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RELATED WORK: NEUREWRITER

Min/Max

Distribution

% NeuRewriter

Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial

Hal ide optimization

a language for fast, portable computation on images and tensors




RELATED WORK: AUTOPHASE

Clang command line argument reference

Introduction
Actions
Compilation flags
Preprocessor flags
Include path management
Dependency file generation
Dumping preprocessor state A u to P h a S e
Diagnostic flags
Target-independent compilation options
OpenCL flags
SYCL flags
Target-dependent compilation options
AARCH64
AMDGPU opt program.c —flagl —flag2 ...
ARM
Hexagon
SPARC
Hexagon
M68k
MIPS
PowerPC
WebAssembly
WebAssembly Driver
X86
RISC-V
> Long double flags
Optimization level




RELATED WORK: DEVICE PLACEMENT
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Zhou et al. 2019. Gdp: Generalized device placement for dataflow graphs.

™~
o
)
o
)
oy,
— =
)
o
)
=
o
o

Pipeline Parallel




MORE RELATED WORKS

Chen, X. et al. 2019. Learning to perform local rewriting for combinatorial
optimization

Huang, Q. et al. 2020. AutoPhase: Juggling HLS Phase Orderings in Random
Forests with Deep Reinforcement Learning

Haj-Ali, A. et al. 2020. NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning

Trofin, M. et al. 2021. MLGO: a Machine Learning Guided Compiler
Optimizations Framework

Mirhoseini, A. et al. 2017. Device Placement Optimization with Reinforcement
Learning

And many more...



RL BASICS

RL framework:

Markov decision process (MDP)

Advantages:

Sequential decision-making

Optimality: optimised for long-
term rewards

Generalisation: can learn to
optimise in unseen environments
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NEW CHALLENGES
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* Recent advances in ML compilers
present graph-level transformation

* New challenge to RL-driven compiler
optimisation: graph domain

 Existing program features are not
expressive enough to represent (Wathul
graph relationship

* Graph changes dynamically




OUR IDEA

GNN + RL = X-RLflow

concat/avg

Velickovic et al. 2018. Graph attention networks



X-RLFLOW

The environment encapsulates the
dataflow graph transformation

A list of candidates generated by
applying rewrite rules are
concatenated to'a meta-graph

The meta-graph is fed into a GNN for
embedding

The policy head and value head
produce actions and value estimates
respectively
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STATE SPACE

Node features: one-hot encoding tensor operators

Edge features: tensor shapes
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THE GNN

Update nodes via edge
features

Several GAT layers to update
node representation

A finally global layer to update
the global representation

Similar ideas exist for cost
modelling

* Kaufman et al. 2021. A learned
performance model for tensor processing
units

concat/avg

Velickovic et al. 2018. Graph attention networks

®)

12



ACTION SPACE

Pr(Action 1)

Pr(Action n)

* Append the current dataflow
graph to the end as a No-Op
action to allow early
termination

e Action masking for dynamically
changing graph
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REWARD FUNCTION

Relative runtime improvement %
% RTt—l TR RTt

- 100
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1. the reward for iteration t

RT;_4: the current graph runtime

RT;: the last graph runtime

RTy: the initial graph runtime

14



ON-POLICY TRAINING

-
!

|
' Training ' >
|

Rollouts
Data

Learning algorithm:
« PPO

* Gradients are backpropagated to all learnable components end-to-end
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EXPERIMENT RESULTS

e Workloads: 7 different DNNs
 Platform: NVIDIA GeForce GTX 1080

* Dataflow graph transformation baselines: TASO and Tensat
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END-TO-END
SPEEDUPS

* X-RLflow has better
speedups in almost all cases

* The special case ViT shows
more opportunities by
combining the optimisation
pipeline

Il TASO
X-RLflow

145/

11.2%
88/89A> q
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GENERALISATION

| I TASO

X-RLflow

* X-RLflow can optimise in
unseen environments

* Larger tensors result in less
optimisation opportunities
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TENSAT
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X-RLflow
B tensat

* Tensat: E-graphs to optimise
transformation sequences

e Build E-graph
e Extract from E-graph

e X-RLflow outperforms in 2
out of 4 test cases

e RL favours complex
subgraph patterns
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MCTS FOR BUILDING E-GRAPH
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Willsey, M. et al. 2021. egg: Fast and Extensible

He, G. et al. 2023. MCTS-GEB: Monte Carlo Tree Search is a Good E-graph Builder. ¢ )
Equality Saturation
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SUMMARY

X-RLflow:

* Enable RL-driven compiler optimisation to
dataflow graph transformation domain

Future works:
* Combine the optimisation pipeline

* Evaluate on more graph transformation
domains

O https://github.com/ucamrl/xrlflow

~ Questions?
Email: gh512@cam.ac.uk
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Thank you!
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