+ p-TWO: 3x Faster Multi-model
» Training with Orchestration and
' Memory Optimization

Sanket Purandare
Abdul Wasay
Animesh Jain
Stratos Idreos

DASIab

@ Harvard SEAS

(N O PyTorch

Deep Learning Training

High Computational Cost

=9

200M 64 GPUs 79 hrs USD 12000 1438 Ibs

BERT
Natural Language Processing

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019

DF]S|ab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

CO2 emission benchmarks

800 o?o
700 | HEH
T “.. 626.2
Y 600
\ é 500 |
200M 64 GPUs 79 hrs USD 12000 1438 Ibs B 4001
§ 300
3

200 | lﬂ
w R 5z 126.0

® O
) | 20 1.0
-_— 0.1 T T
Air travel from Human life American life US. car Training an
New York City to (Avg. 1year) (Avg. 1year) manufacturing and Al model
GOOg |e B E RT San Francisco fuel consumption
(1 passenger) (Avg 1 lifetime)

Datacompiled Oct. 9, 2019.

An "American lire" has a larger carbon rootprint than a “Human lire” because the U.S. is widely regarded as one of the top carbon dioxide
emitters in the world.

Source: College of Information and Computer Sciences at University of Massachusatts Amherst

Strubell et al., Energy and policy considerations for deep learning in NLP, 2019

DF]S|ab

@ Harvard SEAS

Sources?

Compute Intensive

AxB

Deep Learning Training

High Computational Cost

Petaflop/s-day (Training)

300,000x Increase in compute

Year

10,000 r
1 e AlphaGo Ze
1,000 =
100 = » Neural Machine Translation
i Architecture Search
10 —
- * Xception ¢TI7 Dota1vl
1
) ¢ DeepSpeech2
1 — o RasNets
o . * GoogleNet
4 eAlexNet Visualizing and Understanding Conv Nets
- ¢ Dropout
001 =
0001 —
— «DQAN
0000t = | | ! I r !
2013 2014 2015 2016 2017 2018 2019

Open Al: https://openai.com/blog/ai-and-compute/

DFISIab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

. o A
Compute Intensive (B oss
| low learning rate
A | AXB high learning rate Hyperpalrameter
o e ——— Tuning
Tral n I ng good learning rate -
Several epoch
NetWOrkS Bergstra, J., Algorithms for hyper-parameter optimization, NeurlPS 2011.
—
ot sl e " crermmn] :
o I - T Neural
W o — 5 F Architecture
b B e h; o Search
(a) baLeline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling
o T. Elsken et al, Neural Architecture Search: A Survey, JMLR 2019
W HSlab
@ Harvard SEAS

Deep Learning Training

High Computational Cost

Compute Intensive |5 o
: Ensemble Training
’ .A. - A.XB 3 Ensemble output
. Combined network output
Training g
Several "
Networks
NN#

LD

Ganaie MA., Ensemble deep learning: A review, 2021

DFISIab

@ Harvard SEAS

Compute Intensive

Training
Several
Networks

Deep Learning Training
High Computational Cost

Interpretability Studies: Class Representations

9
9

Adversarial ML: Data poisoning

&

ML for Systems: Indexing

DF]S|ab

@ Harvard SEAS

Compute Intensive

A
Training SO
Several R 8
/ 8

Networks

Sub-optimal
Hardware Utilization

Deep Learning Training

High Computational Cost

4%
~——20%
- GPU Training
46% Usage
Breakdown
26%
4%

@ Multi Node Dist. Training
Single Node Dist. Training
Other

@ Isolated Single-GPU Training

@ Repetitive Single-GPU Training

Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021

B Used Unused
100%

5%

50%

25%

0%

GPU Performance
Counters

DFISIab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utlilization

l

existing h/w utilization
techniques

Q1S

Increasing mini-batch size
(data parallelism)

0 o)

Concurrent-training
(resource sharing)

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

Q1S

Increasing mini-batch size
(data parallelism)

0 o)

Concurrent-training
(resource sharing)

Horizontal Fusion

Matrix Multiply Operator

DF]S|ab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

Q1S

Increasing mini-batch size
(data parallelism)

0 o)

Concurrent-training
(resource sharing)

Horizontal Fusion

Matrix Multiply Operator

Wang et al, Horizontally Fused Training Array (HFTA), MLSys 2021

Fused Batch Matrix Multiply

DFIS'&b

@ Harvard SEAS

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l
existing h/w utilization
techniques

Qi< 0 5]

Increasing mini-batch size Concurrent-training
(data parallelism) (resource sharing)

N\

\"'1
E /F

Added Memory Pressure

W UHSlab

@ Harvard SEAS

Memory Oversubscription -> Limits Scaling

Deep Learning Training

High Computational Cost

° Large model sizes

G Greater number of models

e Large training memory footprint

l
Sub-optimal C‘} Q Limited GPU memory capacity
Hardware Utilization 3\’
l ---- GPU Memory Limit
/77 weights
existing h/w utilization - ?erjt‘ﬂfe”_‘jf;”:;g““a”" features)

techniques
200 -

<
a fv 150 -

Increasing mini-batch size
(data parallelism)

0[]

K Concurrent-training _
@% (resource sharing) 8 16) 4 GPT2_ (8 ,16) 4 it (8, 16) 4 DFISI b
) | oAb

Models
@ Harvard SEAS

Memory (GB)

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

Q1S

Increasing mini-batch size
(data parallelism)

0 ()

Concurrent-training
(resource sharing)

Addressing Memory Oversubscription

---- GPU Memory Limit
/77 Weights
mmm gradients(weights and features)

EEl feature maps

200 -

150 -

Memory (GB)

50 -

Bert (8,16) 4 GPT2 (8,16) 4 wit (8,16) 4
Models

4

Feature Maps have the largest and most
significant share in memory consumption.

DFISIab

@ Harvard SEAS

Deep Learning Training

l
Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

0

Increasing mini-batch size
(data parallelism)

0 ()

Concurrent-training
(resource sharing)

Addressing Memory Oversubscription

-- GPU Memory Limit
/77 weights
mmm gradients(weights and features)

EEm feature maps

200 -

Feature Maps have
the largest and most 150 -
significant share In

memory consumption.

100 ~

Memory (GB)

50 A

Bert (8 16) 4 GPT2 (8 16) 4 wit (8,16) 4
Models

---- total iteration time
B feature map idle time

1250 A

Feature Maps lie idle
in GPU memory
between forward and
backward pass

1000 A

750 ~

Time (ms)

500 -

250 -

0 100 200 300
Feature maps (ordered as generated)

DFISIab

@ Harvard SEAS

Addressing Memory Oversubscription

Deep Learning Training

High Computational Cost

! Recomputation
Sub-optimal . -
Hardware Utilization C;} g Discard feature maps after use in forward pass
l
existing h/w utilization @ Recompute when needed during backward pass
techniques
o —
1 RN —
Increasing mini-batch size —

(data parallelism) == n

Tradeoff Compute Superfluous

e g § . for Memory Compute Overhead

Concurrent-training
(resource sharing)

DFISIab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

0

Increasing mini-batch size
(data parallelism)

0 ()

Concurrent-training
(resource sharing)

Addressing Memory Oversubscription
Swapping

-9

Offload feature maps after use in forward pass
to larger host memory

Fetch feature maps to GPU memory when
needed during backward pass

"2

Tradeoff stall time Stalling Overhead
for Memory

DFISIab

@ Harvard SEAS

Deep Learning Training

High Computational Cost

l

Sub-optimal
Hardware Utilization
l

existing h/w utilization
techniques

0

Increasing mini-batch size
(data parallelism)

0 ()

e Concurrent-training
W (resource sharing)

Addressing Memory Oversubscription

Recomputation Swapping
ol

® -0

\?lrect Appllcatlon
R

I
"‘

Multi-Model Training

n o Y

Significant 50% Slowdown
Overheads

DFISIab

@ Harvard SEAS

Problem Space

Deep Learning Training

High Computational Cost

Sub-optimal
Hardware Utilifation

Addressing Underutilization

Mini-batch size Concurrent-training

Number of Models Model Size

Do not scale Memory Oversubscription
Recomputation Swapping

I
I
'.‘

-
n

Large Overheads

DF]S|ab

@ Harvard SEAS

Problem Definition

Deep Learning Training

High Computational Cost

Sub—opti_rr)al | |
Hardware Ut'“fatlon How to scale concurrent multi-model
Addressing Underutilization tralnlng as m_OdeIS grOW and peak

memory requirement surpasses the
available GPU memory capacity?

Mini-batch size Concurrent-training

Number of Models Model Size

Memory Oversubscription
Recomputation Swapping

'.‘

n
Large Overheads

§%§

DF]S|ab

@ Harvard SEAS

Solution

Deep Learning Training

High Computational Cost

Sub-optimal
Hardware Utilifation

Addressing Underutilization

Mini-batch size Concurrent-training

e %0
sl 3y |atency speed-up 3-5x more models

Memory Oversubscription .53

Recomputation Swapping ‘ \) f@@)

— 6x the GPU memory size

12

Multi-model training compiler

e

n

Large Overheads

DFIS|ab

@ Harvard SEAS

1-TWO : Multi-Model Training with Orchestration

Latency of a multi-model training schedule

Compute
Utilization
Peak Memory
Consumption

Independent
Operations

DFIS'&b

@ Harvard SEAS

| \ L-TWO : Multi-Model Training with Orchestration

Latency of a multi-model training schedule

Compute
Utilizatio
Peak Memory
Consumption

Independent
Operations

Efficiently navigates the trade-oft
for a given set of models and target
GPU and finds a sweet spot

13 £F £

DASIab

@ Harvard SEAS

-TWO : Multi-Model Training with Orchestration

For a given set of models and target GPU

FE %
Lightweight ASt’clltiC_
Profiling nalysis
b <@
Operators 2 Tailored strate Swap/
to fuse ta Iy recompute
saturate compute E) optimize memory usage

Maximally overlapped
swapping

eliminate stalling

13 £F £

DASIab

@ Harvard SEAS

35

30 -

25 -

20 -

15 A

10 A

— Wweights

- gradients (weights and feature)
—— feature maps
---- fw_bw _boundary

I
|
|
I
I
|
I
I
|
I
I
I
I
I
|
1
|
|
i

1000 2000
Operations

&

Insights for u-TWO

a CHANGED NATURE OF FORWARD AND BACKWARD PASS DURING SWAPPING

2 - & - RAM
- & =

Not Sensitive to 10 Sensitive to 10

e NO INTER-NETWORK DEPENDENCY e PEAK MEMORY OCCUPANCY

X Fﬁw % B\')W
w 11 '.'l

NN 1 NN 2

a HORIZONTAL FUSION IS ESSENTIAL FOR COMPUTE UTILIZATION

2o

DFISIab

@ Harvard SEAS

Design Implications for y-TWO

CHANGED NATURE OF FORWARD AND
BACKWARD PASS DURING SWAPPING
®
D ==p

® ==
-d 5 = BV [RAM

Not Sensitive to 10 Sensitive to 1O

1. Conservatively schedule Swapping, overlap with compute as much as possible

W UHSlab

@ Harvard SEAS

Design Implications for y-TWO

CHANGED NATURE OF FORWARD AND NO INTER-NETWOR
BACKWARD PASS DURING SWAPPING DEPENDENCY

ay: el]
2 (®) 53 o B

1. Conservatively schedule Swapping, overlap with compute as much as possible

2. Operations from one model can be used to overlap 10 operations of other models

DF]S|ab

@ Harvard SEAS

Design Implications for y-TWO

CHANGED NATURE OF FORWARD AND ‘ NO INTER-NETWOR PEAK MEMORY
DEPENDENCY OCCUPANCY

BACKWARD PASS DURING SWAPPING

° : A FW BW

& =-p 2 ==p

o7~ (#) 52 o [=am] Too e
NN 1

w/

NN 2

1. Conservatively schedule Swapping, overlap with compute as much as possible

2. Operations from one model can be used to overlap 10 operations of other models

3. Only forward pass operations should be used for overlapping backward pass |10
operations

DFIS'Elb

@ Harvard SEAS

Design Trade-Oftfs for y-TWO

L)
ORI N,

\ %
S ‘."

Multiple Models
m M5 M6 [M?j M8 m iy M6 [WJ[MBJ

@ @ QOO e (oo

QOO e o (or)om

Monolithic inseparable forward and Separate forward and backward
backward pass operations pass operations
(Minimal opportunity to overlap) (Maximum opportunity to overlap)
High Compute Utilization Low Compute Utilization
due to maximal fusion due to no fusion
High Peak memory consumption Lowest Peak memory consumption
due to fusion due to absence of fusion

DF]S|ab

@ Harvard SEAS

Design Trade-Oftfs for y-TWO

i) w (7)o 8. e ()0
@ @ QOO =
QO DDES o (oo

Peak Memory _

Consumption Highest Lowest
Compute _
Utilization Highest Lowest
Overlap_ Lowest Highest

Opportunity

Compute
Utilization
Peak Memory
Consumption

Independent
Operations

DF]S|ab

@ Harvard SEAS

Design Trade-Offs for y-TWO

Tioo)

i vz

M5 M6 [M?] M8

) m

M5 M6 [M?j [MS]

M5 M6 (M7) ms]

™)

FW3

BW3

1T 00

Peak Mem_ory Highest High Low | owest
Consumption
Compute : :
Utilization Highest High Moderate Lowest
Overlap Lowest Moderate High Highest
Opportunity
Compute
Utilizatio
Peak Memory
Consumption
Independent
Operations

Use fusion granularity to navigate the trade-off

DFIS'&b

@ Harvard SEAS

u-TWO System Overview

1. Model sub-array constructor
model_spec, num models:8

Enumerate possible sub-array partitions of models

u-TWO System Overview

1. Model sub-array constructor 2. Horizontal
model_spec, num models:8 fuser

Horizontally fuse models within each sub-array

Models in each sub-array must have same
architecture to fuse kernels

Can have different hyper parameters

Loss function Weight initialization

z & B & &

Learning rate Momentum Can train on different
data set/partitions

u-TWO System Overview

1. Model sub-array constructor 2 Horlzontal 3.Graph tracer
model_spec, num models:8 fuser -7-—>-7-\

Trace forward and backward pass graphs
for each fused sub-array

u-TWO System Overview

1. Model sub-array constructor 2 Horlzontal 3. Graph tracer 4.Profiler
model_spec, num models:8 fuser -7-—>-7-\ |

Static
Analysis

9

Run-time
Statistics

% 4= Measure the swap-time of
Viemory usage ==y all intermediate tensors

D Calculate the run-time of
every operation in graph

Statistics

-
e P

‘__ Q Measure the peak memory
usage of each node

To be able to profile graphs
& larger than GPU memory

u-TWO System Overview

1. Model sub-array constructor 2 Horlzontal 3 Graph tracer 4.Profiler 5.Scheduler
model_spec, num models:8 fuser -7-—>-7-\ Static
g @ Analysis S S
~ FA1 >
,/ . /- Run-time
il - Statistics
Memory usage
~ Statistics (i) Swap/ (i) Memory
AW | Recompute Simulator
| Calculator

Choose whether an intermediate tensor should be

Recomputed Swapped

== Sources to recompute Q When to prefetch/offload
the tensor?

Recompute overhead HSTALLN Swap overheaa
n

u-TWO System Overview

1. Model sub-array constructor 2. Horizontal 3.Graph tracer 4.Profiler 5.Scheduler

fuser | |
Static
Analysis Sutz S

model_spec, num models:8

9

Run-time
Statistics

2y

Memory usage
- Statistics | (i) Swap/ (i) Memory

AW | Recompute Simulator
| Calculator

Multiplexer overlaps all the swaps in the backward pass of one
fused sub-array with forward pass of another

@ Memory simulator ensures that the peak memory consumption
post the reordering pass is within the GPU memory limit

u-TWO System Overview

1. Model sub-array constructor 2 Honzontal 3.Graph tracer 4.Profiler 5.Scheduler 6.Graph rewriter

model_spec, num models:8 fuser -7-—>-7-\ Static
« = « ‘@
O (i) Multiplexer |

Run-time ' ',
Statistics /- ‘::(9' \

b @ @

Memory usage

Statistics (i) Swap/ (i) Memoryl
/\ - Recompute Simulator
Calculator

Embed the scheduling information in the graphs

u-TWO System Overview

1. Model sub-array constructor
model_spec, num models:8

2 Horlzontal
| fuser

] -7- ’-/' —

3 Graph tracer

4.Profiler

Static
Analysis

9

Run-time
Statistics

2y

Memory usage

Statistics

5.Scheduler

(i) Multiplexer

6.Graph rewriter

- -/-\-"-\

LT -

SRR
’- 1
pa i |

--->
-

N—
(i) Swap/ (iii) Memory
- Recompute Simulator
~ Calculator 1

7.Schedule
interpreter

Enqueue the appropriate operations across different execution queues

Add synchronization markers for coordination across queues

Experimental Setup

Nvidia GPU Tensor CPU-GPU CPU
Instance GPU Mem Cores I ink CPUs Mem
Version (GB)
AWS PClI-e
p4d24- A-100 40 Yes Gen 4 x16 16 1152
large (32GB/s)
Dell Tesla PCl-¢
Claudron V-100 32 Yes Gen 4 x16 16 384
DSS 8440 (32GB/s)

DFISIab

@ Harvard SEAS

Workload

o Model . . Architectural Batch
Application Name Functionality Features Params Sizes
Positional
Vision image 3
. . Transformer Ir.nage. embeddings, 60M 16
Vision Classification,
transformers
Image Depthwise
Mobilenet Segmentation, P 64
: separable 5.4M
v3 large Action : 128
.. convolutions
Recognition .
Convolutions, 48
Resnet101 Skip 44.5M
. 64
Connections
Natural Bert Predict Next Transformer 100M 16
Language Sentence Encoders 24
: Predict Next Transformer 8
Processing GPT2 Token Decoders 124M 16
Recomm- Item Encoders,
NVIDIA Decoders, 512
der Recomm- 40M
DLRM : sparse 1024
Systems endation .
embeddings

DF]S|ab

@ Harvard SEAS

Baselines

« HFTA-NoMemOpt - Horizontal Fusion only with no memory optimization
 HFTA-Capuchin - HFTA with Capuchin Algorithm applied directly

 u-TWO - Multi-model training with orchestration and memory optimization

DFISIab

@ Harvard SEAS

u-TWO achieves upto 3x Speed-up

—»— HFTA+Capuchin —»— HFTA+Capuchin —»— HFTA+Capuchin
—&— HFTA+NoMemOpt —4— HFTA+NoMemOpt —4— HFTA+NoMemOpt
—&— MuTWO —&— MuTWO —&— MuTWO
2.25 3.0 -
5 S 25 s
B 4001 T © 2.5 -
1 8 A
2 175 - - 2
© © © 2.0 -
N 150 - ~ N
= ® 15 - 2 15-
£ 1.25- £ £ 15
= - =
1.00 - 90909090909 1.0 - 90909090? 1.0 1 #—4 :] : ; ' '
2 4 6 8 10 12 2 4 6 & 10 2 4 6 8 10 12 14
Number of models Number of models Number of models
(a) Bert (Batch size: 24) (b) GPT2 (Batch size: 16) (c) Vision Transformer (Batch size: 8)
2.5 -
1.75 5 0- N
o o
2 1.50 - 7
: fs D 2.0 -
0 1.25 - 0 1.5 - o
)) n
D 1.00 - o 15-
N N N
E 0.75 - E E
. 3 5 1.0 # s ———
2 0.50 - . <
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10
Number of models Number of models Number of models
(d) Mobilenet v3 large (Batch size: 64) (e) Resnet101 (Batch size: 48) (f) NV DLRM (Batch size: 1024)

DFIS'Elb

@ Harvard SEAS

Performance Breakdown

Useful Compute: Computation time spent in necessary operations
Recomputation: Computation time spent in recompute operations
Swap Overlap: Successful overlap with compute operations

Peak memory Consumption: Maximum memory consumed at any point
during the entire iteration

W UHSlab

@ Harvard SEAS

Performance Breakdown

Useful Compute IiineFﬁ‘oAn&F;Utfchin mmm OWV@Pp Overlap ---- GPU Memory Capacity
7 SﬁfrgMem?ptM TWO BB Recom Ete MUTWO HFrA—Capu: & e e sl i dlace e
2wl ool sl p - BN Peak Memory MUTWO
EEE Recompute MuTWO o = u =
1.0 - ® & o
= = a 31 c
£ 0.8 = - 8
.] -
5 ‘é s 3
—~ 064 M. S O 24 >
3 Z 2 S 5
N / 7 o = 8
= 041 M7 // 7 2 e n
’ 207 07 b7 | & 2 1- 2
Sl %
0.0 - lé lé lé lé g T T T T E 0 - E
2 4 6 8 2 4 6 8 = 2 4 6 8 5
Models Models Models = e

(a) Bert Latency Breakdown J (b) Bert Recomputation Ratio § (c) Bert Swap Overlap Ratio (d) Bert Peak Mem. Cons. Ratio

10

i =
1.0 | 2 x % =

a . ﬁ l’_%- 3‘ g
e e o
L = Q > =
- 061 R» O - 5
g Z b = O
= PLLLL i g
AR AA IR E g :
0.0 - l/l 14 14 / o T T T T T CEJ 0 - T A{é
2 a4 8 B D 5 2 a4 s 8 10 = 3 4 & & 10 o

Models Models Models Models

(e) ViT Latency Breakdown § (f) ViT Recomputation Ratio § (g) ViT Swap Overlap Ratio (h) ViT Peak Mem. Cons. Ratio

Less than 50% Recomputation DFISIab

@ Harvard SEAS

Performance Breakdown

Useful Compute Recompute m OWVAP Overlap ---- GPU Memory Capacity
HFTA-NoMemOpt HFTA-Capuchin HFTA-Capuchin BEE Peak Memory HFTA-Capuchin
##7 Useful Compute MuTWO BN Recompute MuTWO — f’.nw?’\?vgverlap B Peak Memory MUTWO
EEE Recompute MuTWO o = u =
1.0 % 1.0 - T L
= o o -
¥ g o §=]
c 0.8 - = 0.8 - = =1
3 3 2 =
| i Q S
=NIEY P S 0.6 = 2
] 7 @ C]
N o 7 o = 8
= 041 87 7 7 2 - 0.4 e
E Zz 072 B7 W7 s 8 2
o2 ' NR BB R QR :° - ;
0-0 b lé lé lé lé g 0-0 I I 1 I g E
2 4 (¥ 8 2 4 (§) 8 = 4 6 g
Models Models Models Models

(a) Bert Latency Breakdown (b) Bert Recomputation Ratio § (c) Bert Swap Overlap Ratio d) Bert Peak Mem. Cons. Ratio

10

=, =
o T & 6-
1.0 - % 1.0 3 :
> ; - E
[[T o
§ 0.8 - "é- 0.8 g g
9 = @
0.611. S 0.6 a 2
o Vy W] o o
¢ Z & z O
= 04407 < 0.4+ >
m .

Yy 7 @ © 5
- 0207 ? Z 2 z = 0.2 - I 5
Sl A VA /A /A 1R g <
ool BZ 07 BZ W7 W7 cspoll HE HE BEE B § : X
2 a4 8 B D 5 2 a4 s 8 10 = 3 4 & & 10 o

Models Models Models Models

(e) ViT Latency Breakdown (f) ViT Recomputation Ratio § (g) ViT Swap Overlap Ratio J§(h) ViT Peak Mem. Cons. Ratio

3x more Swap Overlap DFISIab

@ Harvard SEAS

Performance Breakdown

Useful Compute
HFTA-NoMemOpt

/7 Useful Compute MuTWO
Bl Recompute MuTWO

Normalized Latency
2. B B P
<+ o o s] o
1 1 1 1

o
[
1

SAANNANNNNNNNN
NN\
ANNANNNNAN |

o
o
I

B NN |

rJ
-
o

Models

(a) Bert Latency Breakdown

1.0 1
g
< 0.8 -
an-
= 0.4 - 2 .
vz 07 R”%
E 2 ;/’/ 2 12 07 z
IR A AV
ol BZ 07 BZ 07 W7
g & 5 = 1o
Models

(e) ViT Latency Breakdown

ﬂepcrﬂp"te hi mm V3P Overlap ---- GPU Memory Capacity
-Capuchin - .
EEE Recompste MuTWO :FTA %apurfl:hm Bl Peak Memory HFTA-Capuchin
wap Overlap
- - . TWO o | Peak Memory MuTWO
e = =
™ 1.0 - © &
o e s -
w Q =
‘5‘ 0.8 | - .;
o Q o
= ‘S | %
o 0.6 1 s .
2 o =
- 0.4 N (] U
Y i =
N Y :
§ L g
S 0.0 L= . . , g 0. =

(b) Bert Recomputation Ratio (c) Bert Swap Overlap Ratio (d) Bert Peak Mem. Cons. Ratio

10

i 2
e
= T & 6-
© 1.0 - c
o Q 3 o
Y Z i
= 0.8 - @ (=]
a > =
E o >
S 0.6 - o 27 =
o m o
& = o
- 0.4 1 m >
7] '8 1 - (o]
N ~ =
g 0.0 T T T T T § 0— T Af‘!!
2 4 6 8 10 = 2 4 6 8 10 2

Models Models Models

(f) ViT Recomputation Ratio (g) ViT Swap Overlap Ratio J§(h) ViT Peak Mem. Cons. Ratio

Less than 50% peak memory consumption §JDRASIab

@ Harvard SEAS

Implementation Details () pyTorch

* Profiling: PyTorch Profiler

» Parallel Compute and Data Operations: CUDA Streams and Events

* Operator Fusion: PyTorch VMap

 Computational Model Graphs: PyTorch AOT Autograd with FakeTensors

 Runtime Overhead Reduction: CUDA Graphs

DFISIab

@ Harvard SEAS

State of the Art vs y-TWO

Parameter HFTA (MLSys’21) c(;“rn‘tg';:?;;? (A%iilgg,i 2 0) pu-TWO
High Compute Utilization Yes No No Yes
High Memory Utilization No Yes Yes Yes
Large Number of Models Yes No No Yes
Large Model Size No Yes Yes Yes
Large Mini-batch Size No Yes Yes Yes
Stalls NA NA Low Low
Compute Overhead NA High Low

DFISIab

@ Harvard SEAS

Thank You

Choose whether an intermediate tensor should be
Recomputed Swapped

Combinatorial in nature

NP-HARD

Jain Paras et al.,Checkmate: Breaking the memory wall with optimal tensor rematerialization, MLSys 2020

@ ILP Solvers
+ Approximation algorithms

DF]S|ab

@ Harvard SEAS

Recomputation

anilias

memory_size

recompute_ratio = :
recomp_time

Memory Savings Per Second

Swapping

@

Inactive Time: Last Use (Forward Pass) -> First Use (Backward Pass)

Better opportunity to hide swapping latency

DF]S|ab

@ Harvard SEAS

(Input: candidate_set, mem_limit)

v
(init: swaps={}, recomps={})
v
(Exit)g(candidatei_z(e)t =27

~)
s_cand = max_inactive_time(candidate_set)

r_cand = max_recompute_ratio(candidate_set)
_ J

v

s_overhead, prefetch_prompt = swap_overhead(s_cand)\
r_overhead = recompute_overhead(r_cand)

1

(s overhead > r overhead?)

(

_/

M I\\IO Yes Multiplexer
swaps u {s_cand} 4 ™)
schedule_swap(s_cand, recomps u {r_cand}
prefetch_prompt) schedule_recomp(r_cand)
candidate_set - {s_cand} candidate_set - {r_cand}

) \

(update(candidate_set, swaps, recomps)
K_memory < mem_limit

& [pea _

Scheduling Policy

W UHSlab

@ Harvard SEAS

(Input: swap_time, reached_peak)

'

Yes

Yes |€Xisting swap?

ey

remaining_time + .
. swap_time) (Swapitlme)
v

) (Exit (Case 1a))

(Exit (Case 1b)

Add backward node

to overlap swap
\ _J/

v No
?
Yes (reached_peak. k\lo

/

koverlap swap

/(reached_peak? N
)
" Conflict with

Add forward

node to

Mem Simulator

Check if
peak memory

. IS reduced?)
{ Yes

Reduce
swap_time by

compute time
_ _ J

v

No

(remaining_time) (Reduce swap_time\ [swa fime <— 0)
J | by compute time P —
+ * Yes

(swap_time <= O) (Exit (Case 2a))

Q% { Yes
S}% (Exit (Case 2b))

Swap Overhead
Calculation

DFISIab

@ Harvard SEAS

.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
q
)\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
24

X

H
—k
-
)
Q
—=
-
)
@
<
0
O
7

Weights - Backward Op Time
Weight Gradients : : - Recompute Time

- Gradient Maps : 21 Swap Time
------- Backward i -» Forward

v I I I = == = = = = = = = = =B = = = = =H N
~--------------------'
- E_E = = = = = = = = = = EH = = N N N =N =N N
- E E E E E E E E B B BE B B B B §&B B §&5B B3

Operation Timelines

wDASIab

@ Harvard SEAS

e 1 1
Peak /.,
- I/Iemory Swapping Candidate Ordet: 1’

"4 interya] (based on inactive times) Z Z

@ Come SN I ------- ______

Timeline
o cor S 72 7 O 70 70 A W
Host-GPU Case 2(a'fimeline‘

© C<>mpute-—-------

Host—GPU Case 3 Timeli

L s T Fswa [J#] T J2]al T | [z]=z]e

