflow

* X-RLflow can optimise in
unseen environments

* Larger tensors result in less
optimisation opportunities

18

TENSAT

-y
l
4

X-RLflow
B tensat

* Tensat: E-graphs to optimise
transformation sequences

e Build E-graph
e Extract from E-graph

e X-RLflow outperforms in 2
out of 4 test cases

e RL favours complex
subgraph patterns

19

MCTS FOR BUILDING E-GRAPH

5 Selecton ——» Expansion ——— Simulation —— Backup —)

A’i”/&

2 <\ S

Tree Rollout
Policy Policy
|

X

Willsey, M. et al. 2021. egg: Fast and Extensible

He, G. et al. 2023. MCTS-GEB: Monte Carlo Tree Search is a Good E-graph Builder. ¢)
Equality Saturation

20

SUMMARY

X-RLflow:

* Enable RL-driven compiler optimisation to
dataflow graph transformation domain

Future works:
* Combine the optimisation pipeline

* Evaluate on more graph transformation
domains

O https://github.com/ucamrl/xrlflow

~ Questions?
Email: gh512@cam.ac.uk

I’,'

Thank you!

21

| L
= REERSE e |
e 10 A |

