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Deep Learning Training

64 GPUs 1438 lbs200M 79 hrs USD 12000

BERT

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019


High Computational Cost

Natural Language Processing



Deep Learning Training

64 GPUs 1438 lbs200M 79 hrs USD 12000

High Computational Cost

Google BERT

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019




Sources?
Compute Intensive

Deep Learning Training

High Computational Cost

Open AI: https://openai.com/blog/ai-and-compute/

300,000x Increase in compute



Training 
Several 
Networks

Neural 
Architecture 

Search

Hyperparameter 
Tuning

Compute Intensive

Sources?

Deep Learning Training

High Computational Cost

T. Elsken et al, Neural Architecture Search: A Survey, JMLR 2019

Bergstra, J., Algorithms for hyper-parameter optimization, NeurIPS 2011.




Ensemble Training
Compute Intensive

Training 
Several 
Networks

Sources?

Deep Learning Training

High Computational Cost

Ganaie MA., Ensemble deep learning: A review, 2021




Interpretability Studies: Class Representations
Compute Intensive

Training 
Several 
Networks

Sources?

Deep Learning Training

High Computational Cost

Adversarial ML: Data poisoning

ML for Systems: Indexing



Sub-optimal 
Hardware Utilization

Training 
Several 
Networks

Compute Intensive

Sources?

Deep Learning Training

High Computational Cost
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Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021




Deep Learning Training

High Computational Cost

Sub-optimal 
Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1
Concurrent-training 
(resource sharing)

2

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost

existing h/w utilization 
techniques

Sub-optimal 
Hardware Utilization
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Z1 W1
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Z4 W4

Matrix Multiply Operator

Horizontal Fusion

Z1 W1
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Z4 W4

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2



Deep Learning Training

High Computational Cost

existing h/w utilization 
techniques

Sub-optimal 
Hardware Utilization

M1

M2

M3

M4

Z1 W1

Z2 W2

Z3 W3

Z4 W4

Z1
Z2

Z3
Z4 W1

W2
W3

W4

Fused Batch Matrix Multiply

Matrix Multiply Operator

Horizontal Fusion

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2

Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021




Deep Learning Training

High Computational Cost

Sub-optimal 
Hardware Utilization

Added Memory Pressure

Increasing mini-batch size 
(data parallelism) 


1
Concurrent-training 
(resource sharing)

2

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost

Memory Oversubscription -> Limits Scaling

Sub-optimal 
Hardware Utilization

Limited GPU memory capacityD

Large model sizesA

Large training memory footprintC

Greater number of modelsB

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost

Sub-optimal 
Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1

Addressing Memory Oversubscription

Concurrent-training 
(resource sharing)

2 Feature Maps have the largest and most 
significant share in memory consumption.

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost

Sub-optimal 
Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1

Addressing Memory Oversubscription

Concurrent-training 
(resource sharing)

2

Feature Maps have 
the largest and most 
significant share in 
memory consumption.

Feature Maps lie idle 
in GPU memory 
between forward and 
backward pass

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost

Recomputation
Sub-optimal 

Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2

Addressing Memory Oversubscription

Discard feature maps after use in forward pass

Recompute when needed during backward pass

Superfluous 
Compute Overhead

Tradeoff Compute 
for Memory

existing h/w utilization 
techniques



Deep Learning Training

High Computational Cost Swapping

Sub-optimal 
Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2

Addressing Memory Oversubscription

Offload feature maps after use in forward pass 
to larger host memory

Fetch feature maps to GPU memory when  
needed during backward pass

existing h/w utilization 
techniques

Stalling OverheadTradeoff stall time 
for Memory



Deep Learning Training

High Computational Cost Swapping

Sub-optimal 
Hardware Utilization

Increasing mini-batch size 
(data parallelism) 


1

Concurrent-training 
(resource sharing)

2

Addressing Memory Oversubscription

existing h/w utilization 
techniques

Significant 
Overheads

Recomputation

50% Slowdown

Multi-Model Training

Direct Application



Concurrent-training

Problem Space

High Computational Cost

Mini-batch size

Deep Learning Training

Sub-optimal 
Hardware Utilization

Recomputation Swapping
Memory Oversubscription

Addressing Underutilization

Model SizeNumber of Models Mini-batch size

Large Overheads

Do not scale



Problem Definition

Concurrent-training

High Computational Cost

Mini-batch size

Deep Learning Training

Sub-optimal 
Hardware Utilization

Recomputation Swapping
Memory Oversubscription

Addressing Underutilization

Model SizeNumber of Models Mini-batch size

Large Overheads

How to scale concurrent multi-model 
training as models grow and peak 

memory requirement surpasses the 
available GPU memory capacity?



Concurrent-training

Solution

High Computational Cost

Mini-batch size

Deep Learning Training

Sub-optimal 
Hardware Utilization

Recomputation Swapping
Memory Oversubscription

Addressing Underutilization

Model SizeNumber of Models Mini-batch size

Large Overheads

μ-TWO

Multi-model training compiler

6x the GPU memory size

3x latency speed-up 3-5x more models



: Multi-Model Training with Orchestrationμ-TWO

Compute 
Utilization

Peak Memory 
Consumption

Independent 
Operations

Latency of a multi-model training schedule



: Multi-Model Training with Orchestrationμ-TWO

Compute 
Utilization

Peak Memory 
Consumption

Independent 
Operations

Latency of a multi-model training schedule

Efficiently navigates the trade-off 
for a given set of models and target 

GPU and finds a sweet spot



: Multi-Model Training with Orchestrationμ-TWO

Lightweight 
Profiling

Static 
Analysis

Operators 
to fuse

Maximally overlapped 
swapping

For a given set of models and target GPU

Swap/
recompute

saturate compute optimize memory usage 

eliminate stalling

Tailored strategy



FW BW

1

2 3

FW BW

NN 1

FW BW

NN 2

FW

Not Sensitive to IO

BW

Sensitive to IO

PEAK MEMORY OCCUPANCYNO INTER-NETWORK DEPENDENCY

CHANGED NATURE OF FORWARD AND BACKWARD PASS DURING SWAPPING

Insights for μ-TWO

4 HORIZONTAL FUSION IS ESSENTIAL FOR COMPUTE UTILIZATION



Design Implications for μ-TWO

1. Conservatively schedule Swapping, overlap with compute as much as possible

1 CHANGED NATURE OF FORWARD AND 
BACKWARD PASS DURING SWAPPING

FW

Not Sensitive to IO

BW

Sensitive to IO



Design Implications for μ-TWO

1. Conservatively schedule Swapping, overlap with compute as much as possible

2. Operations from one model can be used to overlap IO operations of other models

2

FW BW

NN 1

FW BW

NN 2

NO INTER-NETWOR 
 DEPENDENCY1

FW

Not Sensitive to IO

BW

Sensitive to IO

CHANGED NATURE OF FORWARD AND 
BACKWARD PASS DURING SWAPPING



Design Implications for μ-TWO

1. Conservatively schedule Swapping, overlap with compute as much as possible

2. Operations from one model can be used to overlap IO operations of other models

3. Only forward pass operations should be used for overlapping backward pass IO 
    operations

FW BW

3 PEAK MEMORY 
OCCUPANCY2

FW BW

NN 1

FW BW

NN 2

NO INTER-NETWOR 
 DEPENDENCY1

FW

Not Sensitive to IO

BW

Sensitive to IO

CHANGED NATURE OF FORWARD AND 
BACKWARD PASS DURING SWAPPING



Design Trade-Offs for μ-TWO

Multiple Models

Monolithic inseparable forward and  
backward pass operations 

(Minimal opportunity to overlap)
High Compute Utilization  

due to maximal fusion
High Peak memory consumption 

 due to fusion

Separate forward and backward  
pass operations 

(Maximum opportunity to overlap)
Low Compute Utilization  

due to no fusion
Lowest Peak memory consumption 

 due to absence of fusion

FW BW

M1 M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8

FW2

BW2

FW1

BW1

FW4

BW4

FW3

BW3

FW6

BW6

FW5

BW5

FW8

BW8

FW7

BW7



Design Trade-Offs for μ-TWO

FW BW

M1 M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8

FW2

BW2

FW1

BW1

FW4

BW4

FW3

BW3

FW6

BW6

FW5

BW5

FW8

BW8

FW7

BW7

Peak Memory  
Consumption

Compute  
Utilization 
Overlap 

Opportunity 

Highest

Highest

Lowest

Lowest

Lowest

Highest

Compute 
Utilization

Peak Memory 
Consumption

Independent 
Operations



Design Trade-Offs for μ-TWO

Highest

Highest

Lowest

Lowest

Lowest

Highest

FW BW

M1 M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8
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FW1
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FW2

BW2

High

High

Moderate

Low

Moderate

High

Compute 
Utilization

Peak Memory 
Consumption

Independent 
Operations

Use fusion granularity to navigate the trade-off



model_spec, num models:8  
1. Model sub-array constructor

M1 M2 M3 M4 M5 M6 M7 M8

A1
M1 M2

M3 M4

A2
M5 M6

M7 M8

M1 M2 M3 M4 M5 M6 M7 M8
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(a)

(b)

(c)

(d)

(a)

μ-TWO System Overview

Enumerate possible sub-array partitions of models



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser

M1 M2 M3 M4 M5 M6 M7 M8

A1
M1 M2

M3 M4
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FA2
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M1 M2 M3 M4 M5 M6 M7 M8

M1 M2 M3 M4 M5 M6 M7 M8

(a)

(b)

(c)

(d)

(a)

μ-TWO System Overview

Horizontally fuse models within each sub-array

Models in each sub-array must have same 
architecture to fuse kernels

Can have different hyper parameters

Learning rate

Loss function

Momentum

Weight initialization

Can train on different  
data set/partitions



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer
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(a)

(b)

(c)

(d)

(a)

μ-TWO System Overview

Trace forward and backward pass graphs 
for each fused sub-array



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer

BW2

BW1

FW2

FW1FA1

FA2

4.Profiler

Memory usage 
Statistics

Static 
Analysis

Run-time 
Statistics
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(a)

(b)
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(d)

(a)

μ-TWO System Overview

Calculate the run-time of 
every operation in graph

Measure the swap-time of 
all intermediate tensors

Measure the peak memory 
usage of each node

To be able to profile graphs 
larger than GPU memory



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer

BW2

BW1

FW2

BW1 FW2
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BW2 FW1

FA1
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4.Profiler

Memory usage 
Statistics

Static 
Analysis

Run-time 
Statistics

5.Scheduler

(ii) Multiplexer

(iii) Memory 
Simulator

(i) Swap/ 
Recompute 
Calculator
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(a)

μ-TWO System Overview

Choose whether an intermediate tensor should be 

Recomputed Swapped 
When to prefetch/offload

STALL Swap overhead

Sources to recompute 
the tensor?

Recompute overhead



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer

BW2
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(i) Swap/ 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μ-TWO System Overview

Multiplexer overlaps all the swaps in the backward pass of one 
fused sub-array with forward pass of another

Memory simulator ensures that the peak memory consumption 
post the reordering pass is within the GPU memory limit



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer

BW2
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FW2
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(a)

μ-TWO System Overview

Embed the scheduling information in the graphs



model_spec, num models:8  
1. Model sub-array constructor 2. Horizontal 

fuser
3.Graph tracer

BW2
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FW2

BW1 FW2
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FA1
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4.Profiler

Memory usage 
Statistics

Static 
Analysis

Run-time 
Statistics

5.Scheduler 6.Graph rewriter 7.Schedule 
interpreter

BW1+FW2

BW2+FW1

(ii) Multiplexer

(iii) Memory 
Simulator

(i) Swap/ 
Recompute 
Calculator
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μ-TWO System Overview

Enqueue the appropriate operations across different execution queues

Add synchronization markers for coordination across queues



Experimental Setup



Workload



• HFTA-NoMemOpt - Horizontal Fusion only with no memory optimization


• HFTA-Capuchin - HFTA with Capuchin Algorithm applied directly


• μ-TWO - Multi-model training with orchestration and memory optimization

Baselines



μ-TWO achieves upto 3x Speed-up



Performance Breakdown

Useful Compute: Computation time spent in necessary operations 

Recomputation: Computation time spent in recompute operations

Swap Overlap: Successful overlap with compute operations

Peak memory Consumption: Maximum memory consumed at any point 
                                               during the entire iteration



Performance Breakdown

Less than 50% Recomputation



Performance Breakdown

3x more Swap Overlap



Performance Breakdown

Less than 50% peak memory consumption



Implementation Details

• Profiling: PyTorch Profiler


• Parallel Compute and Data Operations: CUDA Streams and Events


• Operator Fusion: PyTorch VMap


• Computational Model Graphs: PyTorch AOT Autograd with FakeTensors


• Runtime Overhead Reduction: CUDA Graphs



State of the Art vs μ-TWO

Parameter HFTA (MLSys’21) Checkmate 
(MLSys’20)

Capuchin 
(ASPLOS’20)

High Compute Utilization Yes No No

High Memory Utilization No Yes Yes

Large Number of Models Yes No No

Large Model Size No Yes Yes

Large Mini-batch Size No Yes Yes

Stalls NA NA Low

Compute Overhead NA High Moderate

μ-TWO

Yes

Yes

Yes

Yes

Yes

Low

Low



Thank You



Choose whether an intermediate tensor should be 

Recomputed Swapped 

Combinatorial in nature

Jain Paras et al.,Checkmate: Breaking the memory wall with optimal tensor rematerialization, MLSys 2020 

NP-HARD

GREEDY

ILP Solvers 
Approximation algorithms



Inactive Time: Last Use (Forward Pass) -> First Use (Backward Pass)

Better opportunity to hide swapping latency

Swapping

Recomputation

recompute_ratio =
memory_size
recomp_time

Memory Savings Per Second 



Scheduling Policy
Input: candidate_set, mem_limit

candidate_Set = ∅?

init: swaps={}, recomps={}

s_cand = max_inactive_time(candidate_set) 
r_cand = max_recompute_ratio(candidate_set)

s_overhead > r_overhead?

Exit
Yes

s_overhead, prefetch_prompt = swap_overhead(s_cand) 
r_overhead = recompute_overhead(r_cand)

swaps ∪ {s_cand} 
schedule_swap(s_cand,  

prefetch_prompt) 
candidate_set - {s_cand}

Multiplexer

recomps ∪ {r_cand} 
schedule_recomp(r_cand) 
candidate_set - {r_cand}

Multiplexer

update(candidate_set, swaps, recomps)

peak_memory < mem_limit
Mem Simulator

No

No Yes

No
Exit

Yes



Input: swap_time, reached_peak

reached_peak?

Conflict with 
existing swap?

remaining_time + 
swap_time swap_time

Add forward 
node to 

overlap swap

Check if 
peak memory 
is reduced?

Reduce 
swap_time by 
compute time

swap_time <= 0

Add backward node 
to overlap swap

reached_peak?

Reduce swap_time 
by compute time

swap_time <= 0 Exit (Case 2a)

Exit (Case 2b)

Exit (Case 3)

Exit (Case 1b)
Exit (Case 1a)

Yes
No

remaining_time

Multiplexer

Mem Simulator

Multiplexer

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Swap Overhead 
Calculation
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Swapping Candidate Order: 
(based on inactive times)

, , 

,

Z1
1 Z1

2
Z1
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4

Case 2(a)

Case 2(b)

Case 3

Case 1(a)


