
Tutel:
Adaptive Mixture-of-Experts

at Scale

Changho Hwang, Wei Cui, Yifan Xiong,

Ziyue Yang, Ze Liu, Han Hu, Zilong Wang,

Rafael Salas, Jithin Jose, Prabhat Ram, Joe

Chau, Peng Cheng, Fan Yang, Mao Yang,

Yongqiang Xiong

Microsoft / Microsoft Research

Open Source: https://github.com/microsoft/tutel

https://github.com/microsoft/tutel

Mixture-of-Experts (MoE)

• MoE based Model:

“Key to unlock Exa-scale Training”

data ↑ param ↑ device ↑ → local mem (-) net (-)

Multi-head

Attention

FFN

Multi-head

Attention

MoE

FFN FFN FFN

alltoall

gate

alltoall

Transformer (Dense)

Total Parameters:

|FFN|

• Dense Model:

Scale Solutions: ZeRO / Model Parallel / ..

data ↑ param ↑ device ↑ → local mem ↑ net ↑

“sub-linear” scaling

Transformer (MoE)

→ |FFN| × expert_count

Mixture-of-Experts (MoE)

① Decide Expert ID:

Fgating(inputx) → expert_id

② Train With Target Expert ID:

output = FFNexpert_id(inputx)
Internal MoE layer Data Flow

Imbalance States by Training Iterations

SwinV2-MoE tiny (left) and base (right)

① gating ② experts

Fgating is trainable, so:

the dispatch from “Inputs → Experts”:

• dynamically changed

• potentially imbalanced

Static Parallelism for Dynamic MoE

Static parallelism cannot satisfy

all efficient preferences from

dynamic workload

Parallelism Efficiency on Different Capacities

(P1: Data Parallel P2: Model Parallel)

Hard to Change Parallelism: Normal parallel

solutions are not compatible to switch.

• Overhead of parameter migration

• Different input layout, gradient update, etc..

Existing data ↔ model parallelism for MoE
Tensor parallelism is not the only factor deserved to change in dynamic workload.

Tutel Design

- Adaptive MoE at Scale

Switchable Parallelism

? ?One MoE → Multi-path Parallelism:

P1(+) P2(-) ↔ P1(-) P2(+)

implement

Base Partition Framework

Eliminate sub-optimal options →

• simplified set = { ① , ⑦ }

no-cost

No location collisions:

• Parameter Placement: evenly sharded

• Input Layout: the same as DDP

• Expert Gradients: exclude all_reduce

Tensor Parallel Options

Switchable Parallelism

AB

x

y

z

w
(x, y, z, w)

A × (x + y) + B ×(z + w)

Path 1: Data parallelism

Switchable Parallelism

AB AABB

x

y

z

w
(z, w)

(x, y)

A

B

A

B

B×(z + w)

A×(x + y)

B×(z + w)

A×(x + y)

A×(x + y) + B × (z + w)

Path 2: Expert + Data + Model parallelism

Evaluation of Switchable Parallelism

 Multiple Parallelism Throughput on Different Capacity States

64 GPUs (A100) for 16 MoE Experts

(Larger Capacity Factor Implies Stronger Imbalance)

Capacity factor is monotonic decreasing with r.

Adaptive Pipelining

Concurrent Overlap between network communication

and processor computation in dynamic workloads

with proper granularities.

“MoE graph → multiple subgraph”

Example of 2-expert pipelining with degree=2

Example of 2-expert pipelining with degree=3

different colors are independent

A2A

Input Dispatch

(Nvlink/InfiniBand)

Expert FFN

(Processor)

Output Combine

(Nvlink/InfiniBand)

A2A

A2A A2A

A2A

A2A

T ⊗ E

T ⊗ E

T ⊗ E

t0

t1

t2

t3

t4

Evaluation of Adaptive Pipelining

 Efficiency of Pipeline Degree on Different Capacity States

16-256 GPUs (A100) with 2 MoE Experts / GPU

(Larger Capacity Factor Implies Less Balanced)

Optimal Degree Selection is more random, however:

① Small Pipeline degree: Not take advantage of overlap.

② Large Pipeline degree: Overhead of small-slice execution.

Training Time:

for step_id, input_xs, .. in data_loader(..):
cap_factor, .. = tutel_moe.top_k_routing(input_xs, 1)
tutel_moe.forward(.., adaptive_r=dict[cap_factor].r,

a2a_ffn_overlap_degree=dict[cap_factor].o)

Combined Example to Select Optimal Parallel Options:

dict 1.00 1.01 … 4.10 … 8.00

value r=2, o=1 r=2, o=1 … r=2, o=2 … r=1, o=4

3 Extra Adaptive Mechanisms or Optimizations

① Dynamic sparsity of Top-K & capacity controls (all “switchable”);

② Adaptive All-to-All algo. for different scales (Linear/2DH + Flexible);

③ Deeply fused ops for “Fast Encode” and “Fast Decode” (90%↓ mem);

① Different Modes to Adapt Capacity Load

③ Fused & Optimized Fast Encode and Decode
② Linear All2All (Left) for Small Scale 2DH All2All (Right) for Large Scale

Evaluation of Tutel MoE on 2,048 GPUs (A100)

❶ Baseline: Fairseq MoE / Deepspeed MoE

❷ Tutel optimization: Fast Encode & Decode

❸ above + 2DH All-to-All

❹ above + Flexible All-to-All

❺ above + adaptive parallelism

❻ Tutel computation time per device

Single MoE layer Breakdown

Tutel MoE Layer delivers 4.96x and 5.75x speedup on 16 A100 and 2,048 A100, respectively

Summary

1 2 3

The first MoE solution to
design online parallelism
modification, switch bet-
ween different algorithm
options and adapt across
dynamic MoE workloads.

Tutel [1] tackles non-
scalable MoE, and
achieves up to 5.75x
speedup on 2,048
A100 in Azure.

Tutel provides a gain with
reproducible guarantee for
different states of capacity.
No predictors, no penalties
and no math-inequivalence is
involved, all of which may
result in more harm against
static. (throughput. & acc.)

Tutel [1]: https://github.com/microsoft/tutel

Adaptive At Scale
Deterministic

Gains

https://github.com/microsoft/tutel

Thank you

	Slide 1: Tutel: Adaptive Mixture-of-Experts at Scale
	Slide 2: Mixture-of-Experts (MoE)
	Slide 3: Mixture-of-Experts (MoE)
	Slide 4: Static Parallelism for Dynamic MoE
	Slide 5: Tutel Design
	Slide 6: Switchable Parallelism
	Slide 7: Switchable Parallelism
	Slide 8: Switchable Parallelism
	Slide 9: Evaluation of Switchable Parallelism
	Slide 10: Adaptive Pipelining
	Slide 11: Evaluation of Adaptive Pipelining
	Slide 12: 3 Extra Adaptive Mechanisms or Optimizations
	Slide 13: Evaluation of Tutel MoE on 2,048 GPUs (A100)
	Slide 14: Summary
	Slide 15: Thank you

