
GiPH: Generalizable Placement
Learning for Adaptive

Heterogeneous Computing
Yi Hu1, Chaoran Zhang1, Edward Andert2, Hashul Singh1, Aviral Shrivastava2,

James Laudon3, Yanqi Zhou3, Bob Iannucci3, Carlee Joe-Wong1

1Department of Electrical and Computer Engineering, CMU
2School of Computing and Augmented Intelligence, ASU
3Google

MLSys 2023

Carnegie Mellon

2

Overview

⬛ Placement in Heterogeneous Computing
▪ Motivation
▪ Problem Formulation

⬛ Related Work
⬛ GiPH
⬛ Evaluation
⬛ Conclusion

Carnegie Mellon

3

Motivation

⬛ Highly distributed, hundreds of nodes: LATENCY
▪ Time-sensitive data processing
▪ Precise timing requirements
▪ Eg., light-free traffic control

Source: ’Rush Hour’ by Black Sheep Films

Carnegie Mellon

4

Placement is the KEY

Example: sensor fusion

Sensor
data 1

Sensor
data 2

fusion

slow

fast

medium

Carnegie Mellon

5

Placement is the KEY

Example: sensor fusion
Sensor
data 1

Sensor
data 2

fusion

fast

medium

medium

Sensor
data 3

SLOW

Communication and
computation time tradeoff
(comm/comp capabilities)

Carnegie Mellon

6

Example: sensor fusion

Placement is the KEY

Sensor
data 1 Sensor

data 2

fusion

Sensor
data 3

Communication and
computation time

tradeoff

Task interdependence,
Device topology

Carnegie Mellon

7

Challenges:

⬛ Devices are heterogeneous
▪ Different types:

▪ CPUs/GPUs
▪ PCs/Servers/UEs

▪ Various compute/communication
capabilities - tradeoff

▪ Functionalities

⬛ Devices can be volatile
▪ Some device becomes unavailable
▪ New device enters the system

Placement is the KEY

Sensor
data 1 Sensor

data 2

fusion

Sensor
data 3

Carnegie Mellon

8

Challenges:

⬛ Devices are heterogeneous
▪ Different types:

▪ CPUs/GPUs
▪ PCs/Servers/UEs

▪ Various compute/communication
capabilities - tradeoff

▪ Functionalities

⬛ Devices can be volatile
▪ Some device becomes unavailable
▪ New device enters the system

Placement is the KEY

Sensor
data 1 Sensor

data 2

fusion

Sensor
data 3

Require a solution that can scale to different
number of devices and can efficiently encode
information as the device set changes.

Carnegie Mellon

10

Placement Problem

 A compute application G (DAG)

The set of tasks V

 with placement constraints

Placement
Objective min

 A target computing network N

The set of devices D

G N

Carnegie Mellon

11

Placement: Makespan Minimization

For time-sensitive applications, it is important to minimize the
completion time, i.e., makespan

⬛ The time duration from the start of the first task’s
execution to the end of the last task’s execution

⬛ The total cost along the critical path
⬛ Depends on the placement of all tasks
⬛ NP-hard

0

1 3

2
4

Hard to place the whole
graph all at once!

Carnegie Mellon

12

Related Work

● Scheduling Heuristics in Heterogeneous Computing
● RL-based Device Placement for Neural Network Training

Carnegie Mellon

14

Related Work: Scheduling Heuristics

⬛ Rely on simple strategies and hand-crafted features

⬛ E.g., Heterogeneous Earliest Finish Time (HEFT)[1]

▪ Give each task a priority that maintains the topological ordering

of the tasks

▪ Starting with the highest priority, place each task to a device that

will result in the earliest finish time (EFT) of that task

[1] H. Topcuoglu, S. Hariri and Min-You Wu, "Performance-effective and low-complexity task scheduling for heterogeneous computing," in IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, March 2002, doi: 10.1109/71.993206.

0

1 3

2
4

Prio_1

Prio_2

Prio_3 Prio_4

Prio_5

Carnegie Mellon

16

Related Work: RL-based Device Placement
⬛ Predict a placement for each task

⬛ Hierarchical model for device placement (HDP)[2]

▪ An RL policy is trained for each graph

▪ An RNN-based placer: encoder/decoder pair to predict one device for each node in

the order of the inputs

▪ Does not generalize to new neural networks/device clusters

⬛ Placeto[3]

▪ A GNN is used to embed graph-level features

▪ Does not generalize to new device clusters

[2] Mirhoseini, Azalia et al. “A Hierarchical Model for Device Placement.” International Conference on Learning Representations (2018).
[3] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mohammad Alizadeh. 2019. Placeto: learning generalizable device placement algorithms for
distributed machine learning. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 358, 3981–3991.

Carnegie Mellon

17

GiPH

● Fully generalizable placement learning
● Adaptive to network changes

Carnegie Mellon

18

MDP Formalism

We formulate the placement problem as a search problem,
where incremental changes are made to the current placement.

⬛ Current placement→ take an action (update the current
placement) → transition to a new state → reward
(improvement)

Data 2

Data 1

fusion
Proc 1

Proc 2

Device 1
Device 2

Device 3 Device 4

Current Placement

Data 2

Data 1

fusion
Proc 1

Proc 2

Device 1
Device 2

Device 3 Device 4

Updated Placement

Action
Proc 2 → Device 4

Carnegie Mellon

19

MDP Formalism

We formulate the placement problem as a search problem,
where incremental changes are made to the current placement.

⬛ State space
▪ set of all feasible placements

⬛ Action space
▪ set of feasible task and device pairs
▪ place v

i
 on d

j

⬛ Reward
▪ The performance improvement

Carnegie Mellon

20

GiPH: Framework

GiPH: Generalizable Placement with the ability to adapt to dynamic
Heterogeneous networks

gpNet: a graph representation
● Encode information of an arbitrary task

graph and network pair
● Capture all task- and device-related

features
● Has a local graph structure corresponding

to each possible task relocation

Placement Agent: GNN + policy network
● Take a gpNet as input
● GNN: calculate an embedding for

each action
● Policy network: decides an action

(i.e., relocating a task) to take

Carnegie Mellon

21

gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task

placement

0

1 3

2
4

Current Placement and Constraints

Carnegie Mellon

22

gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task

placement

0

1 3

2
4

Current Placement and Constraints

Carnegie Mellon

23

gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task

placement

0

1 3

2
4

Current Placement and Constraints

gpNet

Carnegie Mellon

24

GiPH: Neural Network Design

Scalable placement policy: GNN + RL policy network

GNN: takes a gpNet as input and
embeds the placement information as
a set of vectors

RL policy network: decides the
action of re-placing one of the task
(placement update step)

● Score function
● Softmax action selection

Carnegie Mellon

25

Evaluation

● Performance: Schedule Length Ratio (normalized makespan) minimization
● Case Study: Cooperative Sensor Fusion

Carnegie Mellon

26

Search Efficiency: GiPH vs. Placeto

Placeto: visit task equally

GiPH: adjust the placement of
“critical” tasks more frequently within
the same number of search steps

Carnegie Mellon

27

Cooperative Sensor Fusion

⬛ Autonomous driving with roadside

units (RSUs), infrastructure camera

sensors, and CAVs

⬛ Simulation of Urban MObility (SUMO)

a 6-block area in the center

of Tempe AZ

Carnegie Mellon

28

Cooperative Sensor Fusion

● Find better placement (up to 30.5% lower SLR) with
higher search efficiency than baselines

Carnegie Mellon

29

Conclusion

⬛ Formulate the learning problem as a search problem
▪ the policy outputs incremental placement improvement steps

⬛ Propose GiPH for adaptive placement learning
▪ an RL-based framework for learning generalizable placement

policies for selecting a sequence of placement update steps that

scale to problems of arbitrary size

⬛ Evaluate on synthetic data and present a case study

▪ GiPH finds placements with up to 30.5% lower SLR, searching up

to 3X faster than other search-based placement policies.

➢ Next step: real-world deployment

▪ Realistic dynamics that accounts for potential relocation overhead

and dynamic application arrivals

Carnegie Mellon

30

Thanks!

● Code: https://github.com/uidmice/placement-rl
● Contact: yihu@andrew.cmu.edu

https://github.com/uidmice/placement-rl
mailto:yihu@andrew.cmu.edu

Carnegie Mellon

37

Evaluation: Placement Quality

● GiPH outperforms HEFT on 59% of test cases, and ties on
5.2%.

● RNN-placer trained on individual test cases

Carnegie Mellon

38

Evaluation: Adaptivity

● Test on a changing device network
● As the device network changes, GiPH maintains stable

performance

