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Overview

⬛ Placement in Heterogeneous Computing
▪ Motivation
▪ Problem Formulation

⬛ Related Work
⬛ GiPH
⬛ Evaluation
⬛ Conclusion
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Motivation

⬛ Highly distributed, hundreds of nodes: LATENCY
▪ Time-sensitive data processing
▪ Precise timing requirements
▪ Eg., light-free traffic control

Source: ’Rush Hour’ by Black Sheep Films
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Placement is the KEY

Example: sensor fusion
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Example: sensor fusion

Placement is the KEY
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Challenges: 

⬛ Devices are heterogeneous
▪ Different types: 

▪ CPUs/GPUs
▪ PCs/Servers/UEs

▪ Various compute/communication 
capabilities - tradeoff

▪ Functionalities

⬛ Devices can be volatile
▪ Some device becomes unavailable
▪ New device enters the system

Placement is the KEY
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⬛ Devices are heterogeneous
▪ Different types: 

▪ CPUs/GPUs
▪ PCs/Servers/UEs

▪ Various compute/communication 
capabilities - tradeoff

▪ Functionalities

⬛ Devices can be volatile
▪ Some device becomes unavailable
▪ New device enters the system

Placement is the KEY

Sensor 
data 1 Sensor 

data 2

fusion

Sensor 
data 3

Require a solution that can scale to different 
number of devices and can efficiently encode 
information as the device set changes.
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Placement Problem

     A compute application G (DAG)

The set of tasks V

   with placement constraints     

  
Placement   
Objective  min

     A target computing network N

The set of devices D

  

G N
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Placement: Makespan Minimization

For time-sensitive applications, it is important to minimize the 
completion time, i.e., makespan

⬛ The time duration from the start of the first task’s 
execution to the end of the last task’s execution

⬛ The total cost along the critical path
⬛ Depends on the placement of all tasks
⬛ NP-hard
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Related Work

● Scheduling Heuristics in Heterogeneous Computing
● RL-based Device Placement for Neural Network Training
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Related Work: Scheduling Heuristics

⬛ Rely on simple strategies and hand-crafted features

⬛ E.g., Heterogeneous Earliest Finish Time (HEFT)[1]

▪ Give each task a priority that maintains the topological ordering 

of the tasks

▪ Starting with the highest priority, place each task to a device that 

will result in the earliest finish time (EFT) of that task

[1] H. Topcuoglu, S. Hariri and Min-You Wu, "Performance-effective and low-complexity task scheduling for heterogeneous computing," in IEEE 
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, March 2002, doi: 10.1109/71.993206.
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Related Work: RL-based Device Placement
⬛ Predict a placement for each task

⬛ Hierarchical model for device placement (HDP)[2]

▪ An RL policy is trained for each graph

▪ An RNN-based placer: encoder/decoder pair to predict one device for each node in 

the order of the inputs

▪ Does not generalize to new neural networks/device clusters

⬛ Placeto[3]

▪ A GNN is used to embed graph-level features

▪ Does not generalize to new device clusters

[2] Mirhoseini, Azalia et al. “A Hierarchical Model for Device Placement.” International Conference on Learning Representations (2018).
[3] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mohammad Alizadeh. 2019. Placeto: learning generalizable device placement algorithms for 
distributed machine learning. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 358, 3981–3991.
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GiPH 

● Fully generalizable placement learning
● Adaptive to network changes 
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MDP Formalism

We formulate the placement problem as a search problem, 
where incremental changes are made to the current placement.

⬛ Current placement→ take an action (update the current 
placement) → transition to a new state → reward 
(improvement)
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MDP Formalism

We formulate the placement problem as a search problem, 
where incremental changes are made to the current placement.

⬛ State space
▪ set of all feasible placements

⬛ Action space
▪ set of feasible task and device pairs
▪                    place v

i
 on d

j
 

⬛ Reward
▪ The performance improvement
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GiPH: Framework

GiPH: Generalizable Placement with the ability to adapt to dynamic 
Heterogeneous networks 

gpNet: a graph representation 
● Encode information of an arbitrary task 

graph and network pair
● Capture all task- and device-related 

features
● Has a local graph structure corresponding 

to each possible task relocation

Placement Agent: GNN + policy network
● Take a gpNet as input
● GNN: calculate an embedding for 

each action
● Policy network: decides an action 

(i.e., relocating a task) to take
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gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task 

placement
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gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task 

placement
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GiPH: Neural Network Design

Scalable placement policy: GNN + RL policy network

GNN: takes a gpNet as input and 
embeds the placement information as 
a set of vectors

RL policy network: decides the 
action of re-placing one of the task 
(placement update step)

● Score function 
● Softmax action selection



Carnegie Mellon

25

Evaluation 

● Performance: Schedule Length Ratio (normalized makespan) minimization
● Case Study: Cooperative Sensor Fusion
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Search Efficiency: GiPH vs. Placeto

Placeto: visit task equally

GiPH: adjust the placement of 
“critical” tasks more frequently within 
the same number of search steps
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Cooperative Sensor Fusion

⬛ Autonomous driving with roadside 

units (RSUs), infrastructure camera 

sensors, and CAVs

⬛ Simulation of Urban MObility (SUMO)

a 6-block area in the center 

of Tempe AZ
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Cooperative Sensor Fusion

● Find better placement (up to 30.5% lower SLR) with 
higher search efficiency than baselines
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Conclusion

⬛ Formulate the learning problem as a search problem
▪ the policy outputs incremental placement improvement steps

⬛ Propose GiPH for adaptive placement learning
▪ an RL-based framework for learning generalizable placement 

policies for selecting a sequence of placement update steps that 

scale to problems of arbitrary size

⬛ Evaluate on synthetic data and present a case study

▪ GiPH finds placements with up to 30.5% lower SLR, searching up 

to 3X faster than other search-based placement policies.

➢ Next step: real-world deployment

▪ Realistic dynamics that accounts for potential relocation overhead 

and dynamic application arrivals  
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Thanks! 

● Code: https://github.com/uidmice/placement-rl
● Contact: yihu@andrew.cmu.edu

https://github.com/uidmice/placement-rl
mailto:yihu@andrew.cmu.edu
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Evaluation: Placement Quality

● GiPH outperforms HEFT on 59% of test cases, and ties on 
5.2%. 

● RNN-placer trained on individual test cases
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Evaluation: Adaptivity

● Test on a changing device network
● As the device network changes, GiPH maintains stable 

performance


