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Motivation for Serving Multi-capacity Model
● ML applications are increasingly deployed in dynamic and unpredictable 

conditions.
○ Both Latency and accuracy constraints are critical.

● ML applications running on resource constrained devices forced to choose 
between accuracy and latency, which must be done rapidly to avoid missing 
deadlines.
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Takeaway: Serve a set of latency/accuracy options simultaneously, switching between 
them rapidly as needed. but how?
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• No single point is sufficient while SOTA focuses on optimizing for a single point
 in the latency/accuracy tradeoff space.



Weight-Shared (WS) DNNs  
● WS-DNN is obtained by adding elasticity to the DNN dimensions.
● SuperNet forms a comprehensive and large model.
● SubNets which may differ in several elastic dimensions, partially share their 

weights as part of a single large DNN (SuperNet).
● SubNets can be directly used for predictions without any further re-training. 
● Weight-shared DNNs induce a rich trade-off between accuracy and latency. 
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SubGraph is a subset of SubNet, 
which can't be used for Inference directly.
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Proposed Solution: SUSHI

● Serving WS-DNNs: Vertically integrated HW-SW co-design
○ SUSHI enjoys co-design the accelerator and scheduling policy.

● HW (accelerator): latency pareto frontier navigation mechanism 

● SW (Scheduler): latency pareto frontier navigation policy
○ What SubNets to serve
○ What SubGraph to cache

● Latency/accuracy navigation across a stream of queries
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SUSHI Challenges

● Hardware: Support rapid switching between SubNets

● Caching: Best cache size for SubGraph caching

● Scheduling: What to serve & What to cache 

● Abstraction: Generalize to any hardware
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SUSHI Challenges: Caching
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Latency of different SubNets is a function of different cached SubGraphs



SUSHI Challenges: Memory-boundedness
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Some WS-DNN convolutional layers are memory- bound.



SUSHI System Overview

● Insight: Exploit temporal locality across weight shared inference queries.
● Key idea1: Decide what SubNet to serve (𝑆𝑁!) based on what's cached. 
● Key idea2: Decide what SubGraph to cache (𝐺!) based on the serving history.
● SubGraph Stationary (SGS) optimization across queries: Novel contribution.
● Generalizability: Abstracted accelerator state.
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HW-SW Co-Design: FPGA Accelerator

● SushiAccel switches dataflows which are optimal for different layers.
○ Large kernels (kernel height ≥ 3) can be decomposed into serial of 3x3 to save computation & storage.
○ Small kernels (depth-wise conv) leverage channel level parallelism to increase resource utilization.
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● SushiAccel supports input/weight/output and SubGraph Stationary. 



HW-SW Co-Design: Abstraction

● Accelerator state awareness through abstraction:
○ Abstraction: 𝑆𝑁! , 𝐺" → 𝐿𝑎𝑡𝑒𝑛𝑐𝑦!"
○ Time efficient: Abstraction employs a lookup table with SubNets as rows and 

SubGraphs as columns.
○ Space efficient: Abstraction limits the set of all possible cached SubGraphs to a 

significantly small set.
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HW-SW Co-Design: Scheduler
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● Scheduler decides SubNets to serve as a function of cached SubGraph.
● The scheduler represents the SubNets and the SubGraphs as a vector. 
● Proposed representation uses the number of kernels 𝐾! 	and the number of channels 𝐶! 

of every 𝑙𝑎𝑦𝑒𝑟! to create a vector of size 2𝑁 for a 𝑁 layered neural network.
● The scheduler keeps a running average of the past 𝑄 queries that were served by the 

scheduler to decide what SubGraph to cache.



EXPERIMENTAL Setup

● Workload: ResNet50 and MobV3
○ ResNet50 Sizes [7.58 MB, 27.47 MB] 
○ MobV3 Sizes [2.97 MB, 4.74 MB]

● Simulators:
○ Architecture Analytic Model
○ Roofline Analysis
○ Scheduler

● Compare SushiAccel w/ PB and w/o PB with Xilinx DPU and CPU (Intel i7 
10750H, 45 W).

● FPGA Deployment Platforms: 
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ZCU 104 (5W) Alveo U50 (75W)

Edge Cloud



Potential Latency Reduction with SGS

● The latency of serving queries from pareto-frontiers could be reduced by 
[6%, 23.6%] for MobV3 and [5.7%, 7.92%] for ResNet50.
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Takeaway: SUSHI eliminates extra off-chip access latency.

ResNet50 MobV3



Hardware Evaluation on Real Board (Single Query)
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ResNet 50 SubNets Evaluation

Comparison of SushiAccel w/o PB with SOTA Xilinx DPU (ZCU104)

Off-chip DRAM Access Energy Saving [left: SushiAccel w/o PB; right: SushiAccel] (Alveo U50)
Takeaway: SUSHI further improves latency (additional 10%) and off-chip access energy (78%).

Takeaway : SUSHI has an efficient dataflow (25% improvement over Xilinx DPU).  



Accuracy/Latency Improvements (Stream of Queries)
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Lower Latency (MobV3)

SUSHI delivers higher accuracy while 
satisfying the latency requirements.

SUSHI delivers lower latency while 
satisfying the accuracy requirements.

Higher Accuracy (MobV3)

���� ���� ���� ���� ���� ����
$FFXUDF\�FRQVWUDLQW

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

Higher Accuracy (ResNet50)



Accuracy/Latency Improvements (Stream of Queries)
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ResNet50 MobV3

Takeaway: SUSHI serves higher accuracy for the same latency (up to 0.98%).
Takeaway: SUSHI improves the average serving latency (25%(21%) for MobV3(ResNet 50)).
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Conclusion
Problem:
● ML applications (AVs, ML4Health) must navigate latency/accuracy tradeoff space in 

soft-real time efficiently.

Proposed Solution:
● Vertically integrated HW-SW co-design for WS-DNN inference
● HW: SushiAccel: Switch among optimal dataflows developed for different layers.
● SW: Cross query SubGraph Stationary optimization

○ Choose SubNets /reuse SubGraph per query
● SushiAbs: Generalizable and efficient HW-SW interface

○ 𝑆𝑁! , 𝐺" → 𝐿𝑎𝑡𝑒𝑛𝑐𝑦!"

Evidence:
● SUSHI improves average serving latency  (25%(21%) for MobV3(ResNet50)).
● SUSHI increases serving accuracy for the same latency (up to 0.98%).
● SUSHI saves off-chip data access energy (up to 78%).
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