Open Source: https://github.com/microsoft/tutel

Tutel: Adaptive Mixture-of-Experts at Scale

Changho Hwang, **Wei Cui**, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, Yongqiang Xiong

Microsoft / Microsoft Research

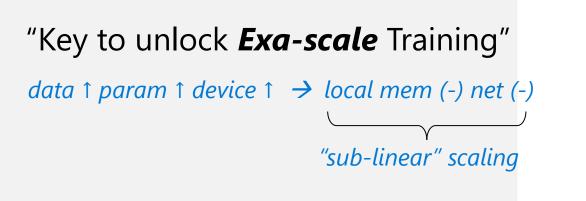
Mixture-of-Experts (MoE)

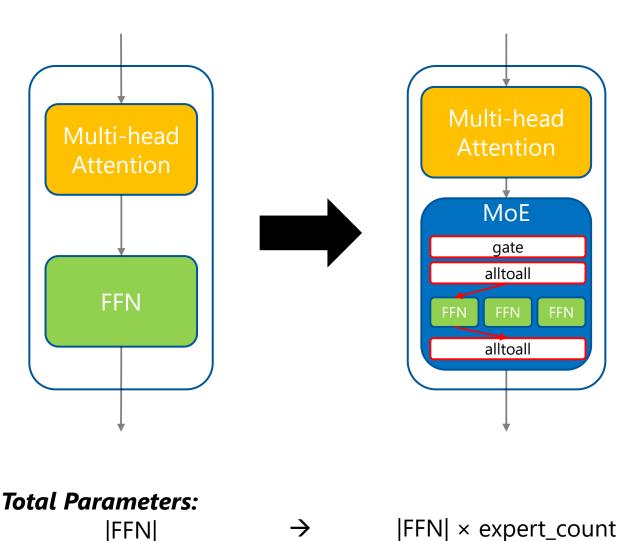
Dense Model:

Scale Solutions: ZeRO / Model Parallel / ..

data \uparrow param \uparrow device $\uparrow \rightarrow$ local mem \uparrow net \uparrow

• MoE based Model:





Transformer (Dense)

Transformer (MoE)

Mixture-of-Experts (MoE)

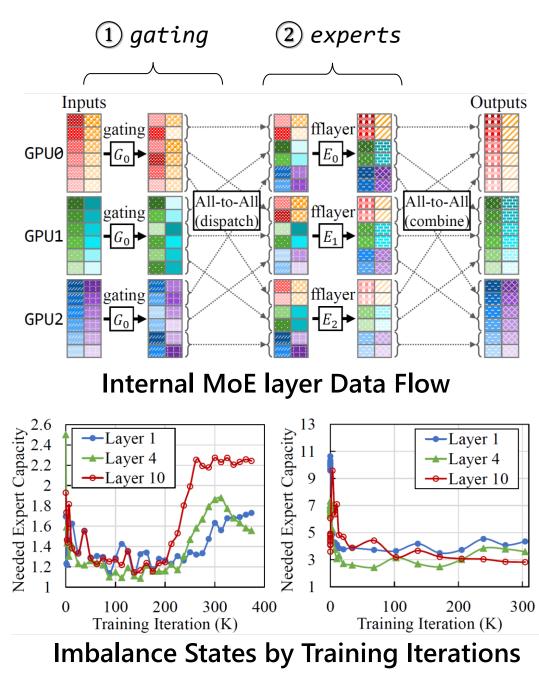
1 Decide Expert ID:

 $F_{gating}(input_x) \rightarrow expert_id$

② Train With Target Expert ID: output = FFN_{expert_id}(input_x)

F_{gating} is trainable, so: the dispatch from "Inputs → Experts":

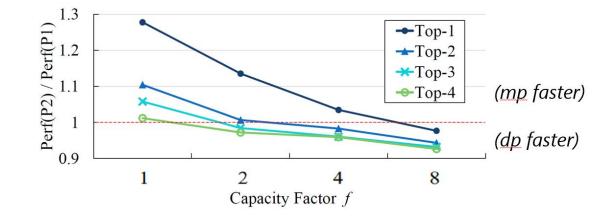
- dynamically changed
- potentially imbalanced



SwinV2-MoE tiny (left) and base (right)

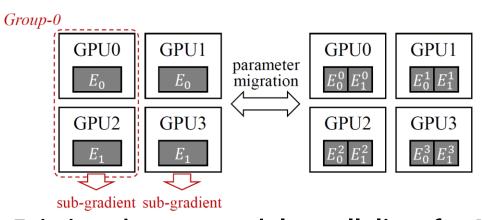
Static Parallelism for Dynamic MoE

Static parallelism cannot satisfy all efficient preferences from *dynamic* workload



Parallelism Efficiency on Different Capacities

(P1: Data Parallel P2: Model Parallel)



Existing data ↔ model parallelism for MoE

Hard to Change Parallelism: Normal parallel solutions are not compatible to switch.

- Overhead of **parameter** migration
- Different **input** layout, **gradient** update, etc..

Tensor parallelism is not the only factor deserved to change in dynamic workload.

Tutel Design

- Adaptive MoE at Scale

Switchable Parallelism

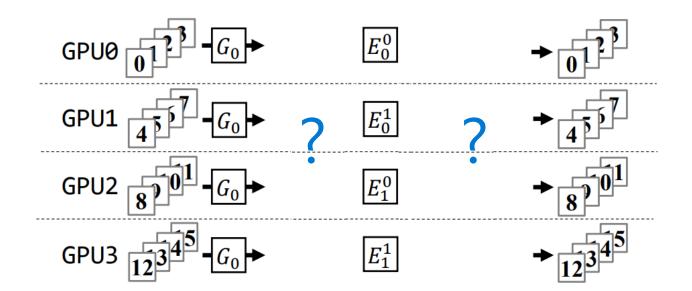
One MoE \rightarrow Multi-path Parallelism:

 $P_1(+) \quad P_2(-) \leftrightarrow P_1(-) \quad P_2(+)$ no-cost

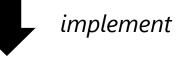
- No location collisions:
- Parameter Placement: evenly sharded
- Input Layout: the same as DDP
- **Expert Gradients**: exclude all_reduce

Eliminate sub-optimal options \rightarrow

simplified set = { (1) , (7) }



Base Partition Framework

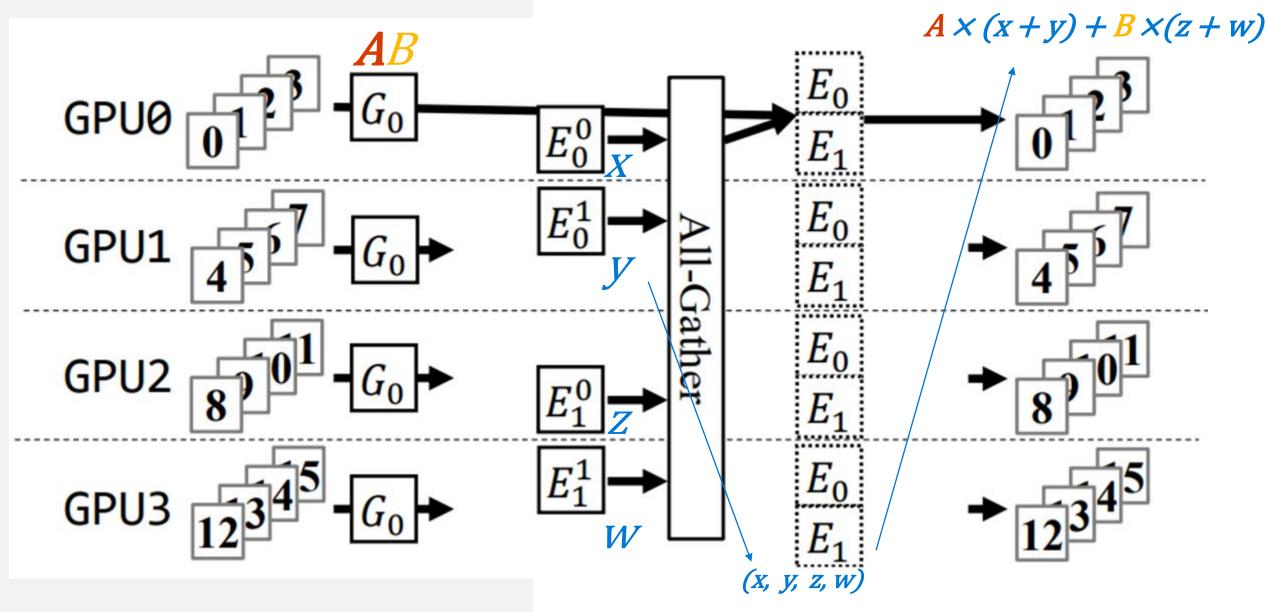


Parallelism Method	Ilelism Method Communication Complexity		Comment	
① DP	$\mathcal{O}(P)$	-	Possibly optimal	
(2) MP	$\mathcal{O}(C_g \cdot W)$	-	No better than (6)	
3 EP	$\mathcal{O}(C_g)$	$E/W \ge 1$	No better than (6)	
(4) DP+MP	$\mathcal{O}(C_g \cdot r + P/r)$	$1 \leq r \leq W$	No better than $(\overline{7})$ for any r	
(5) EP+DP	$\mathcal{O}(C_g + P/E)$	-	A special case of $r = 1$ in \bigcirc	
6 EP+MP	$\mathcal{O}(C_a \cdot max\{1, W/E\})$	-	A special case of $r = W/E$ in (7)	
⑦ EP+DP+MP	$ \begin{array}{l} \mathcal{O}(C_g \cdot W/E) \ - \text{if } r \geq W/E \\ \mathcal{O}(C_g \cdot r + P/E/r) \ - \text{if } 1 \leq r < W/E \end{array} $	-	Possibly optimal	

Tensor Parallel Options

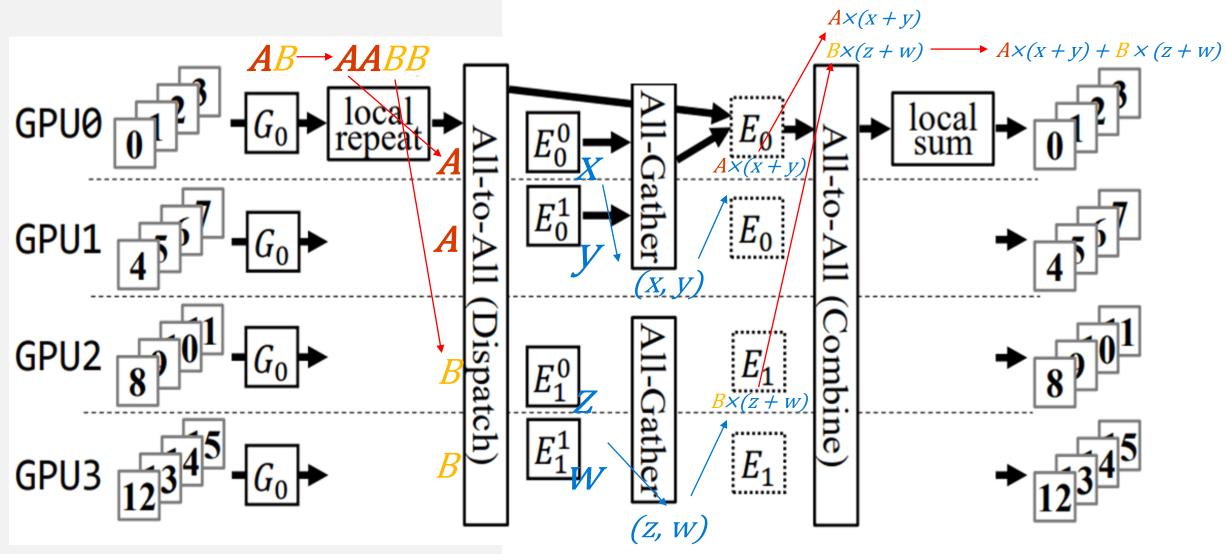
Switchable Parallelism

Path 1: Data parallelism



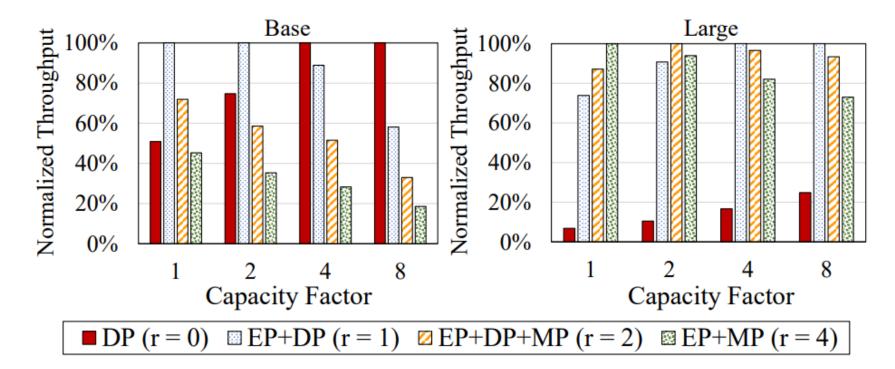
Switchable Parallelism

Path 2: <u>Expert + Data + Model parallelism</u>



Evaluation of Switchable Parallelism

Multiple Parallelism Throughput on Different Capacity States



64 GPUs (A100) for 16 MoE Experts

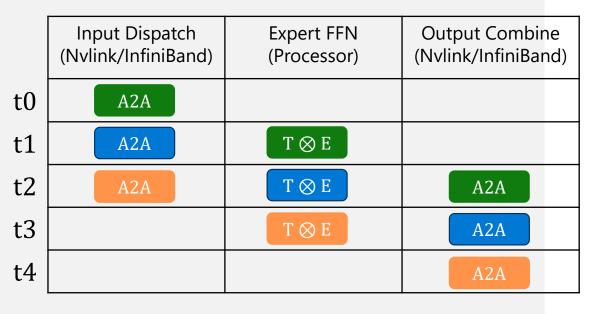
(Larger Capacity Factor Implies Stronger Imbalance)

Capacity factor is **monotonic decreasing** with r.

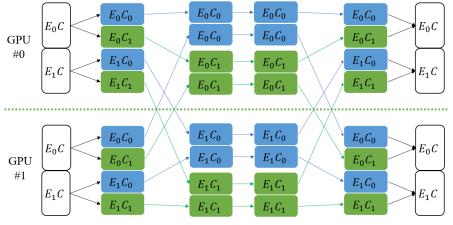
Adaptive Pipelining

Concurrent Overlap between <u>network communication</u> and <u>processor computation</u> in dynamic workloads with proper granularities.

"MoE graph \rightarrow multiple subgraph"



 $(E, \Delta C, M) \quad 2\mathbf{x}\left(E, \frac{\Delta C}{2}, M\right) \quad 2\mathbf{x}\left(\Delta E, \frac{C}{2}, M\right) \quad 2\mathbf{x}\left(\Delta E, \frac{C}{2}, M\right) \quad 2\mathbf{x}\left(E, \frac{\Delta C}{2}, M\right) \quad (E, \Delta C, M)$

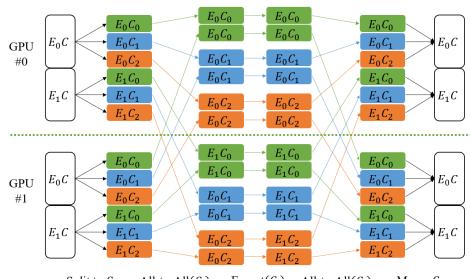


Split to C_i All-to-All (C_i) Expert (C_i) All-to-All (C_i) Merge C_i

Example of 2-expert pipelining with degree=2

 $(E, C_g, M) \quad 3\mathbf{x}\left(E, \frac{C_g}{3}, M\right) \quad 3\mathbf{x}\left(E_g, \frac{C}{3}, M\right) \quad 3\mathbf{x}\left(E_g, \frac{C}{3}, M\right) \quad 3\mathbf{x}\left(E, \frac{C_g}{3}, M\right) \quad (E, C_g, M)$

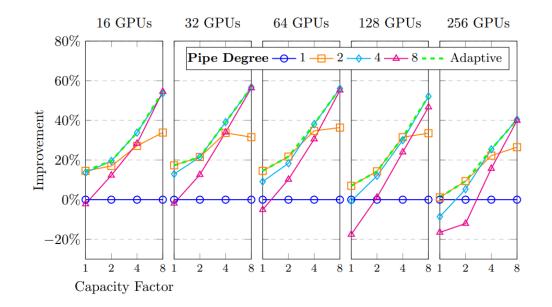
different colors are independent



Split to C_i All-to-All(C_i) Expert(C_i) All-to-All(C_i) Merge C_i Example of 2-expert pipelining with degree=3

Evaluation of Adaptive Pipelining

Efficiency of Pipeline Degree on Different Capacity States



16-256 GPUs (A100) with 2 MoE Experts / GPU (Larger Capacity Factor Implies Less Balanced)

Optimal Degree Selection is more random, however:

① *Small Pipeline degree*: Not take advantage of overlap.

(2) Large Pipeline degree: Overhead of small-slice execution.

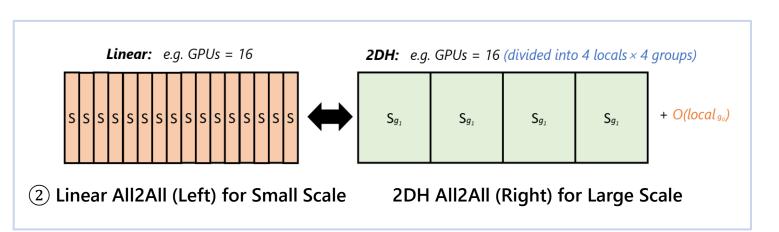
Combined Example to Select Optimal Parallel Options:

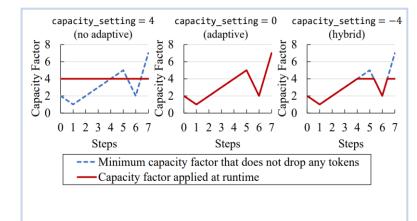
dict	1.00	1.01	•••	4.10	•••	8.00
value	r=2, o=1	r=2, o=1	•••	r=2, o=2	•••	r=1, o=4

Training Time:

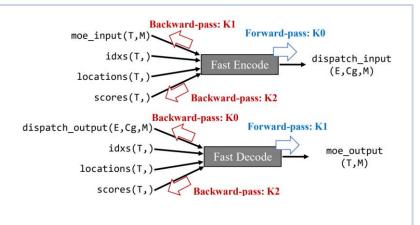
3 Extra Adaptive Mechanisms or Optimizations

- 1) Dynamic sparsity of Top-K & capacity controls (all "switchable");
- 2 Adaptive All-to-All algo. for different scales (Linear/2DH + Flexible);
- ③ Deeply fused ops for "Fast Encode" and "Fast Decode" (90%↓ mem);





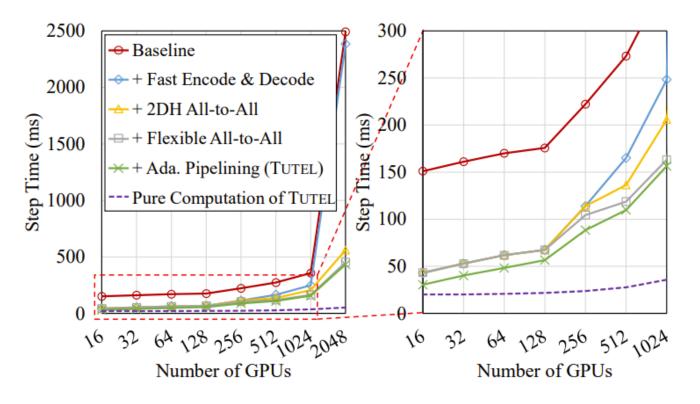
1) Different Modes to Adapt Capacity Load



③ Fused & Optimized Fast Encode and Decode

Evaluation of Tutel MoE on 2,048 GPUs (A100)

- **1** Baseline: Fairseq MoE / Deepspeed MoE
- 2 Tutel optimization: Fast Encode & Decode
- 3 above + 2DH All-to-All
- 4 above + Flexible All-to-All
- **5** above + adaptive parallelism
- 6 Tutel computation time per device



Single MoE layer Breakdown

Tutel MoE Layer delivers 4.96x and 5.75x speedup on 16 A100 and 2,048 A100, respectively

Summary

1 Adaptive

The first MoE solution to design online parallelism modification, switch between different algorithm options and adapt across dynamic MoE workloads.

Tutel^[1] tackles nonscalable MoE, and achieves up to 5.75x speedup on 2,048 A100 in Azure. Tutel provides a gain with reproducible guarantee for different states of capacity. No predictors, no penalties and no math-inequivalence is involved, all of which may result in more harm against static. (throughput. & acc.)

Deterministic

Gains

Thank you