MLSys 2023

Carnegie Mellon University

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Yi Hu¹, Chaoran Zhang¹, Edward Andert², Hashul Singh¹, Aviral Shrivastava², James Laudon³, Yanqi Zhou³, Bob Jannucci³, Carlee Joe-Wong¹

¹Department of Electrical and Computer Engineering, CMU ²School of Computing and Augmented Intelligence, ASU <u>³Google</u>

Overview

Placement in Heterogeneous Computing

- Motivation
- Problem Formulation
- Related Work
- GiPH
- Evaluation
- Conclusion

Motivation

Highly distributed, hundreds of nodes: <u>LATENCY</u>

- Time-sensitive data processing
- Precise timing requirements
- Eg., light-free traffic control

Source: 'Rush Hour' by Black Sheep Films

Placement is the KEY

Example: sensor fusion

Placement is the KEY

Carnegi<u>e Mellon</u>

Electrical & Computer

Placement is the KEY

Challenges:

- Devices are <u>heterogeneous</u>
 - Different types:
 - CPUs/GPUs
 - PCs/Servers/UEs
 - Various compute/communication capabilities - *tradeoff*
 - Functionalities
- Devices can be <u>volatile</u>
 - Some device becomes unavailable
 - New device enters the system

Carnegi<u>e Mellon</u>

Placement is the KEY

Challenges:

- Devices are <u>heterogeneous</u>
 - Different types:
 - CPUs/GPUs
 - PCs/Servers/UEs
 - Various compute/communication capabilities - *tradeoff*
 - Functionalities

Ney

- Devices can be <u>volatile</u>
 - Some device becomes unavailable

Require a solution that can scale to different number of devices and can efficiently encode information as the device set changes.

Sensor

data 1

fusion

Senso

data 2

Electrical & Computer

Placement Problem

A compute application *G* (DAG) A The set of tasks *V* with placement constraints $D_i \subseteq D$

A target computing network N The set of devices D

Placement $\mathcal{M}^{G \to N} : V \to D$ **Objective** min $\rho(\mathcal{M}|G, N)$ s.t $\mathcal{M}(v_i) \in D_i$

Placement: Makespan Minimization

For time-sensitive applications, it is important to minimize the *completion time*, i.e., makespan

• The time duration from the start of the first task's execution to the end of the last task's execution

$$\min_{\mathcal{M}} \rho(\mathcal{M}|G, N) = \min_{\mathcal{M}} \max_{p \in P(G)} \left(\sum_{i \in p} c_i + \sum_{(i,j) \in p} c_{ij} \right)$$

- The total cost along the critical path
- Depends on the placement of all tasks
- NP-hard

Hard to place the whole graph all at once!

 \mathbf{d}_2

0

 \mathbf{d}_2

Related Work

- Scheduling Heuristics in Heterogeneous Computing
- RL-based Device Placement for Neural Network Training

Related Work: Scheduling Heuristics

- Rely on simple strategies and hand-crafted features
- E.g., Heterogeneous Earliest Finish Time (HEFT)[1]
 - Give each task a priority that maintains the topological ordering of the tasks
 - Starting with the highest priority, place each task to a device that will result in the *earliest finish time* (EFT) of that task

[1] H. Topcuoglu, S. Hariri and Min-You Wu, "Performance-effective and low-complexity task scheduling for heterogeneous computing," in *IEEE Transactions on Parallel and Distributed Systems*, vol. 13, no. 3, pp. 260-274, March 2002, doi: 10.1109/71.993206.

Related Work: RL-based Device Placement

- Predict a placement for each task
- Hierarchical model for device placement (HDP)[2]
 - An RL policy is trained for each graph
 - An RNN-based placer: encoder/decoder pair to predict one device for each node in the order of the inputs
 - <u>Does not generalize to new neural networks/device clusters</u>
- Placeto[3]
 - A GNN is used to embed graph-level features
 - <u>Does not generalize to new device clusters</u>

[2] Mirhoseini, Azalia et al. "A Hierarchical Model for Device Placement." International Conference on Learning Representations (2018).

[3] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mohammad Alizadeh. 2019. Placeto: learning generalizable device placement algorithms for distributed machine learning. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 358, 3981–3991.

GiPH

- Fully generalizable placement learning
- Adaptive to network changes

MDP Formalism

We formulate the placement problem as a *search problem*, where *incremental changes* are made to the current placement.

 Current placement→ take an action (update the current placement) → transition to a new state → reward (improvement)

Action space

 $a_0 = (v_0, d_0)$ $a_1 = (v_0, d_1)$ $a_2 = (v_1, d_1)$

MDP Formalism

We formulate the placement problem as a *search problem*, where *incremental changes* are made to the current placement.

 $D_0 = \{\mathbf{d_0}, \mathbf{d_1}\}$

a, a3

- State space
 - set of all feasible placements
- Action space
 - set of feasible task and device pairs
 - $a_t = (v_i, d_j)$ place v_i on d_j

 $D_{1} = \{\mathbf{d}_{1}, \mathbf{d}_{2}\} \qquad a_{3} = (v_{1}, d_{2})$ rs $\mathcal{M}_{0} \qquad a_{3} = (v_{1}, d_{2})$ $\mathcal{M}_{1} \qquad a_{3} \qquad a_{4} \qquad a_{0} \qquad a_{1} \qquad a_{0} \qquad a_{0} \qquad a_{1} \qquad a_{0} \qquad a_$

 a_1, a_3

Reward

• The performance improvement

 $r_t = \rho(s_{t+1}|G, N) - \rho(s_t|G, N)$

GiPH: Framework

GiPH: Generalizable Placement with the ability to adapt to dynamic Heterogeneous networks

gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

GiPH: Neural Network Design

Scalable placement policy: GNN + RL policy network

Evaluation

- Performance: Schedule Length Ratio (normalized makespan) minimization
- Case Study: Cooperative Sensor Fusion

Search Efficiency: GiPH vs. Placeto

Placeto: visit task equally

GiPH: adjust the placement of "critical" tasks more frequently within the same number of search steps

Cooperative Sensor Fusion

- Autonomous driving with roadside units (RSUs), infrastructure camera sensors, and CAVs
- Simulation of Urban MObility (SUMO)

Cooperative Sensor Fusion

 Find <u>better</u> placement (up to 30.5% lower SLR) with <u>higher</u> search efficiency than baselines

Conclusion

- Formulate the learning problem as a search problem
 - the policy outputs incremental placement improvement steps
- Propose GiPH for adaptive placement learning
 - an RL-based framework for learning *generalizable* placement policies for selecting a sequence of placement update steps that *scale* to problems of arbitrary size
- Evaluate on synthetic data and present a case study
 - GiPH finds placements with up to 30.5% lower SLR, searching up to 3X faster than other search-based placement policies.
- Next step: real-world deployment
 - Realistic dynamics that accounts for potential relocation overhead and dynamic application arrivals

Thanks!

- Code: https://github.com/uidmice/placement-rl
- Contact: <u>yihu@andrew.cmu.edu</u>

Evaluation: Placement Quality

- GiPH outperforms HEFT on 59% of test cases, and ties on 5.2%.
- RNN-placer trained on individual test cases

Evaluation: Adaptivity

- Test on a *changing* device network
- As the device network changes, GiPH maintains <u>stable</u>
 <u>performance</u>