i r SAIL Y

SubGraph Stationary HW-SW Co-design for
ML Inference

Payman Behnam*', Jianming Tong*?, Alind Khare !, Yangyu Chen 2, Yue Pan?,
Pranav Gadikar !, Abhimanyu Bambhaniya 2,
Tushar Krishna 2, Alexey Tumanov '

1SAIL Lab, School of Computer Science, 2Synergy Lab, School of ECE
Georgia Institute of Technology
* Equal Contribution



Motivation for Serving Multi-capacity Model

o ML applications are increasingly deployed in dynamic and unpredictable

conditions.
o Both Latency and accuracy constraints are critical.
o ML applications running on resource constrained devices forced to choose

between accuracy and latency, which must be done rapidly to avoid missing

deadlines. &
60%

P,

c ﬂ‘o

®2ms o
> f o)
o 7
2| o
<

Latency >
* No single point is sufficient while SOTA focuses on optimizing for a single point
in the latency/accuracy tradeoff space.

Takeaway: Serve a set of latency/accuracy options simultaneously, switching between
them rapidly as needed. but how?

2



Weight-Shared (WS) DNNs

« WS-DNN is obtained by adding elasticity to the DNN dimensions.

o SuperNet forms a comprehensive and large model.

o SubNets which may differ in several elastic dimensions, partially share their

weights as part of a single large DNN (SuperNet).

e« SubNets can be directly used for predictions without any further re-training.
o Weight-shared DNNSs induce a rich trade-off between accuracy and latency.

M )

SuperNet

— =2

SubNet 1 SubNet 2
AbGraph 1 \
<

e N\ \ (

> SubGraph is a subset of SubNet,

c’o
o
>, )00

S| ©0000%°
4

o| 0%

ol ol

L ]~00

Latency
Pareto Frontier SubNets

which can't be used for Inference directly. © Selected Single ML Model
O SubNets



Proposed Solution: SUSHI

e Serving WS-DNNs: Vertically integrated HVW-S\W co-design
o SUSHI enjoys co-design the accelerator and scheduling policy.

e HW (accelerator): latency pareto frontier navigation mechanism

o SW (Scheduler): latency pareto frontier navigation policy
o What SubNets to serve
o  What SubGraph to cache

o Latency/accuracy navigation across a stream of queries



SUSHI Challenges

e Hardware: Support rapid switching between SubNets
e Caching: Best cache size for SubGraph caching
e Scheduling: What to serve & What to cache

o Abstraction: Generalize to any hardware



SUSHI Challenges: Caching

g

5‘ Shallow « .7
Cl| &wide o _ » "~ Deep & Thin
Q| subNet > SubNet
|
s’ - b S
Y 4 ~
v 4 ~

Cached SubGrapr-l)

>

/Q‘

A

@02‘ More Layers More Width
-

Latency of different SubNets is a function of different cached SubGraphs
=



SUSHI Challenges: Memory-boundedness

B MobileNet V3
mm ResNet 50

(@)
o
o

Arithmetic Intensity (Flops/Byte)
S
o

0 10 20 30 40 50 60
# Layer ID

z‘Q O
A é Some WS-DNN convolutional layers are memory- bound.
T



SUSHI System Overview

SushiSched _ __ _ _____________________ SushiAbs Sushilccel

7 - 2 T Autiul il \ —— A S
[ _Query (%Schedule; b LatencyTable G, ! ' FIERZETEE
"| (%) Latency e, o, - oo0 ' 2 |
[ q1 |eee q = 80% y I:l S Ny = , | @ :
, (@ Acourscy ~H* 2 LseJu v el e

\. J [ 3] S Tl e Bl o e e e e e it 2

Li> < . > |lt====—=—=-—=-==-=-=-== y ! SubGraph P
v Inputs ' [SubNets to be Served| 1 !| 2 == o 1
! Cache State Latency I|| O queris o DPE DPE | ,
: f(Ace, Latency) ||: I J v
1 | (=) SubGraph 1, & Cache State '1| O |IopE1IDPE] |
1 | &= Cached Gy (SNt, Gt+Q> Go I, | &JChange Per () queries : I ,
e SubGraph_ _ ~——— " L _subGrph L rNSSes o ==
utpu

o Insight: Exploit temporal locality across weight shared inference queries.

o Keyideal: Decide what SubNet to serve (SN;) based on what's cached.

o Keyidea2: Decide what SubGraph to cache (G;) based on the serving history.
e SubGraph Stationary (SGS) optimization across queries: Novel contribution.

o Generalizability: Abstracted accelerator state.




HW-SW Co-Design: FPGA Accelerator

Su§13:|._s_c}19<_i __________________________ SushiAbs
s 777 TlatencyTable (G, )
1 Query %Scheduler ot atencyTable G, :
: @ Latency @@ @@ > YY) _— SN, ]
- 1 ’ 1
: O Accuracy ooe % - S So : :'\ I
‘/ '-__> < W I B> 1 i e T \
= Inputs : l: SubNets to be Served| 1
1 Latency Q queris I
1 | Cache State f(Acce, Latency) é} : :: 1
: SubGraph v iy Cache State | |
' Cached G (S Ny, G,L+(2) G 10 Change Per Q queries 1
N E— SubGraph_ _ S——————= < _SubGraph  / ~- oo -o oo oo ----
C _ [ streaming Buffer (SB) N Line Buffer (LB)
iAct Multi-Kernel Reuse |Act Sliding-Window Reuse
ZP/Scale Buffer (zsB) | E . VG
B N Zero Subtraction (ZS) | :
Persistent Buffer (PB) || N iAct/Weights - Zero Point |7
DRAM | SubGraph Reuse | L 7 V| ) 7
N
‘D1 Dynamic Buffer (DB1) > | bz D 2rE )
) Weights Reuse H! =V V \ 2
A - A , ~
'D2_ ( Dynamic Buffer (DB2) N < | DPE | | DPE || DPE |ly(6utput Buffer (OB)]» Scaling | -
) Weights Reuse / final oAct Reuse int8 oActs
9 u je——Cp = 3—>|

e SushiAccel supports input/weight/output and SubGraph Stationary.

e SushiAccel switches dataflows which are optimal for different layers.

o Large kernels (kernel height > 3) can be decomposed into serial of 3x3 to save computation & storage.
o Small kernels (depth-wise conv) leverage channel level parallelism to increase resource utilization.




HW-SW Co-Design: Abstraction

S_1_1§13i_s_c}1_e<_:l __________________________ SushiAccel
! Query i g . PB-Cache)
. oScheduler .
: @ Accuracy ooe g ol : !
[ ’ o G2 ! =
. Inputs < i SubNets to be Served : SubGraph “Wz=
: Cache State ; f(Ace, ?a(t?(r“:)(/‘z/) © querts i m m :
! SubGraph o v ' Cache State 1

___________
____________________________________

e Accelerator state awareness through abstraction:
o Abstraction: (SNl-, Gj) — Latency;;
o Time efficient. Abstraction employs a lookup table with SubNets as rows and
SubGraphs as columns.
o Space efficient. Abstraction limits the set of all possible cached SubGraphs to a

significantly small set.  LatencyTable Gt)

S Ny
\ 4




HW-SW Co-Design: Scheduler

SgshiSched

O N\
iR Scheduler

Inputs

Cache State
SubGraph

G

>
o
©
S
=]
Q
o
<

Latency
f(Acc, Latency)

SushiAbs

- -
——————————————

SubNets to be Served
Q@ queris

Cache State
Change Per Q queries

- mm mm oEm o oEm o Em o o oEm e

- eem mm o o s

---------------

SushiAccel

-,

PB-Cache N

G 1
SubGraph

|DPE||DPE|:
1

|DPE||DPE|:
1

________

Scheduler decides SubNets to serve as a function of cached SubGraph.
The scheduler represents the SubNets and the SubGraphs as a vector.

Proposed representation uses the number of kernels K; and the number of channels (;
of every layer; to create a vector of size 2N for a N layered neural network.

The scheduler keeps a running average of the past Q queries that were served by the

scheduler to decide what SubGraph to cache.

SubNet Representation

e

SubNet

Ky,Cq

KTL? CTL
Channel
Extract

! Average | I Average
e | SubNet | | SubNet
ol 2l = ! K1
= C C C ! C C
Flatten ' Tl .1 o .1 I Return .1 .1
AN Klar e ] === vl [ = K
KV \ 1
Ly % % Ch | Ch Chn

11



EXPERIMENTAL Setup

e Workload: ResNet50 and MobV3
o ResNet50 Sizes [7.58 MB, 27.47 MB]
- MobV3 Sizes [2.97 MB, 4.74 MB]

e Simulators:
o Architecture Analytic Model
- Roofline Analysis
- Scheduler
e Compare SushiAccel w/ PB and w/o PB with Xilinx DPU and CPU (Intel i7
10750H, 45 W). Edge Cloud
o FPGA Deployment Platforms: ¢

ZCU 104 (5W)  Alveo U50 (75W)

12



Potential Latency Reduction with SGS

e The latency of serving queries from pareto-frontiers could be reduced by
6%, 23.6%] for MobV3 and [5.7%, 7.92%] for ResNet50.

Overall Latency (ms)

o
I

©
!

o
!

H
!

N
!

~
~

A B C D

Critical Latency in Compute

80

~ <~
(o)} oo O
Accuracy (%)

~
9)

Critical Latency in Off-chip iAct Mem Access
Critical Latency in Off-chip Weights Mem Access
Critical Latency in On-chip Weights Mem Access
Critical Latency in Off-chip oAct Mem Access

ResNet50

O
8

Overall Latency (ms)

o
o

80

N
o

=
Ul

=
o

\II ~ ~
~ oo (@)

Accuracy (%)

~
(®)]

A B C D E F G

Critical Latency in Compute

Critical Latency in Off-chip iAct Mem Access
Critical Latency in Off-chip Weights Mem Access
Critical Latency in On-chip Weights Mem Access
Critical Latency in Off-chip oAct Mem Access

MobV3

Takeaway: SUSHI eliminates extra off-chip access latency.

13



Hardware Evaluation on Real Board (Single Query)

5-

B Xilinx DPU [ SushiAccel w/o PB === Xilinx DPU (GeoMean) - == SushiAccel w/o PB (GeoMean)

D

SushiAccel speedup 25.1% over Xilinx DPU on average

w

N

Latency (ms)

=

o

0o 1 2 4 8 11 14 17 21 24 27 30 34 37 40 43 46 49 53 56 59
Convolution Layer ID in ResNet50

Comparison of SushiAccel w/o PB with SOTA Xilinx DPU (ZCU104)
Takeaway : SUSHI has an efficient dataflow (25% improvement over Xilinx DPU).

=8 =
= (S:z:hiAccel 2CUL04 w0 PB e B Off-chip Data Access Energy £ 1.517 mmm Off-chip Data Access Energy
801 mm sushiAccel ZCU104 w/ PB > [ On-chip Data Access Energy > W On-chip Data Access Energy
—_ mmm SushiAccel AlveoU50 w/o PB 261 2
g B SushiAccel AlveoUS0 w/ PB 8 8
£60 W w 1.0y
> ] 0
S o4 &
3401 o o
© < << 0.5
= 221 o
201 5 5
: :
0 A B C D E F G 008 ¢ D E F
MobileNet V3 SubNet ID ResNet-50 SubNet ID

ResNet 50 SubNets Evaluation Off-chip DRAM Access Energy Saving [left: SushiAccel w/o PB; right: SushiAccel] (Alveo U50)
Takeaway: SUSHI further improves latency (additional 10%) and off-chip access energy (78%).

14




Accuracy/Latency Improvements (Stream of Queries)

18 1 /‘/....“ /’{. ol
161 //ge_-e- 91 //'. ¢
314- /’;e gg- /,“: e
' P > &
. . 2 121 i 2, ] IR
SUSHI delivers lower latency while £ g7 e
. . . o ,’ = 4 /(,
satisfying the accuracy requirements.: « 2 i
” //:- o “ 51 ///
61 7 s ¢ ®
4-,/./{’9“‘.‘ 41 o’ L 2 1
50 75 100 125 150 175 200 4 5 6 7 8 9 10
Latency constraint (ms) Latency constraint (ms)
Lower Latency (ResNet50) Lower Latency (MobV3)
0.801 .o .}/.' 0.801 ,_3/
071 =/"’”// 0.791 oo ,//
> e > 7
. . . § 078 1 ® po @ .::/ :% 075 © 00 0 oo © -.:n/q,’
SUSHI delivers higher accuracy while: z
satisfying the latency requirements. =" £
BT 1 M :/.,/ 076l %
0.75 // 0.75 //
075 076 077 078 079 0.80 0.75 0.76 0.77 0.78 0.79 0.80
Accuracy constraint Accuracy constraint
Higher Accuracy (ResNet50) Higher Accuracy (MobV3)

15



Accuracy/Latency Improvements (Stream of Queries)

0.80
—— No-Sushi

0.791 —— Sushi w/o Sch

9 e  Sushi

5

Q

<

T

20.77

(D]

N

0.76 1
00 25 50 75 100 125 15.0

Takeaway: SUSHI serves higher accuracy for the same latency (up to 0.98%).

Served Latency (ms)

ResNet50

17.5

0.80

N e
0.79 1
[ )
0.78
0.77 1
—— No-Sushi
0.76- — Sushi w/o Sch
e  Sushi
00 25 50 75 100 125 15.0
Served Latency (ms)
MobV3

17.5

Takeaway: SUSHI improves the average serving latency (25%(21%) for MobV3(ResNet 50)).

16



Conclusion

Problem:

e ML applications (AVs, ML4Health) must navigate latency/accuracy tradeoff space in
soft-real time efficiently.

Proposed Solution:
e Vertically integrated HW-SW co-design for WS-DNN inference
o HW: SushiAccel: Switch among optimal dataflows developed for different layers.
o SW: Cross query SubGraph Stationary optimization
o Choose SubNets /reuse SubGraph per query
e SushiAbs: Generalizable and efficient HW-SW interface

0 (SNl-, Gj) — Latency;;

Evidence:

e SUSHI improves average serving latency (25%(21%) for MobV3(ResNet50)).
e SUSHI increases serving accuracy for the same latency (up to 0.98%).
e SUSHI saves off-chip data access energy (up to 78%).

17



