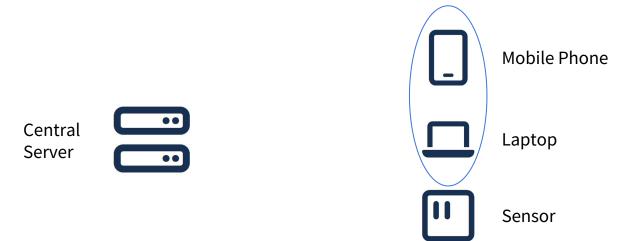
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning

Shiqi He¹, Qifan Yan¹, Feijie Wu², Lanjun Wang³, Mathias Lécuyer¹, Ivan Beschastnikh¹ ¹University of British Columbia, ²Purdue University, ³Tianjin University

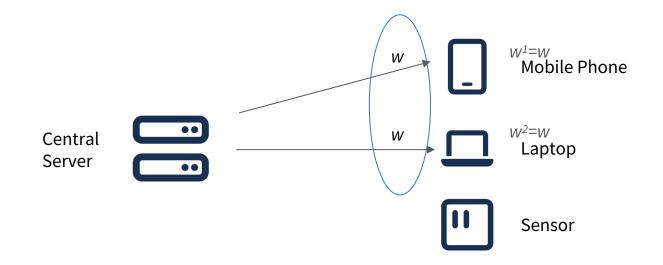
Agenda

- Background and Motivation
 - Federated learning (FL)
 - $\circ \quad \text{Masking in FL}$
- GlueFL Framework Design
 - Sticky sampling
 - Mask shifting
- Experiment Results
- Conclusion

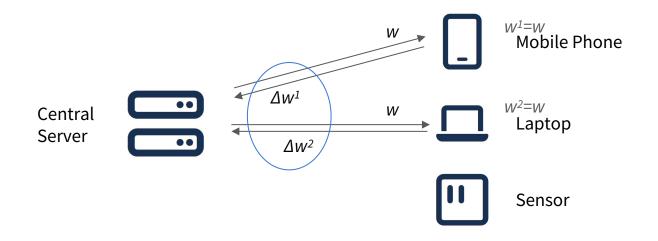
- A typical FL training involves four steps in each round
 - 1. Server selects a set of participants from a large number of edge devices (e.g., 10⁶)



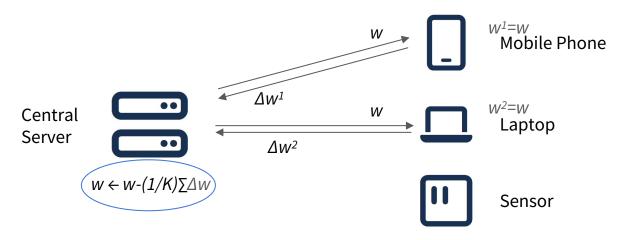
- A typical FL training involves four steps in each round
 - 1. Server selects a set of participants from a large number of edge devices (e.g., 10⁶)
 - 2. Server **broadcasts** the global model w to selected clients



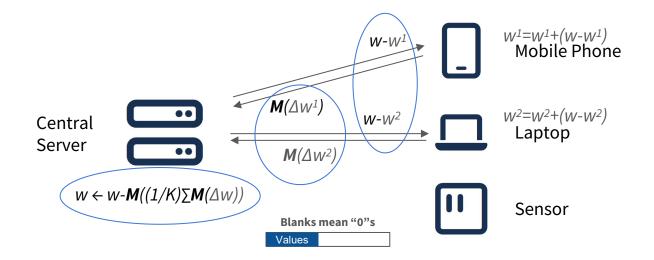
- A typical FL training involves four steps in each round
 - 1. Server selects a set of participants from a large number of edge devices (e.g., 10⁶)
 - 2. Server **broadcasts** the global model w to selected clients
 - 3. Each client **computes** local update Δw and send back to server



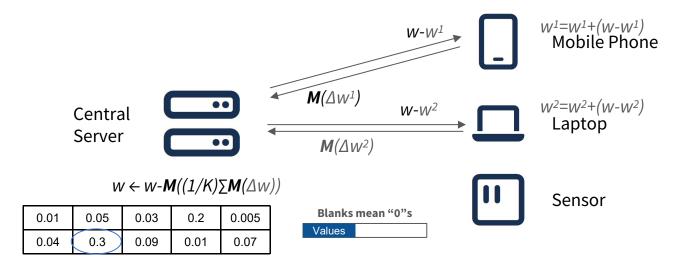
- A typical FL training involves four steps in each round
 - 1. Server selects a set of participants from a large number of edge devices (e.g., 10⁶)
 - 2. Server **broadcasts** the global model w to selected clients
 - 3. Each client **computes** local update Δw and send back to server
 - 4. Server receives updates and **update** the global model



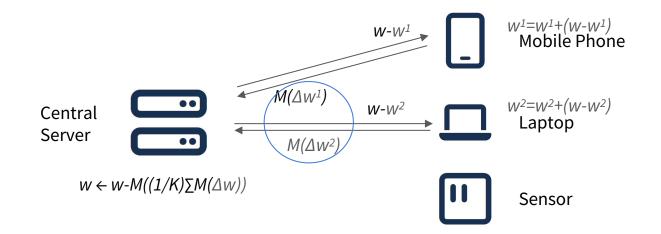
- To reduce bandwidth usage, apply a mask function *M(·)* to both local updates *Δw* and server updates (1/K) Δw
 - Masking is commonly used approch in distributed machine learning (ML)
 - Mask function $M(\cdot)$ returns the most informative part of the input (e.g., 10% largest values)



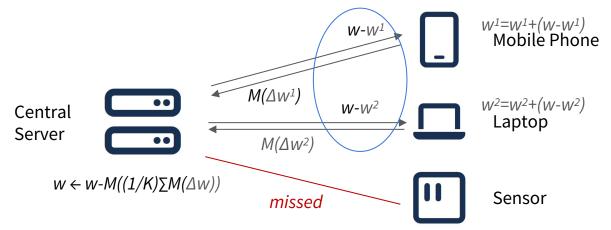
- To reduce bandwidth usage, apply a mask function *M(·)* to both local updates *Δw* and server updates (1/K) Δw
 - Masking is commonly used approch in distributed machine learning (ML)
 - Mask function $M(\cdot)$ returns the most informative part of the input (e.g., 10% largest values)



- Masking saves upstream bandwidth
 - Upstream: $\Delta w^1 \rightarrow M(\Delta w^1)$ (e.g., only need to send largest 10% update)



- Masking saves upstream bandwidth
 - Upstream: $\Delta w^1 \rightarrow M(\Delta w^1)$ (e.g., only need to send largest 10% update)
- Masking saves downstream bandwidth ?
 - Downstream: $w \rightarrow w w^1$ (how much bandwidth can we save?)
 - Due to client sampling, a client will have to download missed updates



- Downstream: $w \rightarrow w w^1$ (how much bandwidth can we save?)
- We conduct experiment to evaluate downstream bandwidth usage
 - With **10% client sample ratio and 20% mask ratio**, a sampled client needs to download 70% of the global model

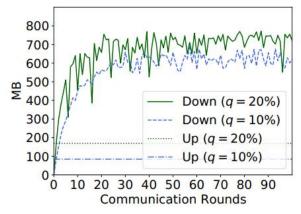


Fig 3. Downstream and upstream bandwidth usage of all clients per round

- Downstream: $w \rightarrow w w^1$ (how much bandwidth can we save?)
- We conduct experiment to evaluate downstream bandwidth usage
 - With **10% client sample ratio and 20% mask ratio**, a client has to download the entire model when it is being re-sampled after 20 rounds

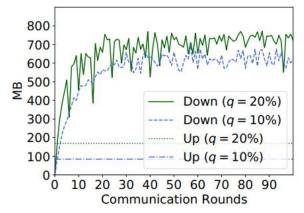


Fig 3. Downstream and upstream bandwidth usage of all clients per round

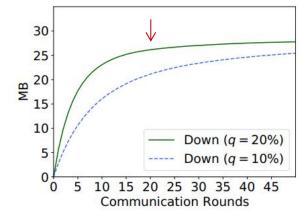
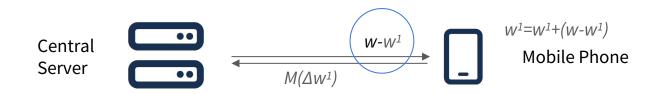
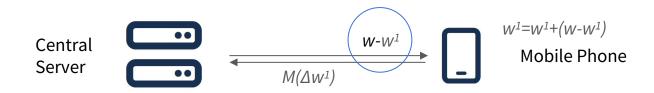


Fig 4. Model size a client must download when being re-sampled after a certain number of rounds

- Masking **fails** to save much downstream bandwidth
- Downstream bandwidth increases because *client local model states become stale*
 - A client will skip many rounds by not being sampled in cross-device FL
 - With 10% client sample ratio, a client will be re-sampled after 10 rounds in expectation. It misses the server updates of all these 10 rounds.



- Masking **fails** to save much downstream bandwidth
- Downstream bandwidth increases because *client local model states become stale*
 - A client will skip many rounds by not being sampled in cross-device FL
 - With 10% client sample ratio, a client will be re-sampled after 10 rounds in expectation. It misses the server updates of all these 10 rounds.
 - The server updates of two successive rounds have little overlap
 - With 10% mask ratio (server updates 10% global model weights in each round), a client will have to 20% of the model if it skipped 1 rounds.



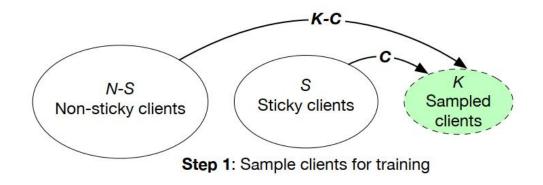
Agenda

- Background and Motivation
 - Federated learning (FL)
 - Masking in FL
- GlueFL Framework Design
 - Sticky sampling
 - Mask shifting
- Experiment Results
- Conclusion

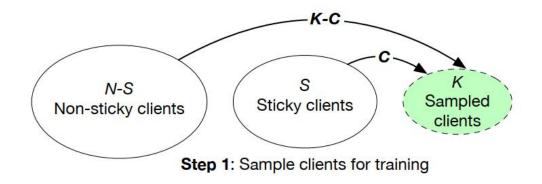
- Sticky sampling ensures that clients with an **up-to-date local state** are **more likely** to be selected
 - Up-to-date local state: clients participated training in the past few rounds
 - So they need to download less updates to synchronize the global model

- Sticky sampling ensures that clients with an **up-to-date local state** are **more likely** to be selected
 - Up-to-date local state: clients participated training in the past few rounds
 - So they need to download less updates to synchronize the global model
- We call these clients **sticky clients (recently used clients)**. We construct a sticky group with sticky clients and the rest clients form a non-sticky group

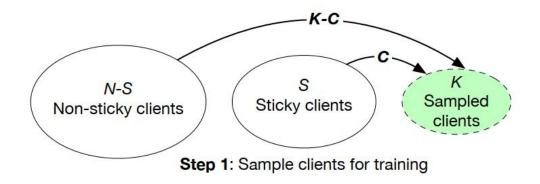
- In each round, the server samples clients from sticky clients and non-sticky clients for training
 - Sticky clients have higher probabilities to be sampled than non-sticky clients



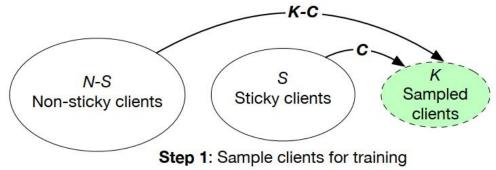
- In each round, the server samples clients from sticky clients and non-sticky clients for training
 - Sticky clients have higher probabilities to be sampled than non-sticky clients
 - Example
 - N=3000 clients, K=30 sampled clients (uniform sampling skip **100 rounds**)



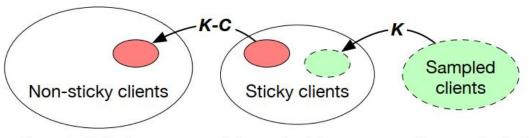
- In each round, the server samples clients from sticky clients and non-sticky clients for training
 - Sticky clients have higher probabilities to be sampled than non-sticky clients
 - Example
 - N=3000 clients, K=30 sampled clients (uniform sampling skip **100 rounds**)
 - S=120 sticky clients, C=24 sticky clients being sampled (sticky clients skip **5 rounds**)



- In each round, the server samples clients from sticky clients and non-sticky clients for training
 - Sticky clients have **higher probabilities** to be sampled than non-sticky clients
 - Example
 - N=3000 clients, K=30 sampled clients (uniform sampling skip **100 rounds**)
 - S=120 sticky clients, C=24 sticky clients being sampled (sticky clients skip **5 rounds**)
 - Non-sticky clients skips 480 rounds



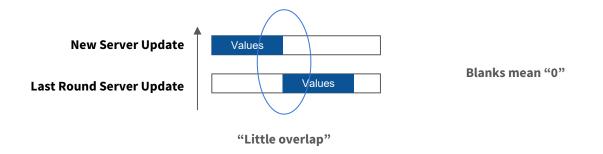
- To update sticky group (formed by sticky clients)
 - Some sticky clients will be randomly selected and marked as non-sticky clients
 - Newly sampled clients will be marked as sticky clients
- Size of the sticky group is constant



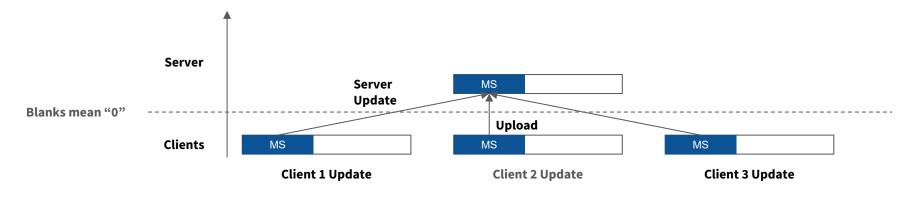
Step 2: Rebalance non-sticky and sticky groups with sampled clients

- Sticky sampling is **not** sufficient
 - With sticky masking, a sticky client may skip 5 rounds
 - With *q*=10% mask ratio (server updates 10% model in each round), the client still needs to download **50% global model** in the worst case

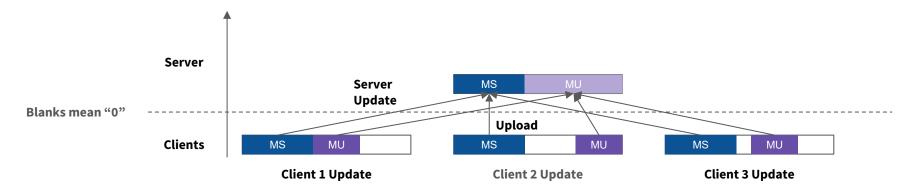
- Sticky sampling is **not** sufficient
 - With sticky masking, a sticky client may skip 5 rounds
 - With *q*=10% mask ratio (server updates 10% model in each round), the client still needs to download **50% global model** in the worst case
- In existing masking strategies, the server updates of two successive rounds have **little** overlap. Mask shifting **increases** this overlap



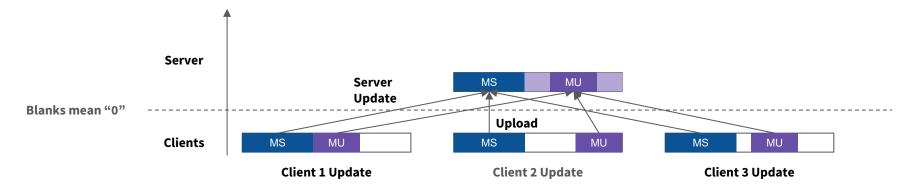
- In mask shifting, server maintains a **shared mask (MS)** (e.g., $q_{shr}=9\%$ and q=10%)
 - 1. Each client uploads update values covered by MS (9%)



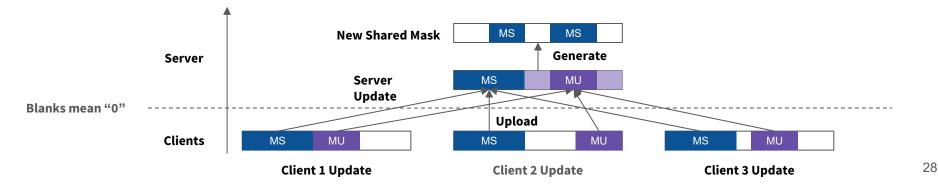
- In mask shifting, server maintains a **shared mask (MS)** (e.g., $q_{shr}=9\%$ and q=10%)
 - 1. Each client uploads update values covered by MS (9%)
 - 2. Each client uploads largest update values not covered by MS. We say these values are covered by **unique masks (MU)** (q- q_{shr} =1%)
 - Now the server has values covered by MUs from different clients



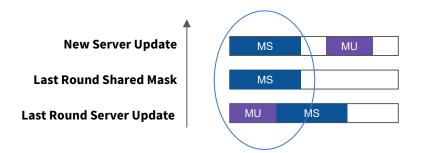
- In mask shifting, server maintains a **shared mask (MS)** (e.g., $q_{shr}=9\%$ and q=10%)
 - 1. Each client uploads update values covered by MS (9%)
 - 2. Each client uploads largest update values not covered by MS. We say these values are covered by **unique masks (MU)** (q- q_{shr} =1%)
 - 3. The server uses MS and largest values (1%) in MUs to update model (9%+1%=10%)



- In mask shifting, server maintains a **shared mask (MS)** (e.g., $q_{shr}=9\%$ and q=10%)
 - 1. Each client uploads update values covered by MS (9%)
 - 2. Each client uploads largest update values not covered by MS. We say these values are covered by **unique masks (MU)** $(q-q_{shr}=1\%)$
 - 3. The server uses MS and **largest** values (1%) in MUs to update model (9%+1%=10%)
 - 4. The server generate the new shared mask (9%) by selecting largest values (9%) in last server update



- With a 9% shared mask and 1% unique masks, the server updates of two successive rounds have at least 9% overlap
- Example
 - Suppose S=120 and C=24, a sticky client may skip 5 rounds
 - If the q=10% (server updates 10% model in each round), the client only needs to download (10% + 1% * 4) = 14% global model after 5 rounds with mask shifting



GlueFL - Other Techniques

• Shared Mask Regeneration (See Full Paper)

- If the updates are changing dramatically in some rounds, shifting the shared mask using a small unique mask will lead to a slow convergence speed
- Every *I* rounds, GlueFL regenerates the shared mask with a 0% shared mask and *q%* unique masks

• Error-Compensation (See Full Paper)

- Clients remember local compression error and add them to the next round update
- GlueFL is compatible with error compensation
- With sticky sampling, compensation vectors need to be reweighted

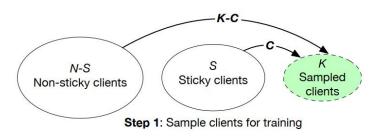
Agenda

- Background and Motivation
 - Federated learning (FL)
 - Masking in FL
- GlueFL Framework Design
 - o Sticky sampling
 - Mask shifting
- Experiment Results
- Conclusion

Experiment Results

- Three models on three public datasets
 - FEMNIST ShuffleNet, MobileNet
 - OpenImage ShuffleNet, MobileNet
 - Google Speech ResNet-34
- Three baselines: FedAvg, STC and APF
- User-defined parameters in GlueFL are set the best values (e.g., *S*, *C*)

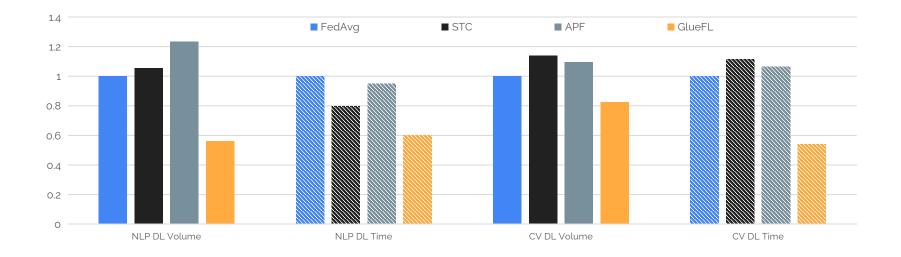
Name	N (Total number of clients)	K (Number of sampled clients)
FEMNIST	2,800	30
OpenImage	10,625	100
Google Speech	2,066	30



MS MU

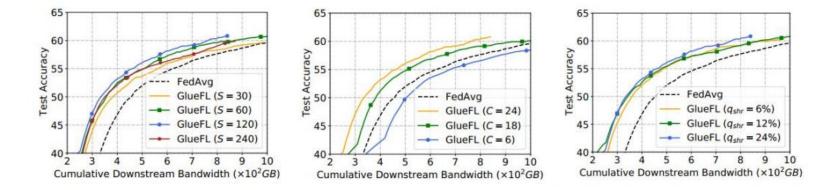
Experiment Results

• To reach the same target performance, GlueFL needs **significantly less downstream bandwidth (DL Volume) and time (DL Time)** for CV and NLP tasks on average



Experiment Results

With most hyperparameter choices (S - sticky group size, C - # sticky clients, q_{shr} - shared mask size), GlueFL outperforms FedAvg, showing its robustness



Conclusion

- Traditional masking strategies fail to save much downstream bandwidth
 - Downstream bandwidth increases because client local model states become stale
- We present an FL framework called **GlueFL** that combines masking with client sampling to reduce downstream bandwidth
 - Sticky sampling prioritize the most recently used clients
 - Mask shifting ensure consecutive central model updates share a large number of changed parameters
- We evaluate GlueFL on three public datasets. On average, GlueFL spends 29% less training time with a 27% less downstream bandwidth overhead as compared to FedAvg, STC and APF

