
SubGraph Stationary HW-SW Co-design for
 ML Inference

Payman Behnam*1, Jianming Tong*2, Alind Khare 1, Yangyu Chen 2, Yue Pan 2,
Pranav Gadikar 1, Abhimanyu Bambhaniya 2,

Tushar Krishna 2, Alexey Tumanov 1

1SAIL Lab, School of Computer Science, 2Synergy Lab, School of ECE
 Georgia Institute of Technology

* Equal Contribution

Motivation for Serving Multi-capacity Model
● ML applications are increasingly deployed in dynamic and unpredictable

conditions.
○ Both Latency and accuracy constraints are critical.

● ML applications running on resource constrained devices forced to choose
between accuracy and latency, which must be done rapidly to avoid missing
deadlines.

2

Takeaway: Serve a set of latency/accuracy options simultaneously, switching between
them rapidly as needed. but how?

85%
20ms

60%
2ms

• No single point is sufficient while SOTA focuses on optimizing for a single point
 in the latency/accuracy tradeoff space.

Weight-Shared (WS) DNNs
● WS-DNN is obtained by adding elasticity to the DNN dimensions.
● SuperNet forms a comprehensive and large model.
● SubNets which may differ in several elastic dimensions, partially share their

weights as part of a single large DNN (SuperNet).
● SubNets can be directly used for predictions without any further re-training.
● Weight-shared DNNs induce a rich trade-off between accuracy and latency.

3

SubGraph is a subset of SubNet,
which can't be used for Inference directly.

SubGraph 1

SuperNet

SubNet 2SubNet 1

Proposed Solution: SUSHI

● Serving WS-DNNs: Vertically integrated HW-SW co-design
○ SUSHI enjoys co-design the accelerator and scheduling policy.

● HW (accelerator): latency pareto frontier navigation mechanism

● SW (Scheduler): latency pareto frontier navigation policy
○ What SubNets to serve
○ What SubGraph to cache

● Latency/accuracy navigation across a stream of queries

4

SUSHI Challenges

● Hardware: Support rapid switching between SubNets

● Caching: Best cache size for SubGraph caching

● Scheduling: What to serve & What to cache

● Abstraction: Generalize to any hardware

5

SUSHI Challenges: Caching

6

Latency of different SubNets is a function of different cached SubGraphs

SUSHI Challenges: Memory-boundedness

7

Some WS-DNN convolutional layers are memory- bound.

SUSHI System Overview

● Insight: Exploit temporal locality across weight shared inference queries.
● Key idea1: Decide what SubNet to serve (𝑆𝑁!) based on what's cached.
● Key idea2: Decide what SubGraph to cache (𝐺!) based on the serving history.
● SubGraph Stationary (SGS) optimization across queries: Novel contribution.
● Generalizability: Abstracted accelerator state.

8

HW-SW Co-Design: FPGA Accelerator

● SushiAccel switches dataflows which are optimal for different layers.
○ Large kernels (kernel height ≥ 3) can be decomposed into serial of 3x3 to save computation & storage.
○ Small kernels (depth-wise conv) leverage channel level parallelism to increase resource utilization.

9

● SushiAccel supports input/weight/output and SubGraph Stationary.

HW-SW Co-Design: Abstraction

● Accelerator state awareness through abstraction:
○ Abstraction: 𝑆𝑁! , 𝐺" → 𝐿𝑎𝑡𝑒𝑛𝑐𝑦!"
○ Time efficient: Abstraction employs a lookup table with SubNets as rows and

SubGraphs as columns.
○ Space efficient: Abstraction limits the set of all possible cached SubGraphs to a

significantly small set.

10

Channel
Extract

Flatten

SubNet 1 SubNet Q
SubNet Representation Average

 SubNet

SubNet

SubGraph i

Return

Average
 SubNet

HW-SW Co-Design: Scheduler

11

● Scheduler decides SubNets to serve as a function of cached SubGraph.
● The scheduler represents the SubNets and the SubGraphs as a vector.
● Proposed representation uses the number of kernels 𝐾! 	and the number of channels 𝐶!

of every 𝑙𝑎𝑦𝑒𝑟! to create a vector of size 2𝑁 for a 𝑁 layered neural network.
● The scheduler keeps a running average of the past 𝑄 queries that were served by the

scheduler to decide what SubGraph to cache.

EXPERIMENTAL Setup

● Workload: ResNet50 and MobV3
○ ResNet50 Sizes [7.58 MB, 27.47 MB]
○ MobV3 Sizes [2.97 MB, 4.74 MB]

● Simulators:
○ Architecture Analytic Model
○ Roofline Analysis
○ Scheduler

● Compare SushiAccel w/ PB and w/o PB with Xilinx DPU and CPU (Intel i7
10750H, 45 W).

● FPGA Deployment Platforms:

12

ZCU 104 (5W) Alveo U50 (75W)

Edge Cloud

Potential Latency Reduction with SGS

● The latency of serving queries from pareto-frontiers could be reduced by
[6%, 23.6%] for MobV3 and [5.7%, 7.92%] for ResNet50.

13
Takeaway: SUSHI eliminates extra off-chip access latency.

ResNet50 MobV3

Hardware Evaluation on Real Board (Single Query)

14

ResNet 50 SubNets Evaluation

Comparison of SushiAccel w/o PB with SOTA Xilinx DPU (ZCU104)

Off-chip DRAM Access Energy Saving [left: SushiAccel w/o PB; right: SushiAccel] (Alveo U50)
Takeaway: SUSHI further improves latency (additional 10%) and off-chip access energy (78%).

Takeaway : SUSHI has an efficient dataflow (25% improvement over Xilinx DPU).

Accuracy/Latency Improvements (Stream of Queries)

15

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Latency constraLnt (ms)

4

6

8

10

12

14

16

18

6e
rv
ed
 L
at
en
cy
 (m

s)

Lower Latency (ResNet50)

4 5 6 7 8 9 10
Latency constraLnt (ms)

4

5

6

7

8

9

6e
rv
ed
 L
at
en
cy
 (m

s)

Lower Latency (MobV3)

SUSHI delivers higher accuracy while
satisfying the latency requirements.

SUSHI delivers lower latency while
satisfying the accuracy requirements.

Higher Accuracy (MobV3)

0.75 0.76 0.77 0.78 0.79 0.80
Accuracy constraint

0.75

0.76

0.77

0.78

0.79

0.80

6e
rv
ed
 A
cc
ur
ac
y

Higher Accuracy (ResNet50)

Accuracy/Latency Improvements (Stream of Queries)

16

ResNet50 MobV3

Takeaway: SUSHI serves higher accuracy for the same latency (up to 0.98%).
Takeaway: SUSHI improves the average serving latency (25%(21%) for MobV3(ResNet 50)).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
6erved /atency (ms)

0.76

0.77

0.78

0.79

0.80
6e
rv
ed
 A
cc
ur
ac
y

1o-6ushL
6ushL w/o 6ch
6ushL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
6erved /atency (ms)

0.76

0.77

0.78

0.79

0.80

1o-6ushL
6ushL w/o 6ch
6ushL

Conclusion
Problem:
● ML applications (AVs, ML4Health) must navigate latency/accuracy tradeoff space in

soft-real time efficiently.

Proposed Solution:
● Vertically integrated HW-SW co-design for WS-DNN inference
● HW: SushiAccel: Switch among optimal dataflows developed for different layers.
● SW: Cross query SubGraph Stationary optimization

○ Choose SubNets /reuse SubGraph per query
● SushiAbs: Generalizable and efficient HW-SW interface

○ 𝑆𝑁! , 𝐺" → 𝐿𝑎𝑡𝑒𝑛𝑐𝑦!"

Evidence:
● SUSHI improves average serving latency (25%(21%) for MobV3(ResNet50)).
● SUSHI increases serving accuracy for the same latency (up to 0.98%).
● SUSHI saves off-chip data access energy (up to 78%).

17

