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Sparsity in DNN Weights

• Sparsity(redundancy) occurs in Deep Neural Networks

• Weight pruning aims to find and remove redundant weights

• With the support of sparsity:

• Storage: reduce model size

• Computation: skip zero computation
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Sparsity Patterns

• The trade-off between model accuracy and inference efficiency

Irregular Regular

Accurate but not Fast Fast but not Accurate 

Such an accuracy-efficiency trade-off remains a longstanding challenge for sparse DNNs



N:M Sparsity

• N:M sparsity emerges as a promising alternative to achieve both high 
model accuracy and high inference efficiency

• What is N:M sparsity?
• N no-zero elements in every M elements (balanced distribution constraint)

• Sparse Tensor Core (2:4 sparsity) in NVIDIA Ampere Architecture: A special case of 
general N:M sparsity
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Extend N:M Sparsity to VW/BW Sparsity

• Unified representation of sparsity patterns with granularity and distribution.



Extend N:M Sparsity to VW/BW Sparsity

• Unified representation of sparsity patterns with granularity and distribution.

There is a lack of GPU kernels dedicated to general N:M sparsity with various sparsity ratios



nmSPARSE

• We present nmSPARSE, a GPU library of SpMV and SpMM kernels for 
general N:M sparsity with various sparsity ratios.

• nmSPARSE rearranges irregular computation and scattered memory 
access into hardware-aligned regular computation and conflict-free 
memory access by leveraging the intrinsic balanced distribution of N:M 
sparsity.

• Highlight the importance of SpMV because MV is memory-bound

and crucial for autoregressive generative models.



nmSPARSE Kernel Design

• Condensed representation of N:M sparsity

• Reduce the memory footprint and decoding overhead

• Element-Wise N:M sparsity

• Leverage balanced distribution to eliminate bank conflicts

• Vector-Wise/Block-Wise N:M Sparsity

• Leverage both balanced distribution and larger granularity to offer 
superior performance with aligned memory access and Tensor Core 
support



Condensed representation of N:M sparsity

• Efficient non-zero data loading

• Decoding-friendly index



Element-Wise N:M sparsity

• Challenges of SpMV/SpMM on GPU:

• Decoding overheads of sparse matrix B

• Irregular and scattered memory accesses to dense vector/matrix A

• New opportunities of N:M sparsity:

• Intrinsic workload balance

• Fast decoding and loading of sparse matrix B

• Locality of memory accesses to dense vector/matrix A 

• Leverage N:M to design efficient SpMV/SpMM kernels!



SpMV for Element-Wise N:M sparsity

Conflict-free access to shared memory

• Data organization
• Vector A is partitioned to sub-vectors of size M and stored in distinct memory banks

• Thread mapping
• Each thread for a sub-vector in B



SpMM for Element-Wise N:M sparsity

Conflict-free broadcast access to shared memory

• Data organization
• Row-major A_tile in shared memory

• Thread mapping
• Each thread for a column in B_tile



Vector-Wise/Block-Wise N:M Sparsity

Aligned memory accesses and Tensor Core support

• Leverage both

• Balanced distribution of N:M Sparsity

• Large granularity of VW/BW Sparsity



Implementation

• Pruning algorithm: We extend NVIDIA ASP to support:

• General N:M settings.(original ASP only supports 2:4

• Vector-Wise and Block-Wise sparsity pruning

• GPU Kernels:

• CUDA kernels for different granularities respectively

• Leverage Tensor Core for granularities larger than 64 or 64x64

• End-to-end model Inference:

• Integrate nmSPARSE to SparTA.



Evaluation

• Operator benchmarks 

• Baselines: cuBLAS, cuBLASLt, cuSPARSE, cuSPARSELt, Sputnik

• E2E application study on Transformer

• Baselines: Rammer, TensorRT, SparTA

• Platform: 

• NVIDIA Tesla A100-PCIE-80GB GPU



Operator Settings

• Shapes: Synthetic shapes + Bert shapes + OPT shapes

• Sparsity ratios: 50%, 75%, 90%



Operator Benchmarks with CUDA Core 

17

SpMV on CUDA Cores: up to 5.2x speedup



Operator Benchmarks with CUDA Core 
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SpMM on CUDA Cores: up to 6.0x speedup



Operator Benchmarks with Tensor Core
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SpMM on Tensor Cores: up to 2.8x speedup



Application Study on Transformer
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• Experimental Setup: 

• Model: bert-large

• Dataset: SQuAD-1.1

• Pruning effectiveness of general N:M sparsity



Application Study on Transformer
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• End-to-end speedup: 
• nmSPARSE-EW outperforms dense baselines from 75% sparsity ratio

• nmSPARSE-VW4 outperforms dense baselines from 50% sparsity ratio

• cuSPARSELt with Sparse Tensor Core performs the best at 50% sparsity ratio



Summary
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• We presents nmSPARSE, a GPU library of SpMV and SpMM kernels 

for general N:M sparsity with various sparsity ratios. 

• We hope nmSPARSE can benefit efficient sparse model inference and 

motivate new innovations on N:M sparsity in both machine learning 

and system communities.

• Artifact: https://github.com/microsoft/SparTA/tree/nmsparse_artifact

• Code: https://github.com/microsoft/SparTA/tree/nmsparse

https://github.com/microsoft/SparTA/tree/nmsparse_artifact
https://github.com/microsoft/SparTA/tree/nmsparse
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