

Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds

<u>Ke Hong</u>^{*1}, Zhongming Yu^{*2}, Guohao Dai³, Xinhao Yang¹, Yaoxiu Lian³, Zehao Liu¹, Ningyi Xu³, Yuhan Dong¹, Yu Wang¹ Tsinghua University¹, UC San Diego² and Shanghai Jiao Tong University³ *Equal contribution Correspondence to: Yu Wang <<u>yu-wang@tsinghua.edu.cn</u>>

Quick View

Methodologies:

- Coded-CSR format mapping storage
- Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
- Heuristic adaptive dataflow selection
- ➢Compared to SOTA Designs:
 - 1.23x/1.64x end-to-end speedup on average
 - 1.76x/1.81x sparse convolution speedup on average

- Backgrounds and Motivations
- Design Overview
- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristic adaptive dataflow selection
- >Experiments
- dgSPARSE: Fast and Efficient Processing with Diverse Sparsity

Backgrounds and Motivations

- Design Overview
- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristic adaptive dataflow selection
- > Experiments
- >dgSPARSE: Fast and Efficient Processing with Diverse Sparsity

Point Cloud Neural Networks

Point Cloud Neural Networks

Sparse Convolution Neural Networks

MM: <u>Matrix Multiplication</u>

Sparse Input Only 0.01%-1% density

Irregular Access Gather valid features

Dense Computing

MMs between features and weights

Irregular Access Scatter partial sums

Implementation Dataflows

Backgrounds and Motivations

Design Overview

- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristics adaptive dataflow selection

> Experiments

>dgSPARSE: Fast and Efficient Processing with Various Sparsity

Design Overview

Backgrounds and MotivationsDesign Overview

- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristics adaptive dataflow selection

> Experiments

>dgSPARSE: Fast and Efficient Processing with Diverse Sparsity

≻Observation:

• Redundant loadings of invalid mappings

- 1) Load input feature (P)
- 2) Traverse mappings of all weights (W)
- 3) If mapping is valid, write feature to the buffer

Redundant mapping loadings: Up to 79.97% mappings are empty

≻Observation:

- Redundant loadings of invalid mappings
- Column array and value array can be further compressed
 - Column element < K (kernel size), value element < N (number of input non-zeros)

Only valid mappings are stored

≻Solution:

- Sparse format for mapping storage
- Column array and value array are further coded into one array
 - Encoder function: c = a + Mb, $M \ge K$.

about 1 (int32) loading for a valid mapping

≻Observation:

• Sequentially computing each FGMS leads to under-utilization

➢Observation:

- Sequentially computing each FGMS leads to under-utilization
- Segmented FGMSs can be paralleled through hardware mapping strategy
 - Batched FGMS scheme still leads to computing redundancy and under-utilization

(a) Separate FGMS with parallelism under-utilization

(b) Batched FGMS with redundant padding

≻Solution:

 Segmented FGMSs are fused with a sparse indicator, which indicates the mapping table address from each FGMS

(c) Indicator-assisted segmented FGMS fusion

➢Observation:

• Static dataflow brings performance loss against input dynamics

➤Observation:

- Static dataflow brings performance loss against input dynamics
- Different mapping patterns are used in different dataflows, which may lead extra mapping searches upon dataflow switches
 - Mapping reuse can be exploited based on network structure

≻Solution:

- Layer-wise dataflow selection to exploit network performance improvement
- Group-based dataflow selection to avoid extra mapping searches

- Backgrounds and Motivations
- Design Overview
- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristic adaptive dataflow selection

➢ Experiments

>dgSPARSE: Fast and Efficient Processing with Diverse Sparsity

➤Baselines:

- TorchSparse v2.0.0 [https://github.com/mit-han-lab/torchsparse]
- SpConv v2.2.3 [<u>https://github.com/traveller59/spconv</u>]

➤Models:

- SparseResNet [21 sparse convolutional layers]
- MinkUNet [42 sparse convolutional layers]

Datasets:

- ModelNet40 [classification]
- KITTI [detection]
- S3DIS [segmentation]

➢Platforms

- Dataset
 Size
 Density

 ModelNet40
 ~25k
 1.59%

 KITTI
 ~40k
 0.04%

 S3DIS
 ~10k
 6.92%
- A 10-core 20-thread Intel Xeon Silver 4210 CPU running @ 2.2GHz
- An NVIDIA RTX 3090 GPU and an NVIDIA RTX 2080 GPU with CUDA 11.1.

Experiment: End-to-End

End-to-end: 1.64x, 1.23x speedup over TorchSparse, SpConv on average Sparse convolution: 1.81x, 1.76x speedup over TorchSparse, SpConv on average

Experiment: Ablation & Additional Studies

Key Challenges & Contributions

*FGMS: <u>F</u>used <u>G</u>ather-<u>M</u>M-<u>S</u>catter

X Redundant memory access caused by mapping storage

✓ Coded-CSR mapping storage

X Computation under-utilization caused by sequential FGMSs

✓ Indicator-assisted FGMS fusion scheme

X Input dynamics performance loss caused by static dataflow

 Heuristic adaptive dataflow selection

- Backgrounds and Motivations
- Design Overview
- ➢Solutions
 - Coded-CSR format mapping storage
 - Indicator-assisted FGMS (<u>Fused Gather-MM-Scatter</u>) fusion
 - Heuristic adaptive dataflow selection
- > Experiments
- dgSPARSE: Fast and Efficient Processing with Diverse Sparsity

≻dgSPARSE papers

- [MLSys 23] Yu, Z., Dai, G., Yang, S., Zhang, G., Zhang, H., Zhu, F., Yang, J., Zhao, J. & Wang, Y. HyperGef: A Framework Enabling Efficient Fusion for Hypergraph Neural Network on GPUs. To appear in Sixth Conference on Machine Learning and Systems (MLSys), 2023.
- [MLSys 23] Hong, K., Yu, Z., Dai, G., Yang, X., Lian, Y., Liu, Z., Xu, N., Dong, Y., & Wang, Y. Exploiting Hardware Utilization and Adaptive Dataflow for Efficient Sparse Convolution in 3D Point Clouds. To appear in Sixth Conference on Machine Learning and Systems (MLSys), 2023.
- [DAC 22] Dai, G., Huang, G., Yang, S., Yu, Z., Zhang, H., Ding, Y., Xie, Y., Yang, H., Wang, Y. Heuristic Adaptability to Input Dynamics for Sparse Matrix-Matrix Multiplication on GPUs. (Best Paper nomination)
- [MLSys 22] Zhang, H., Yu, Z., Dai, G., Huang, G., Ding, Y., Xie, Y., & Wang, Y. Understanding GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective. arXiv preprint arXiv:2110.09524.
- [ACM-SRC 21] Huang, G., Dai, G., Ding, Y., Wang, Y., Xie, Y. Efficient Sparse Matrix Kernels based on Adaptive Workload-Balancing and Parallel-Reduction. In ACM Student Research Competition (ACM-SRC), 2021.
- [ICCD 21] Yu, Z., Dai, G., Huang, G., Wang, Y., & Yang, H. Exploiting Online Locality and Reduction Parallelism for Sampled Dense Matrix Multiplication on GPUs. To appear in International Conference on Computer Design (ICCD), 2021.
- [MICRO-SRC 20] Huang, G., Dai, G., Wang, Y., & Yang, H. Towards Fast Graph Neural Network Training with Efficient and Framework-Compatible Sparse-Dense Matrix Multiplication. In MICRO-53 Student Research Competition (MICRO-SRC), 2020.
- [SC 20] Huang, G., Dai, G., Wang, Y., & Yang, H. GE-SpMM: General-purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Networks. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1-12, 2020.

https://dgsparse.github.io/

Thank you Q&A

Ke Hong hongk21@mails.tsinghua.edu.cn