

RevBiFPN: The Fully Reversible Bidirectional Feature Pyramid Network

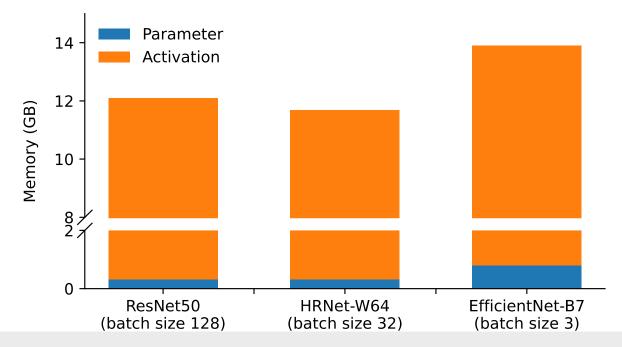
Vitaliy Chiley, Vithursan Thangarasa, Abhay Gupta, Anshul Samar, Joel Hestness, Dennis DeCoste

Cerebras Systems, Inc.

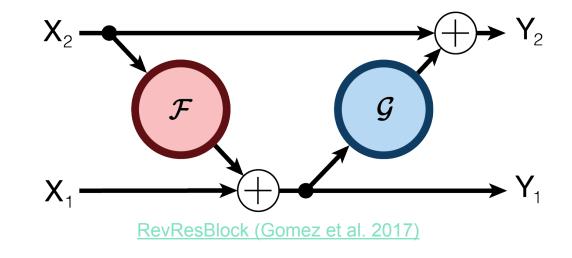
© 2022 Cerebras Systems Inc. All Rights Reserved

Network Training Memory

- Most CV networks (e.g. ResNet, EfficientNet, HRNet) use under 1GB for storing parameters, gradients, and optimizer state
 - Parameter Memory Complexity: $O(c^2d)$
- · Activations dominate the use of accelerator memory
 - Activation Memory Complexity: *O*(*nchwd*)
- The memory used for activations limits neural network scaling



Reversible Residual Block (RevResBlock)



Memory Saving Techniques

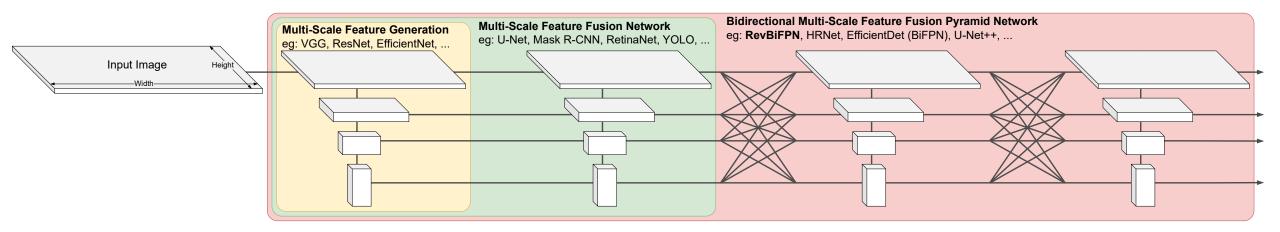
- Activation Memory Complexity: *O*(*nchwd*)
 - With respect to depth activation memory complexity is linear O(d)
- **Reverse Checkpointing**: caches activations at \sqrt{d} intervals
 - Complexity: $O(nchw\sqrt{d})$
- **Reversible Recomputation**: When a network is built using invertible modules, the activations can be recomputed backwards during the backwards pass
 - Complexity: O(nchw)
 - Activation memory complexity is **constant** with respect to depth
 - Problem: no reversible building block operate across multi-scale features

	Memory		COMPUTE	
	LAYER SEQUENTIAL	PIPELINED PARALLEL	Forward Pass	BACKWARD PASS
SGD BASELINE	O(D)	$O(D^2)$	O(D)	O(2D)
WITH CHECKPOINTING	$O(\sqrt{D})$	$O(D^{rac{3}{2}})$	O(2D)	O(2D)
WITH REVERSBLE RECOMPUTATION	O(1)	O(D)	O(2D)	O(2D)

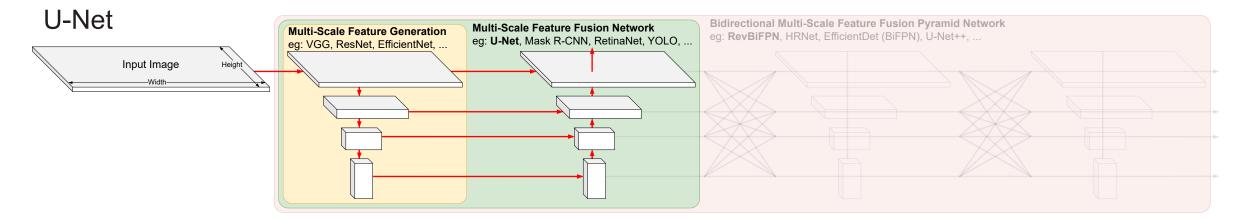
BiFPN

Bidirectional Feature Pyramid Networks (e.g. HRNet, EfficientDet, NAS-FPN)

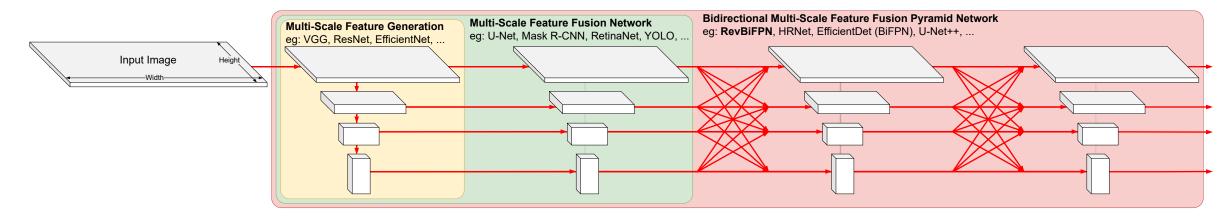
- Iteratively fuse high and low resolution feature maps
 - Promotes scale invariant detection and segmentation
 - Provide local and global coherence
- Drive SOTA results for spatially sensitive tasks when paired with high resolution images
 - Consume a lot of memory for storing activations at high and low resolution scale along the entire semantic depth



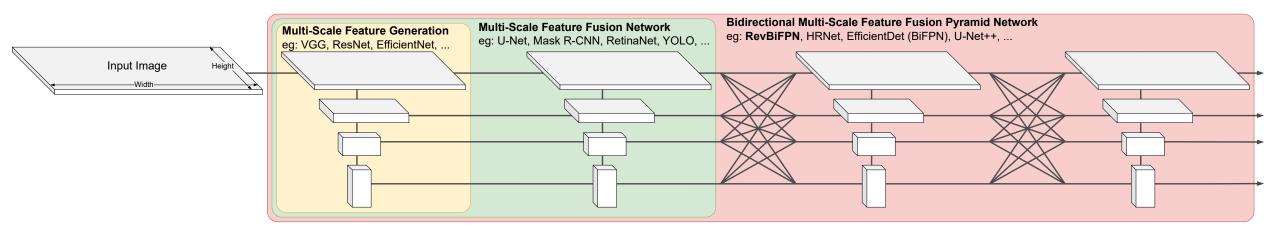
Multi-Scale Feature Networks



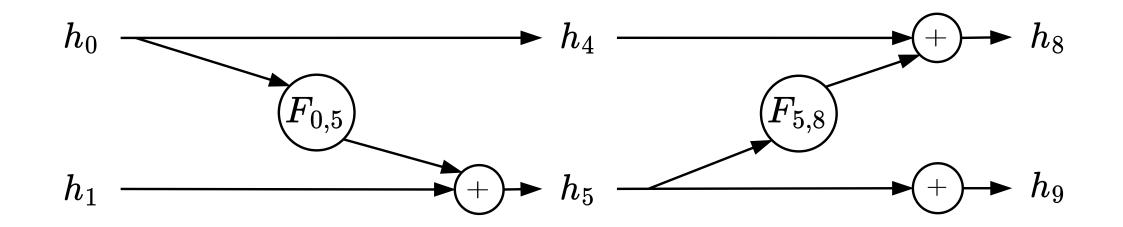
HRNet

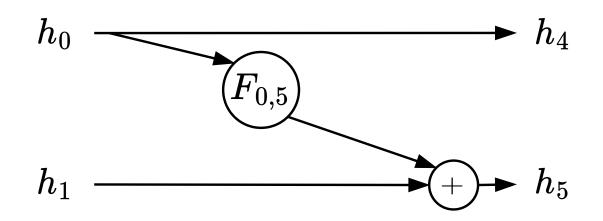


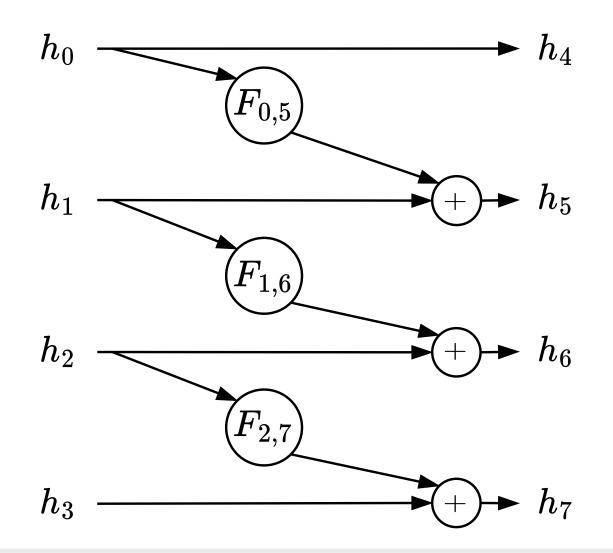
How do we apply reversible recompilation to BiFPN style networks???

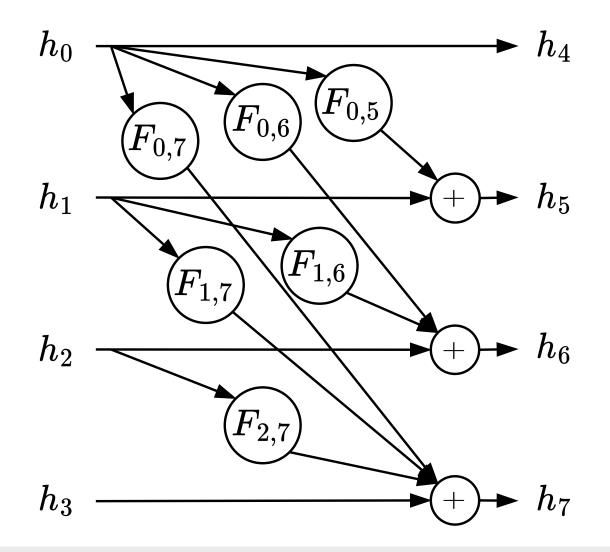


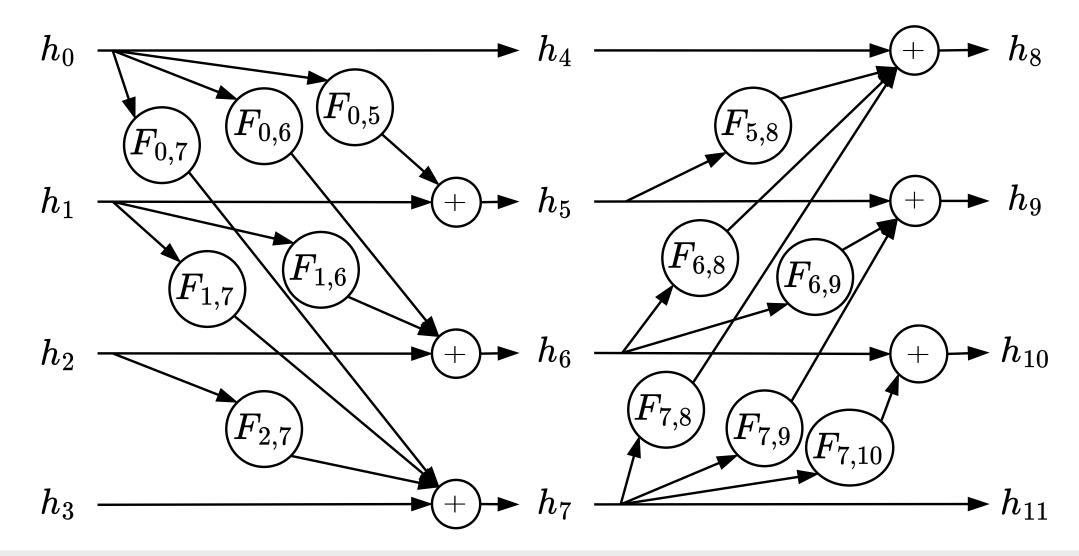
RevResBlock -> RevSilo

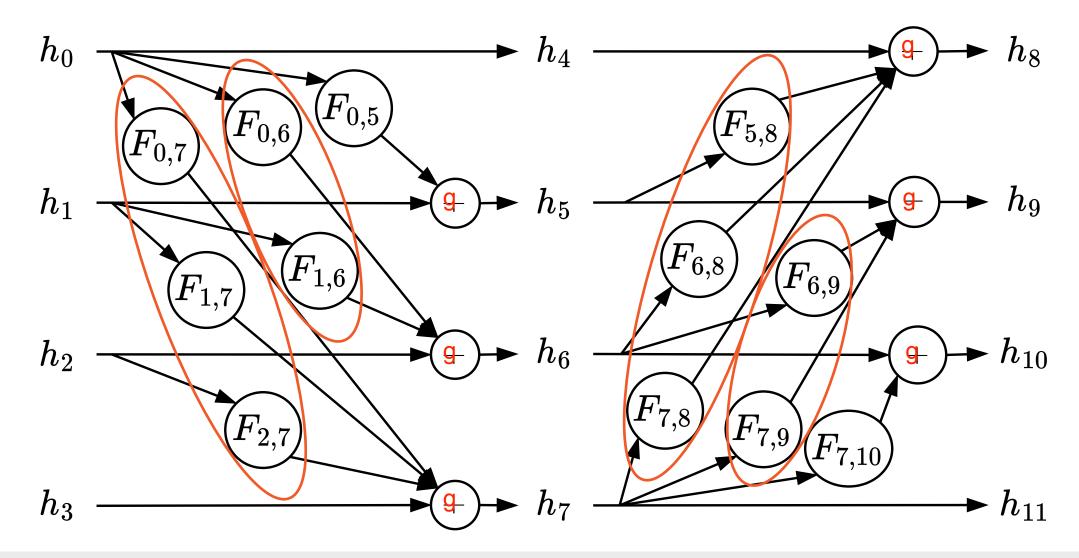




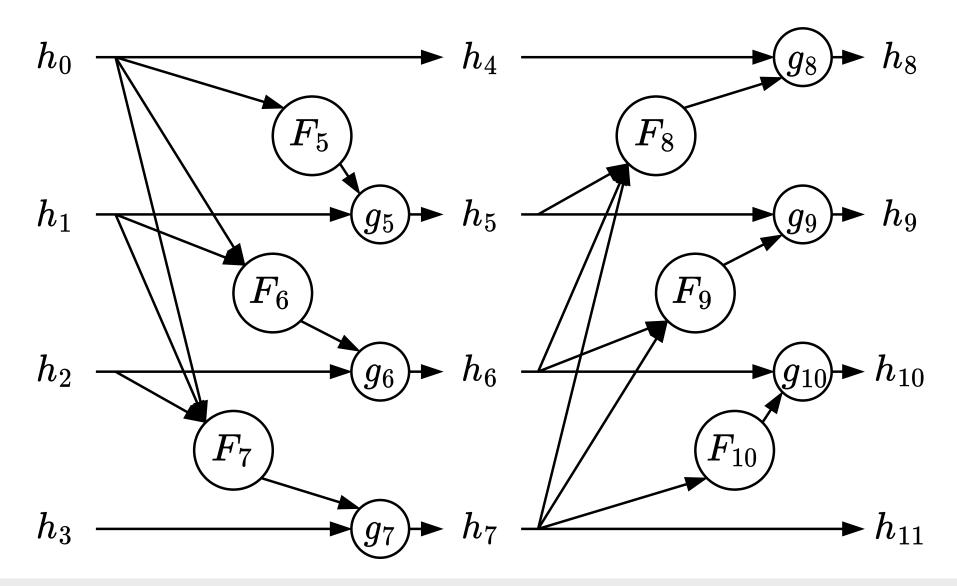




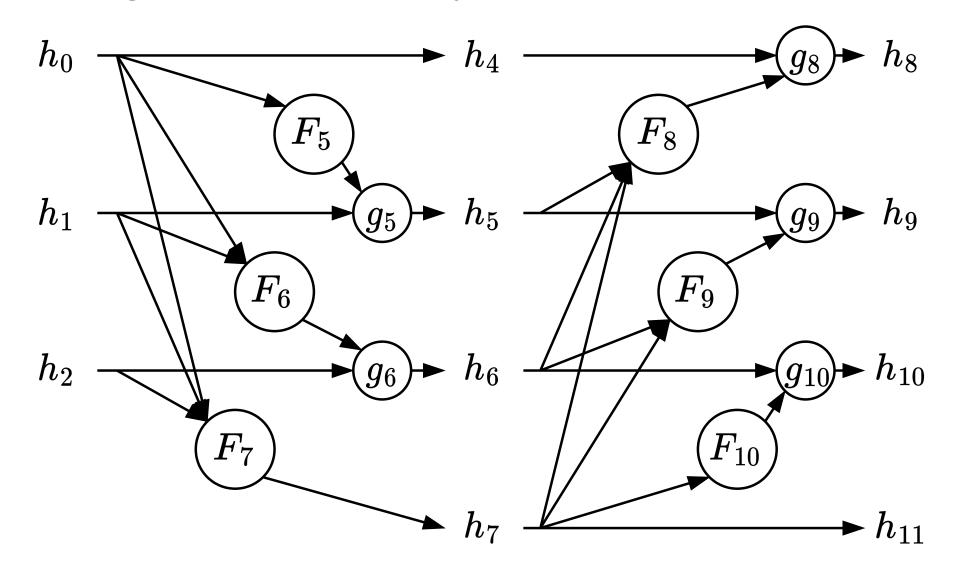




RevSilo

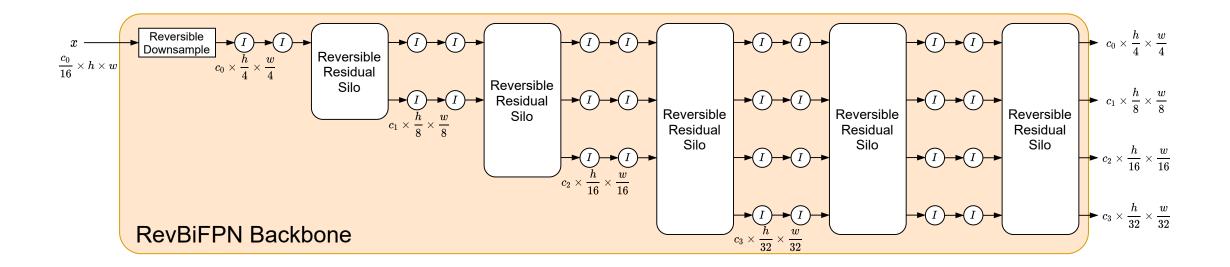


Expanding the Feature Pyramid

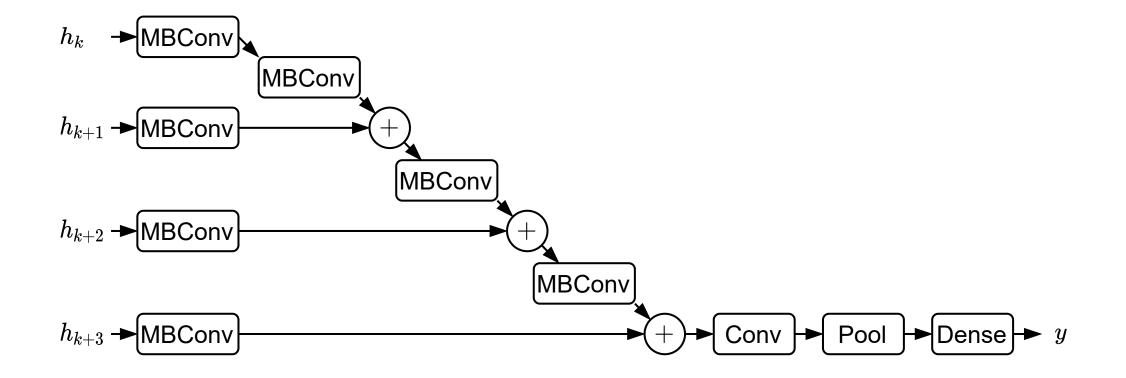


Using the RevSilo we built RevBiFPN, a fully reversible bidirectional multi-scale feature fusion pyramid network

- *I* are reversible residual blocks from Gomez et al. (2017)
- High level network design is similar to HRNet, but uses the MBConv block and invertible modules



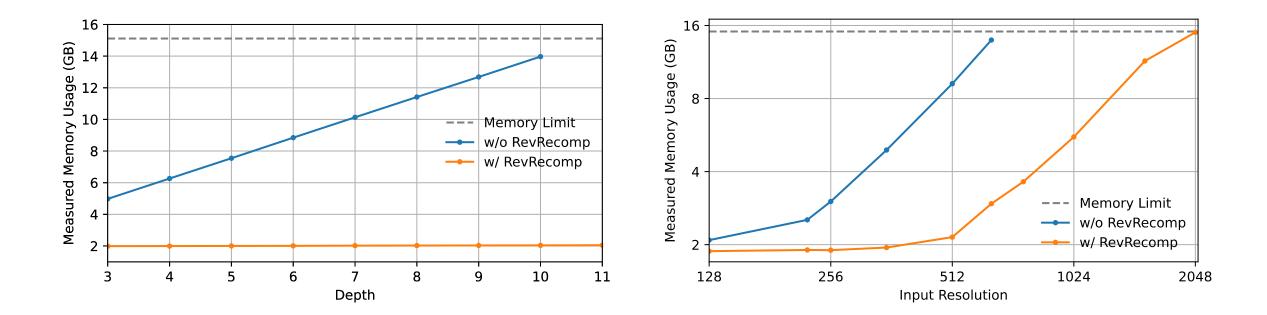
Classification Head



Memory With and Without Reversible Recomputation

O(*nchwd*) **vs** *O*(*nchw*)

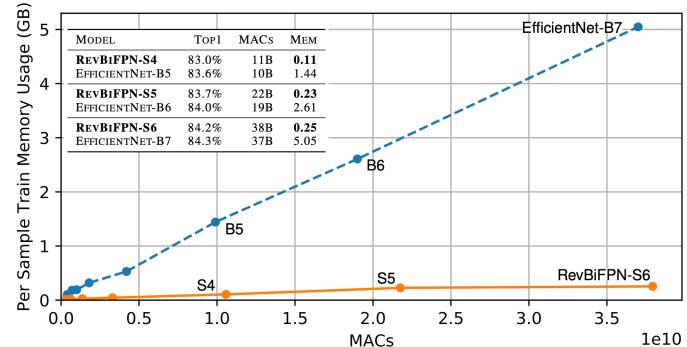
When scaling other dimensions, the memory complexity is still the same, but the memory has a substantial offset allowing for larger networks.



ImageNet

RevBiFPN can be scaled to have similar performance as EfficientNet but uses far less memory

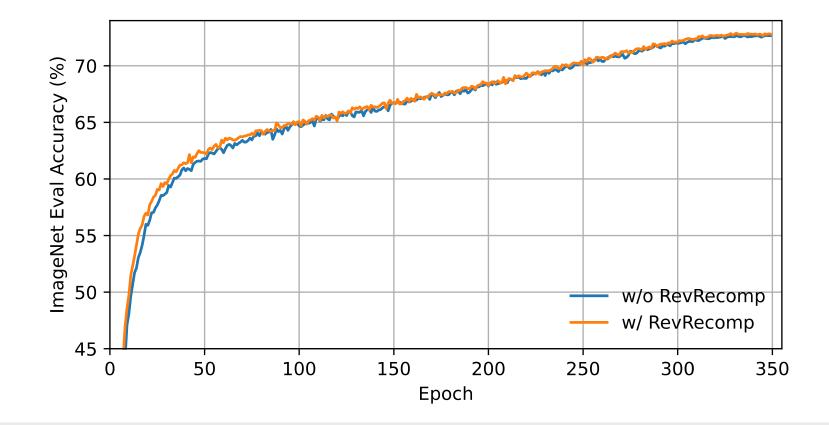
				_
MODEL	PARAMS	MACs	Top1	_
REVBIFPN-S0	3.42M	0.31B	72.8%	-
RevBiFPN-S1	5.11M	0.62B	75.9%	
REVBIFPN-S2	10.6M	1.37B	79.0%	
RevBiFPN-S3	19.6M	3.33B	81.1%	
RevBiFPN-S4	48.7M	10.6B	83.0%	
RevBiFPN-S5	82.0M	21.8B	83.7%	
RevBiFPN-S6	142.3M	38.1B	84.2%	
				-



Training With and Without Reversible Recomputation

Training with reversible recomputation is nearly indistinguishable from regular training

No approximations -> little reconstruction error



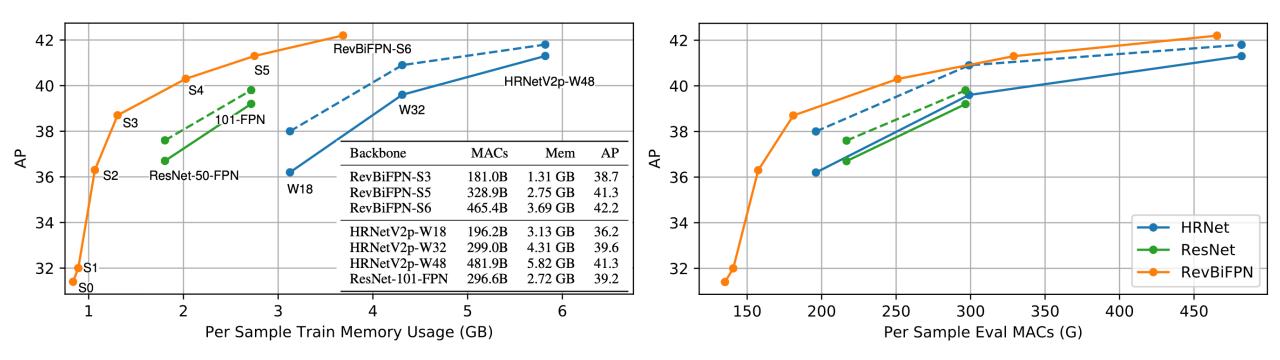
Computational Overhead of Recomputation

Theoretical Slowdown: 33%

Model	SLOWDOWN
REVBIFPN-S0	25.02%
RevBiFPN-S2	21.96%
RevBiFPN-S4	15.73%
RevBiFPN-S6	12.73%

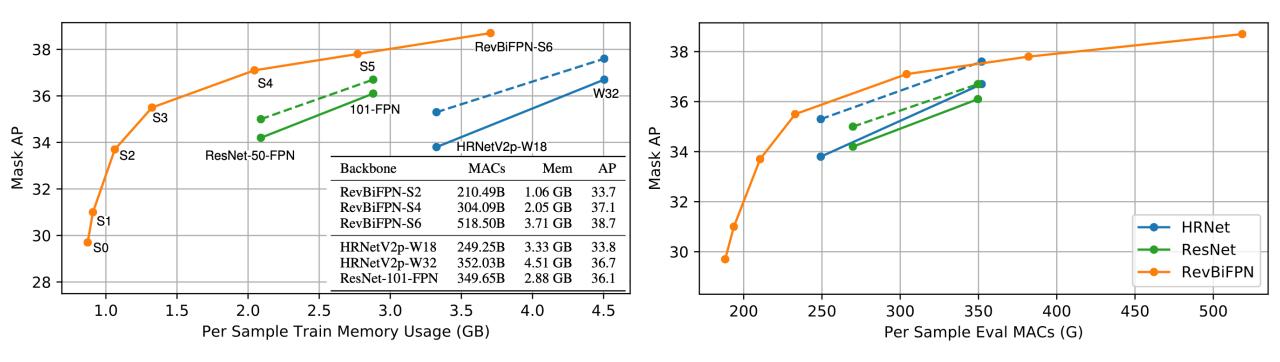
MS COCO Detection

Head: Faster R-CNN (from MMDetection)



MS COCO Instance Segmentation

Head: Mask R-CNN (from MMSegmentation)



Future Work

- Dig into RevBiFPN's sensitivity to
 - Reconstruction error
 - Sparsity
 - Different Normalization Methods
 - Gradient delay (ASGD)
- Tune network / building block for different compute platforms
 - Improve network design using NAS
- Apply to 3D tasks and other memory intensive tasks
- Apply to flow based generation
 - RevBiFPN can iteratively fuse high and low resolution feature maps to promote local and global coherence in flow based generation

