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Motivation for Serving Multi-capacity Model

o ML applications are increasingly deployed in dynamic and unpredictable

conditions.
o Both Latency and accuracy constraints are critical.
o ML applications running on resource constrained devices forced to choose

between accuracy and latency, which must be done rapidly to avoid missing

deadlines. &
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* No single point is sufficient while SOTA focuses on optimizing for a single point
in the latency/accuracy tradeoff space.

Takeaway: Serve a set of latency/accuracy options simultaneously, switching between
them rapidly as needed. but how?

2



Weight-Shared (WS) DNNs

« WS-DNN is obtained by adding elasticity to the DNN dimensions.

o SuperNet forms a comprehensive and large model.

o SubNets which may differ in several elastic dimensions, partially share their

weights as part of a single large DNN (SuperNet).

e« SubNets can be directly used for predictions without any further re-training.
o Weight-shared DNNSs induce a rich trade-off between accuracy and latency.
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Proposed Solution: SUSHI

e Serving WS-DNNs: Vertically integrated HVW-S\W co-design
o SUSHI enjoys co-design the accelerator and scheduling policy.

e HW (accelerator): latency pareto frontier navigation mechanism

o SW (Scheduler): latency pareto frontier navigation policy
o What SubNets to serve
o  What SubGraph to cache

o Latency/accuracy navigation across a stream of queries



SUSHI Challenges

e Hardware: Support rapid switching between SubNets
e Caching: Best cache size for SubGraph caching
e Scheduling: What to serve & What to cache

o Abstraction: Generalize to any hardware



SUSHI Challenges: Caching
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SUSHI Challenges: Memory-boundedness
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SUSHI System Overview
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o Insight: Exploit temporal locality across weight shared inference queries.

o Keyideal: Decide what SubNet to serve (SN;) based on what's cached.

o Keyidea2: Decide what SubGraph to cache (G;) based on the serving history.
e SubGraph Stationary (SGS) optimization across queries: Novel contribution.

o Generalizability: Abstracted accelerator state.




HW-SW Co-Design: FPGA Accelerator
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e SushiAccel supports input/weight/output and SubGraph Stationary.

e SushiAccel switches dataflows which are optimal for different layers.

o Large kernels (kernel height > 3) can be decomposed into serial of 3x3 to save computation & storage.
o Small kernels (depth-wise conv) leverage channel level parallelism to increase resource utilization.




HW-SW Co-Design: Abstraction
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e Accelerator state awareness through abstraction:
o Abstraction: (SNl-, Gj) — Latency;;
o Time efficient. Abstraction employs a lookup table with SubNets as rows and
SubGraphs as columns.
o Space efficient. Abstraction limits the set of all possible cached SubGraphs to a

significantly small set.  LatencyTable Gt)
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HW-SW Co-Design: Scheduler
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Scheduler decides SubNets to serve as a function of cached SubGraph.
The scheduler represents the SubNets and the SubGraphs as a vector.

Proposed representation uses the number of kernels K; and the number of channels (;
of every layer; to create a vector of size 2N for a N layered neural network.

The scheduler keeps a running average of the past Q queries that were served by the

scheduler to decide what SubGraph to cache.
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e

SubNet

Ky,Cq

KTL? CTL
Channel
Extract

! Average | I Average
e | SubNet | | SubNet
ol 2l = ! K1
= C C C ! C C
Flatten ' Tl .1 o .1 I Return .1 .1
AN Klar e ] === vl [ = K
KV \ 1
Ly % % Ch | Ch Chn

11



EXPERIMENTAL Setup

e Workload: ResNet50 and MobV3
o ResNet50 Sizes [7.58 MB, 27.47 MB]
- MobV3 Sizes [2.97 MB, 4.74 MB]

e Simulators:
o Architecture Analytic Model
- Roofline Analysis
- Scheduler
e Compare SushiAccel w/ PB and w/o PB with Xilinx DPU and CPU (Intel i7
10750H, 45 W). Edge Cloud
o FPGA Deployment Platforms: ¢

ZCU 104 (5W)  Alveo U50 (75W)
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Potential Latency Reduction with SGS

e The latency of serving queries from pareto-frontiers could be reduced by
6%, 23.6%] for MobV3 and [5.7%, 7.92%] for ResNet50.
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Takeaway: SUSHI eliminates extra off-chip access latency.
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Hardware Evaluation on Real Board (Single Query)
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Comparison of SushiAccel w/o PB with SOTA Xilinx DPU (ZCU104)
Takeaway : SUSHI has an efficient dataflow (25% improvement over Xilinx DPU).
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Takeaway: SUSHI further improves latency (additional 10%) and off-chip access energy (78%).
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Accuracy/Latency Improvements (Stream of Queries)
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Accuracy/Latency Improvements (Stream of Queries)
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Takeaway: SUSHI serves higher accuracy for the same latency (up to 0.98%).
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Takeaway: SUSHI improves the average serving latency (25%(21%) for MobV3(ResNet 50)).
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Conclusion

Problem:

e ML applications (AVs, ML4Health) must navigate latency/accuracy tradeoff space in
soft-real time efficiently.

Proposed Solution:
e Vertically integrated HW-SW co-design for WS-DNN inference
o HW: SushiAccel: Switch among optimal dataflows developed for different layers.
o SW: Cross query SubGraph Stationary optimization
o Choose SubNets /reuse SubGraph per query
e SushiAbs: Generalizable and efficient HW-SW interface

0 (SNl-, Gj) — Latency;;

Evidence:

e SUSHI improves average serving latency (25%(21%) for MobV3(ResNet50)).
e SUSHI increases serving accuracy for the same latency (up to 0.98%).
e SUSHI saves off-chip data access energy (up to 78%).
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