
GlueFL: Reconciling Client Sampling and Model 
Masking for Bandwidth Efficient Federated Learning

Shiqi He¹, Qifan Yan¹, Feijie Wu², Lanjun Wang³, Mathias Lécuyer¹, Ivan Beschastnikh¹
¹University of British Columbia, ²Purdue University, ³Tianjin University



Agenda

● Background and Motivation 
○ Federated learning (FL)
○ Masking in FL

● GlueFL Framework Design
○ Sticky sampling
○ Mask shifting

● Experiment Results
● Conclusion

2



Federated Learning (FL)

● A typical FL training involves four steps in each round
1. Server selects a set of participants from a large number of edge devices (e.g., 106)
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Federated Learning (FL)

● A typical FL training involves four steps in each round
1. Server selects a set of participants from a large number of edge devices (e.g., 106)
2. Server broadcasts the global model w to selected clients 
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Federated Learning (FL)

● A typical FL training involves four steps in each round
1. Server selects a set of participants from a large number of edge devices (e.g., 106)
2. Server broadcasts the global model w to selected clients
3. Each client computes local update Δw and send back to server
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Federated Learning (FL)

● A typical FL training involves four steps in each round
1. Server selects a set of participants from a large number of edge devices (e.g., 106)
2. Server broadcasts the global model w to selected clients
3. Each client computes local update Δw and send back to server
4. Server receives updates and update the global model
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Masking in FL

● To reduce bandwidth usage, apply a mask function M(ᐧ ) to both local updates Δw and 
server updates (1/K)∑Δw

○ Masking is commonly used approch in distributed machine learning (ML)
○ Mask function M(ᐧ ) returns the most informative part of the input (e.g., 10% largest values)
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Masking in FL

● To reduce bandwidth usage, apply a mask function M(ᐧ ) to both local updates Δw and 
server updates (1/K)∑Δw

○ Masking is commonly used approch in distributed machine learning (ML)
○ Mask function M(ᐧ ) returns the most informative part of the input (e.g., 10% largest values)
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Masking in FL

● Masking saves upstream bandwidth
○ Upstream: Δw1 → M(Δw1) (e.g., only need to send largest 10% update)
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Masking in FL

● Masking saves upstream bandwidth
○ Upstream: Δw1 → M(Δw1) (e.g., only need to send largest 10% update)

● Masking saves downstream bandwidth ?
○ Downstream:  w → w - w1 (how much bandwidth can we save?)
○ Due to client sampling, a client will have to download missed updates 

10

Mobile Phone

Laptop

Sensor

Central 
Server

w-w1

w-w2M(Δw1)

M(Δw2)

w ← w-M((1/K)∑M(Δw)) 

w1=w1+(w-w1)

w2=w2+(w-w2)

missed



Masking in FL

● Downstream:  w → w - w1 (how much bandwidth can we save?)
● We conduct experiment to evaluate downstream bandwidth usage

○ With 10% client sample ratio and 20% mask ratio, a sampled client needs to download 70% 
of the global model 
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Masking in FL

● Downstream:  w → w - w1 (how much bandwidth can we save?)
● We conduct experiment to evaluate downstream bandwidth usage

○ With 10% client sample ratio and 20% mask ratio, a client has to download the entire model 
when it is being re-sampled after 20 rounds
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Fig 3. Downstream and upstream 
bandwidth usage of all clients per round

Fig 4. Model size a client must download
when being re-sampled after a certain number of rounds



Masking in FL

● Masking fails to save much downstream bandwidth
● Downstream bandwidth increases because client local model states become stale

○ A client will skip many rounds by not being sampled in cross-device FL
■ With 10% client sample ratio, a client will be re-sampled after 10 rounds in expectation. It misses the 

server updates of all these 10 rounds.
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Masking in FL

● Masking fails to save much downstream bandwidth
● Downstream bandwidth increases because client local model states become stale

○ A client will skip many rounds by not being sampled in cross-device FL
■ With 10% client sample ratio, a client will be re-sampled after 10 rounds in expectation. It misses the 

server updates of all these 10 rounds.
○ The server updates of two successive rounds have little overlap

■ With 10% mask ratio (server updates 10% global model weights in each round), a client will have to 
20% of the model if it skipped 1 rounds.
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GlueFL - Sticky Sampling

● Sticky sampling ensures that clients with an up-to-date local state are more likely to 
be selected

○ Up-to-date local state: clients participated training in the past few rounds
○ So they need to download less updates to synchronize the global model
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GlueFL - Sticky Sampling

● Sticky sampling ensures that clients with an up-to-date local state are more likely to 
be selected

○ Up-to-date local state: clients participated training in the past few rounds
○ So they need to download less updates to synchronize the global model

● We call these clients sticky clients (recently used clients). We construct a sticky 
group with sticky clients and the rest clients form a non-sticky group
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GlueFL - Sticky Sampling

● In each round, the server samples clients from sticky clients and non-sticky clients for 
training

○ Sticky clients have higher probabilities to be sampled than non-sticky clients
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GlueFL - Sticky Sampling

● In each round, the server samples clients from sticky clients and non-sticky clients for 
training

○ Sticky clients have higher probabilities to be sampled than non-sticky clients
○ Example

○ N=3000 clients, K=30 sampled clients (uniform sampling - skip 100 rounds)
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GlueFL - Sticky Sampling

● In each round, the server samples clients from sticky clients and non-sticky clients for 
training

○ Sticky clients have higher probabilities to be sampled than non-sticky clients
○ Example

○ N=3000 clients, K=30 sampled clients (uniform sampling - skip 100 rounds)
○ S=120 sticky clients, C=24 sticky clients being sampled (sticky clients skip 5 rounds)
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GlueFL - Sticky Sampling

● In each round, the server samples clients from sticky clients and non-sticky clients for 
training

○ Sticky clients have higher probabilities to be sampled than non-sticky clients
○ Example

○ N=3000 clients, K=30 sampled clients (uniform sampling - skip 100 rounds)
○ S=120 sticky clients, C=24 sticky clients being sampled (sticky clients skip 5 rounds)
○ Non-sticky clients skips 480 rounds
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GlueFL - Sticky Sampling

● To update sticky group (formed by sticky clients)
○ Some sticky clients will be randomly selected and marked as non-sticky clients
○ Newly sampled clients will be marked as sticky clients 

● Size of the sticky group is constant
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GlueFL - Mask Shifting

● Sticky sampling is not sufficient 
○ With sticky masking, a sticky client may skip 5 rounds 
○ With q=10% mask ratio (server updates 10% model in each round), the client still needs to 

download 50% global model in the worst case
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GlueFL - Mask Shifting

● Sticky sampling is not sufficient 
○ With sticky masking, a sticky client may skip 5 rounds 
○ With q=10% mask ratio (server updates 10% model in each round), the client still needs to 

download 50% global model in the worst case
● In existing masking strategies, the server updates of two successive rounds have little 

overlap. Mask shifting increases this overlap
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GlueFL - Mask Shifting

● In mask shifting, server maintains a shared mask (MS) (e.g., qshr=9% and q=10%)
1. Each client uploads update values covered by MS (9%)
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GlueFL - Mask Shifting

● In mask shifting, server maintains a shared mask (MS) (e.g., qshr=9% and q=10%)
1. Each client uploads update values covered by MS (9%)
2. Each client uploads largest update values not covered by MS. We say these values are 

covered by unique masks (MU) (q-qshr=1%)
■ Now the server has values covered by MUs from different clients
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GlueFL - Mask Shifting

● In mask shifting, server maintains a shared mask (MS) (e.g., qshr=9% and q=10%)
1. Each client uploads update values covered by MS (9%)
2. Each client uploads largest update values not covered by MS. We say these values are 

covered by unique masks (MU) (q-qshr=1%)
3. The server uses MS and largest values (1%) in MUs to update model (9%+1%=10%)
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GlueFL - Mask Shifting

● In mask shifting, server maintains a shared mask (MS) (e.g., qshr=9% and q=10%)
1. Each client uploads update values covered by MS (9%)
2. Each client uploads largest update values not covered by MS. We say these values are 

covered by unique masks (MU) (q-qshr=1%)
3. The server uses MS and largest values (1%) in MUs to update model (9%+1%=10%)
4. The server generate the new shared mask (9%) by selecting largest values (9%) in last server 

update
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GlueFL - Mask Shifting

● With a 9% shared mask and 1% unique masks, the server updates of two successive 
rounds have at least 9% overlap

● Example
○ Suppose S=120 and C=24, a sticky client may skip 5 rounds 
○ If the q=10% (server updates 10% model in each round), the client only needs to download 

(10% + 1% * 4) = 14% global model after 5 rounds with mask shifting
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GlueFL - Other Techniques

● Shared Mask Regeneration (See Full Paper)
○ If the updates are changing dramatically in some rounds, shifting the shared mask using a 

small unique mask will lead to a slow convergence speed
○ Every I rounds, GlueFL regenerates the shared mask with a 0% shared mask and q% unique 

masks
● Error-Compensation (See Full Paper)

○ Clients remember local compression error and add them to the next round update
○ GlueFL is compatible with error compensation 
○ With sticky sampling, compensation vectors need to be reweighted
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Experiment Results

● Three models on three public datasets
○ FEMNIST - ShuffleNet, MobileNet
○ OpenImage - ShuffleNet, MobileNet
○ Google Speech - ResNet-34

● Three baselines: FedAvg, STC and APF
● User-defined parameters in GlueFL are set 

the best values (e.g., S, C)
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Experiment Results

● To reach the same target performance, GlueFL needs significantly less downstream 
bandwidth (DL Volume) and time (DL Time) for CV and NLP tasks on average
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Experiment Results

● With most hyperparameter choices (S - sticky group size, C - # sticky clients, qshr - 
shared mask size), GlueFL outperforms FedAvg, showing its robustness

34



Conclusion

● Traditional masking strategies fail to save much downstream bandwidth
○ Downstream bandwidth increases because client local model states become stale

● We present an FL framework called GlueFL that combines masking with client 
sampling to reduce downstream bandwidth

○ Sticky sampling - prioritize the most recently used clients
○ Mask shifting - ensure consecutive central model updates share a large number of changed 

parameters
● We evaluate GlueFL on three public datasets. On average, GlueFL spends 29% less 

training time with a 27% less downstream bandwidth overhead as compared to FedAvg, 
STC and APF
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