Efficient GPU Kernels for N:M-Sparse Weights in Deep Learning

Bin Lin¹², Ningxin Zheng¹, Lei Wang¹, **Shijie Cao¹**, Lingxiao Ma¹,

Quanlu Zhang¹, Yi Zhu¹, Ting Cao¹, Jilong Xue¹, Yuqing Yang¹, Fan Yang¹

¹Microsoft Research Asia, ²Tsinghua University

Sparsity in DNN Weights

- Sparsity(redundancy) occurs in Deep Neural Networks
 - Weight pruning aims to find and remove redundant weights
- With the support of sparsity:
 - Storage: reduce model size
 - Computation: skip zero computation

Dense Matrix

Pruned Sparse Matrix

Sparsity Patterns

• The trade-off between model accuracy and inference efficiency

Such an accuracy-efficiency trade-off remains a longstanding challenge for sparse DNNs

N:M Sparsity

- N:M sparsity emerges as a promising alternative to achieve both high model accuracy and high inference efficiency
- What is N:M sparsity?
 - N no-zero elements in every M elements (**balanced** distribution constraint)

• Sparse Tensor Core (2:4 sparsity) in NVIDIA Ampere Architecture: A special case of general N:M sparsity

Extend N:M Sparsity to VW/BW Sparsity

• Unified representation of sparsity patterns with granularity and distribution.

Extend N:M Sparsity to VW/BW Sparsity

• Unified representation of sparsity patterns with granularity and distribution.

There is a lack of GPU kernels dedicated to general N:M sparsity with various sparsity ratios

nmSPARSE

- We present *nmSPARSE*, a GPU library of **SpMV** and **SpMM** kernels for general N:M sparsity with various sparsity ratios.
- nmSPARSE rearranges irregular computation and scattered memory access into hardware-aligned regular computation and conflict-free memory access by leveraging the intrinsic balanced distribution of N:M sparsity.
- Highlight the importance of SpMV because MV is memory-bound and crucial for autoregressive generative models.

nmSPARSE Kernel Design

- Condensed representation of N:M sparsity
 - Reduce the memory footprint and decoding overhead
- Element-Wise N:M sparsity
 - Leverage balanced distribution to eliminate bank conflicts
- Vector-Wise/Block-Wise N:M Sparsity
 - Leverage both balanced distribution and larger granularity to offer superior performance with aligned memory access and Tensor Core support

Condensed representation of N:M sparsity

Dense Representation

Condensed Representation

- Efficient non-zero data loading
- Decoding-friendly index

Element-Wise N:M sparsity

- Challenges of SpMV/SpMM on GPU:
 - Decoding overheads of sparse matrix B
 - Irregular and scattered memory accesses to dense vector/matrix A
- New opportunities of N:M sparsity:
 - Intrinsic workload balance
 - Fast decoding and loading of sparse matrix B
 - Locality of memory accesses to dense vector/matrix A
- Leverage N:M to design efficient SpMV/SpMM kernels!

SpMV for Element-Wise N:M sparsity

- Data organization
 - Vector A is partitioned to sub-vectors of size M and stored in distinct memory banks
- Thread mapping
 - Each thread for a sub-vector in B

Conflict-free access to shared memory

SpMM for Element-Wise N:M sparsity

- Data organization
 - Row-major A_tile in shared memory
- Thread mapping
 - Each thread for a column in B_tile

Conflict-free broadcast access to shared memory

Vector-Wise/Block-Wise N:M Sparsity

- Leverage both
 - Balanced distribution of N:M Sparsity
 - Large granularity of VW/BW Sparsity

Aligned memory accesses and Tensor Core support

Implementation

- Pruning algorithm: We extend NVIDIA ASP to support:
 - General N:M settings.(original ASP only supports 2:4
 - Vector-Wise and Block-Wise sparsity pruning
- GPU Kernels:
 - CUDA kernels for different granularities respectively
 - Leverage Tensor Core for granularities larger than 64 or 64x64
- End-to-end model Inference:
 - Integrate nmSPARSE to SparTA.

Evaluation

- Operator benchmarks
 - Baselines: cuBLAS, cuBLASLt, cuSPARSE, cuSPARSELt, Sputnik
- E2E application study on Transformer
 - Baselines: Rammer, TensorRT, SparTA
- Platform:
 - NVIDIA Tesla A100-PCIE-80GB GPU

Operator Settings

• Shapes: Synthetic shapes + Bert shapes + OPT shapes

	M1	M2	M3	M4	M5	M6	M7	M8
m	1	1	1	1	1	1	1	1
k	1024	2048	4096	8192	1024	4096	5120	20480
n	1024	2048	4096	8192	4096	1024	20480	5120
	M9	M10	M11	M12	M13	M14	M15	M16
m	256	1024	4096	256	1024	4096	256	1024
k	1024	1024	1024	2048	2048	2048	4096	4096
n	1024	1024	1024	2048	2048	2048	4096	4096
	M17	M18	M19	M20	M21	M22	M23	M24
m	4096	256	1024	4096	256	1024	4096	256
k	4096	8192	8192	8192	1024	1024	1024	4096
n	4096	8192	8192	8192	4096	4096	4096	1024
	M25	M26	M27	M28	M29	M30	M31	M32
m	1024	4096	256	1024	4096	256	1024	4096
k	4096	4096	5120	5120	5120	20480	20480	20480
n	1024	1024	20480	20480	20480	5120	5120	5120

• Sparsity ratios: 50%, 75%, 90%

Operator Benchmarks with CUDA Core

SpMV on CUDA Cores: up to 5.2x speedup

Operator Benchmarks with CUDA Core

Operator Benchmarks with Tensor Core

SpMM on Tensor Cores: up to 2.8x speedup

Application Study on Transformer

- Experimental Setup:
 - Model: bert-large
 - Dataset: SQuAD-1.1
- Pruning effectiveness of general N:M sparsity

N:M	2:4	4:8	8:16	16:32
F1	90.59	90.81	90.76	90.95
N:M	1:4	2:8	4:16	8:32

Sparsity Ratio	50%	75%	90%
EW	90.72	90.10	86.23
EW-N:M	90.95	90.09	82.02
VW4	89.26	83.61	79.88
VW4-N:M	90.432	87.26	79.91
VW32	88.57	80.28	79.53
VW32-N:M	89.52	81.48	79.66
VW64	88.56	80.07	79.49
VW64-N:M	89.09	81.22	78.18
BW4x4	87.77	79.91	79.76
BW4x4-N:M	89.58	81.80	79.72
BW64x64	87.46	80.06	79.85
BW64x64-N:M	87.75	79.82	79.96

Application Study on Transformer

- End-to-end speedup:
 - nmSPARSE-EW outperforms dense baselines from 75% sparsity ratio
 - nmSPARSE-VW4 outperforms dense baselines from 50% sparsity ratio
 - cuSPARSELt with Sparse Tensor Core performs the best at 50% sparsity ratio

Summary

- We presents *nmSPARSE*, a GPU library of **SpMV** and **SpMM** kernels for general N:M sparsity with various sparsity ratios.
- We hope *nmSPARSE* can benefit efficient sparse model inference and motivate new innovations on N:M sparsity in both machine learning and system communities.

- Artifact: https://github.com/microsoft/SparTA/tree/nmsparse_artifact
- Code: https://github.com/microsoft/SparTA/tree/nmsparse