

µ-TWO: 3x Faster <u>Multi-model</u> Training with Orchestration and Memory Optimization

Sanket Purandare Abdul Wasay Animesh Jain Stratos Idreos

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019

USD 12000

1438 lbs

CO2

Natural Language Processing

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019

Deep Learning Training

High Computational Cost

CO2 emission benchmarks

Data compiled Oct. 9, 2019.

An "American life" has a larger carbon footprint than a "Human life" because the U.S. is widely regarded as one of the top carbon dioxide emitters in the world.

Source: College of Information and Computer Sciences at University of Massachusetts Amherst

20

8

Petaflop/s-day (Training)

Deep Learning Training

High Computational Cost

300,000x Increase in compute

Open AI: https://openai.com/blog/ai-and-compute/

Training Several Networks

Bergstra, J., Algorithms for hyper-parameter optimization, NeurIPS 2011.

T. Elsken et al, Neural Architecture Search: A Survey, JMLR 2019

Training Several Networks

Ensemble Training

Ganaie MA., Ensemble deep learning: A review, 2021

Sources? **Compute Intensive** • • • •][• **A×B**

Training Several Networks

Interpretability Studies: Class Representations

Adversarial ML: Data poisoning

ML for Systems: Indexing

Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021

High Computational Cost

GPU Performance Counters

Sub-optimal Hardware Utilization

Increasing mini-batch size (data parallelism)

existing h/w utilization techniques

Concurrent-training (resource sharing)

Horizontal Fusion

Matrix Multiply Operator

Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021

Horizontal Fusion

Matrix Multiply Operator

Sub-optimal Hardware Utilization

Increasing mini-batch size Concurrent-training (data parallelism)

GPU

Added Memory Pressure

Memory Oversubscription -> Limits Scaling

- A Large model sizes
- B Greater number of models
- C Large training memory footprint
- D Limited GPU memory capacity

- gradients(weights and features)
- feature_maps

Feature Maps have the largest and most significant share in memory consumption.

Feature Maps have the largest and most significant share in memory consumption.

Feature Maps lie idle in GPU memory between forward and backward pass

Recomputation

Discard feature maps after use in forward pass

Recompute when needed during backward pass

Tradeoff Compute for Memory

Dass

Swapping

Offload feature maps after use in forward pass to larger host memory

Fetch feature maps to GPU memory when needed during backward pass

Tradeoff stall time for Memory

Problem Space

Mini-batch size

Problem Definition

How to scale concurrent multi-model training as models grow and peak memory requirement surpasses the available GPU memory capacity?

Solution

Multi-model training compiler

3x latency speed-up

6x the GPU memory size

U-TWO: Multi-Model Training with Orchestration

Latency of a multi-model training schedule

Independent Operations

µ-TWO: Multi-Model Training with Orchestration

Latency of a multi-model training schedule

Independent Operations

Efficiently navigates the trade-off for a given set of models and target GPU and finds a sweet spot

U-TWO: Multi-Model Training with Orchestration

For a given set of models and target GPU

Maximally overlapped swapping eliminate stalling

0 0 ↓/↓ 0 ← 0 Static Analysis

Tailored strategy

Design Implications for µ-TWO

1. Conservatively schedule Swapping, overlap with compute as much as possible

Design Implications for µ-TWO

- 1. Conservatively schedule Swapping, overlap with compute as much as possible 2. Operations from one model can be used to overlap IO operations of other models

Design Implications for µ-TWO

- 3. Only forward pass operations should be used for overlapping backward pass IO operations

1. Conservatively schedule Swapping, overlap with compute as much as possible 2. Operations from one model can be used to overlap IO operations of other models

Design Trade-Offs for µ-TWO

Monolithic inseparable forward and backward pass operations (Minimal opportunity to overlap)

> **High Compute Utilization** due to maximal fusion

High Peak memory consumption due to fusion

Multiple Models

Separate forward and backward pass operations (Maximum opportunity to overlap)

> **Low Compute Utilization** due to no fusion

Lowest Peak memory consumption due to absence of fusion

Design Trade-Offs for µ-TWO

Peak Memory Consumption	High
Compute Utilization	High
Overlap Opportunity	Low

Design Trade-Offs for µ-TWO

Use fusion granularity to navigate the trade-off

Enumerate possible sub-array partitions of models

Loss function

Learning rate

Horizontally fuse models within each sub-array

Models in each sub-array must have same architecture to fuse kernels

Can have different hyper parameters

Weight initialization

Momentum

Can train on different data set/partitions

Trace forward and backward pass graphs for each fused sub-array

Calculate the run-time of every operation in graph

Measure the swap-time of all intermediate tensors

Measure the peak memory usage of each node

To be able to profile graphs larger than GPU memory

Recomputed

Sources to recompute the tensor?

Recompute overhead

Choose whether an intermediate tensor should be

Multiplexer overlaps all the swaps in the backward pass of one fused sub-array with forward pass of another

Mer

Memory simulator ensures that the peak memory consumption post the reordering pass is within the GPU memory limit

Embed the scheduling information in the graphs

Enqueue the appropriate operations across different execution queues

Add synchronization markers for coordination across queues

Experimental Setup

Instance	Nvidia GPU Version	GPU Mem (GB)	Tensor Cores	CPU-GPU Link	CPUs	CPU Mem
AWS p4d24- large	A-100	40	Yes	PCI-e Gen 4 x16 (32GB/s)	16	1152
Dell Claudron DSS 8440	Tesla V-100	32	Yes	PCI-e Gen 4 x16 (32GB/s)	16	384

Workload

Application	Model Name	Functionality	Architectural Features	Params	Batch Sizes
Vision	Vision Transformer	Image Classification,	Positional image embeddings, transformers	60M	8 16
	Mobilenet v3 large	Segmentation, Action Recognition	Depthwise separable convolutions	5.4M	64 128
	Resnet101		Convolutions, Skip Connections	44.5M	48 64
Natural	Bert	Predict Next Sentence	Transformer Encoders	100M	16 24
Processing	GPT2	Predict Next Token	Transformer Decoders	124M	8 16
Recomm- der Systems	NVIDIA DLRM	Item Recomm- endation	Encoders, Decoders, sparse embeddings	40M	512 1024

Baselines

- HFTA-NoMemOpt Horizontal Fusion only with no memory optimization
- HFTA-Capuchin HFTA with Capuchin Algorithm applied directly
- µ-TWO Multi-model training with orchestration and memory optimization

µ-TWO achieves upto 3x Speed-up

(d) Mobilenet v3 large (Batch size: 64)

(f) NV DLRM (Batch size: 1024)

(e) Resnet101 (Batch size: 48)

- **Useful Compute:** Computation time spent in necessary operations
- **Recomputation:** Computation time spent in recompute operations
- **Swap Overlap:** Successful overlap with compute operations
- **Peak memory Consumption:** Maximum memory consumed at any point during the entire iteration

(e) ViT Latency Breakdown

(f) ViT Recomputation Ratio

Less than 50% Recomputation

Less than 50% peak memory consumption

Implementation Details () PyTorch

- Profiling: PyTorch Profiler
- Parallel Compute and Data Operations: CUDA Streams and Events
- Operator Fusion: PyTorch VMap
- Computational Model Graphs: PyTorch AOT Autograd with FakeTensors
- Runtime Overhead Reduction: CUDA Graphs

State of the Art vs µ-TWO

Parameter	HFTA (MLSys'21)	Checkmate (MLSys'20)	Capuchin (ASPLOS'20)	μ-TWO
High Compute Utilization	Yes	Νο	No	Yes
High Memory Utilization	Νο	Yes	Yes	Yes
Large Number of Models	Yes	Νο	Νο	Yes
Large Model Size	Νο	Yes	Yes	Yes
Large Mini-batch Size	Νο	Yes	Yes	Yes
Stalls	NA	NA	Low	Low
Compute Overhead	NA	High	Moderate	Low

Thank You

Recomputed

Combinatorial in nature

Jain Paras et al., Checkmate: Breaking the memory wall with optimal tensor rematerialization, MLSys 2020

Choose whether an intermediate tensor should be

Swapped

NP-HARD

ILP Solvers Approximation algorithms

Memory Savings Per Second

Swapping

Inactive Time: Last Use (Forward Pass) -> First Use (Backward Pass)

Better opportunity to hide swapping latency

Recomputation

 $recompute_ratio = \frac{memory_size}{recomp_time}$

Scheduling Policy

Swap Overhead Calculation

