Punica

Serving multiple LoRA fine-tuned LLMs at the cost of one

W

UNIVERSITY of
WASHINGTON

[MLSys’24]
Lequn Chen* (UW), Zihao Ye* (UW), Yongji Wu (Duke), Duke

Danyang Zhuo (Puke), L uis Ceze (UW), Arvind Krishnamurthy (UW) UNIVERSITY

Adapting Pre-trained LLMs to Tasks

Finetuning

* Follow instructions

« Human alignments

e Adapt to task input/output format

 Add new documents, domain knowledge

e Personalize

Parameter Efficient Fine-Tuning

LoRA: Low-Rank Adaptation of LLMs

e Adding <1% parameter (e.qg., r=16, h=4096) 4

ZEN

c W =W+ AB
« W:[h1, h2], A: [h1, r], B: |r, h2]
e XW’ =x(W+AB) = xW + xAB

4
N

» Advantage: Ny d

V.
&

* Faster training, Lower memory usage
| ow storage overhead

e How to serve LORA models?

https://arxiv.org/abs/2106.09685

Serving LoRA fine-tuned LLMs

Challenge: Resource over-provision

@ Serving LoRA adapters individually » Multi-tenant LoRA serving

A\
 Each adapter requires 10 GPUs * Pool all GPUs to serve all LORA adapters
» Need 10*5 GPUs for 5 adapters * Smooth out loads
» Wastes GPU memory for backbone LLM * Much less over-provision
» Share backbone LLM
@ (But how?)
G
?‘; " Provision for aggregated load
Time &

Time

Required GPUs

Time

Serving LoRA fine-tuned LLMs

Challenge: Reduced batch efficiency

e Straw-man approach for serving multi-LoRA:
* Group requests by LoRA adapter

 Swap LoRA weight

C % 30 ms

 Reduced batch efficiency 3
| S 20 ms

 LLM has strong batching effect L
* latency(b=06) is close to latency(b=1) S 10 ms
* Especially for Dense layers .)<

* (LoRA is applied to Dense layers) 0

« Example: AABCCC
o (4 Desired: b=6
e X Reality: b=2, b=1, b=3

D

10

15 20
Batch Size

29

30

How to enable batching for LORA?

Serving LoRA fine-tuned LLMs

A closer look

* |dentical adapter: Mixed adapters:
n Requests, 1 Adapter n Requests, <n Adapters
Y = XW+ XAB (TN ([/
L) (G
: = W +
* Distinct adapters: [Ynd T 1
n Requests, n Adapters 5) (5) (
\amir)) s \

Y1 Tl r1A1 B . e
=] e f ase mode
Un Tn TnAn By

AlBl

Punica: Serving multiple LoRA LLMs at the cost of one
We made a custom CUDA kernel, called SGMV

Y[s[i]:s[i+1]] += X[s[i]:s[i+1]] @ W[i] GeMM

SGMV Kernel Performance

Under different popularity distribution

* Distinct: n Requests, n Adapters 40 ys -
* ldentical: n Requests, 1 Adapter . 35us-

* Uniform, Skewed: in between % 30 ps
T 25 us
—
° Latency > 20 ps —— Distinct
e . QZD 15 ps- —— Uniform
* Distinct: increases only slightly & 10 us Skewed
* Other cases: “free lunch” D S - —— Identical
0s

0 10 20 30 40 50 60
Batch Size

Where does the free lunch come from?

r1A1 By

Computation for LORA

Very narrow vector-matrix multiplication 7 A B,

—> —>
(9, L A Problem: Only utilize a small portion of GPU
compute units

(1,16) := (1,4896) @ (4096,16)
 Batching: Increase degree of parallelism

—> —>
Yy = v B . Y := BMM(X, W)

(1,4896) := (1,16) @ (16,4896) Yi:=Xi@Wi
+ X:[B, 1, H], W: [B, H, R], Y: [B, 1, R]

Roofline (Y:=BMM(X,W))

I ———— . Arithmetic Intensity
LT » FLOP: BHR
| 100@é—— —— Increasing Batch Size * 1/0: BH + BR + BHR = BHR
106 ~-~ 1.935 TB/s Intensity: FLOP/IO = O(1)

------- 312 TFLOP/s

—
= O
o O
=

wl 4

Achieved FLOP/s
—
ﬁ
'y

—
®
o

1 10 100
FLOP : I/O

Computation for LORA

Weight-sharing
— A
Un Tn
(13,16) := (13,4096) @ (4096,16) ‘

Roofline (Y:=X@W)

100 Tj

10 T

100 G ? —e— Increasing Batch Size
10 G 1 --—1.935 TB/s

I R (PP 312 TFLOP/s
) |

ges " I EEEEEEEESEESEESEENENER
-
-
—-—

Achieved FLOP/s
—
ﬁ
'y

1 10 100
FLOP : I/O

Data movement
 Weight: GPU memory — GPU register
 Applied to N inputs. Amortized cost

Batching: Increase arithmetic intensity

Y=XQW
e X,Y:[B,H], W:[H,H], H>>B

Arithmetic Intensity

« FLOP: BHA2

e |/O: 2BH + HA2 = HA2

e Intensity: FLOP/IO = O(B)

SGMV Kernel Performance

Under different popularity distribution

* Distinct: n Requests, n Adapters
* ldentical: n Requests, 1 Adapter
 Uniform, Skewed: in between

o | atency

Distinct: latency gradually increases

Others: in “free lunch” range

 Batching effect

Improve arithmetic intensity

Improve degree of parallelism

Achieved FL.OP/s

5135]_.18'
S 30 ps -
T 25 us A
A —

Distinct
Uniform

Skewed
Identical

20 30

100 T 1
10 T 4

[N
—

100 G
10 G

1G+—-m

.
S N
.
.
.
.®

“
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
L
.
.
.
.
.
.
.
.
.
.
-‘
‘l

110
FLOP : I/O

100

40 50 60

Batch Size

Utilize more compute units
Distinct
Uniform
Skewed Improve Compute:l/O
Identical
1.935 TB/s
312 TFLOP/s

40 ps -

> 35 HS 7

30 ps -

T 25 us -

—~ 20 ps -
> <V HS —— Distinct
% 15 ps- —— Uniform
»n 10 ps - — Skewed
D US - —— Identical

Os

0 10 20 30 40 50 60
Batch Size

How to handle popularity
difference of LORA models?

(1 adapter vs N adapters)

Transformer Layer Latency

Negligible difference across popularity

* Distinct (N adapters) vs ldentical (1 adapter):
very close

2 ms

* Negligible difference!

* Popularity difference is hidden e2e

Layer Latency

o Self-Attention is slower than Dense

250 ps -

e Base model GeMM is slower than 0's
LoRA SGMV

| oRA adds only about 10% latency

1.75 ms -
1.5 ms A
1.25 ms -
1 ms -
750 ps 1
500 ps

M

— Uniform
- Skewed
- [dentical

5 10 15 20 25 30
Batch Size

Request Scheduling

Simple & Effective Solution

e How?

* Dispatch to busiest available GPU
» Subject to GPU memory size limit for KvCache

 On-demand loading of LoRA adapters (2ms)
* This does not block the computation of the existing batch

e Why?
 Batch size is the most important thing

 Hundreds of decode steps (30ms per step) + affinity
* Consolidate GPU usage, Auto-scaling

Punica: Serving multiple LoRA LLMs at the cost of one
Simplified system design

o & Serve N models == Serve 1 model » 4 Apply common LLM optimizations
. e Continuous batchin
o 4 Share base model weight > DTG
* Request migration
° Batching efficiency « Weight quantization
® ReSOurce prOVISIOn ¢ FIaShlnfer (github.com/flashinfer-ai/flashinfer)
 PagedAttention
« (4 Amortize request rate fluctuation » FlashAttention
* Batch decoding
2 ms Ragged input

o 1.75 ms -
@)

C 15ms- * Share-prefix decoding
5 - M » INT4/FP8 KVCache quantization
o 750 ps A —— Distinct

o)

% 500 ps- — Uniform * Optimized Group Query Attention

—— Skewed
250 ps - —— Identical

O0s

0 5 10 15 20 25 30
Batch Size

https://github.com/flashinfer-ai/flashinfer

Text Generation Throughput

B Transformers DeepSpeed WM FasterTransformer (w/o LoRA) WM vLLM (w/o LoRA) MM Punica
L1ama2-7B
» 1239 - 1053 1064 1056 11481944
258 do6 68 73 87 9 89 89 89 14 182 1071 100 82

1 Adapter
() (m) ($1A131) ((@ﬁ)\ ((m)\ /(m) AlBl\ Y =XW + XAB
=1 | W+ ; Tin T Fior
. . . : = ; W + :

<n Adapters, some sharing

1 2 X n Adapters, no sharing

Ln

Text Generation

(&
Throughput

(Single Instance) . .

Distinct Uniform Skewed Identical
LoRA model popularity distribution

Req/s
e
-

T~

oS O

Tok/s
p—
N0 O
ORI IR =

Consolidate _
Cluster-wide AR
GPU Usage

—

GPU
O Ul O U

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Punica: Serving multiple LORA LLMs at the cost of one

Gather - Multiplication

+ SGMV kernel: efficiently batch ==
different LORA models = O

! 1 1 I

» Simplify multi-model scheduling
as single-model scheduling YIs[il:s[i+1]] += X[s[i]:s[i+1]] @ Wi

* Consolidate GPU usage by o
priOritiZing batCh Size B Transformers DeepSpeed MMM FasterTransformer (w/o LoRA) MM vLLM (w/o LoRA) MMM Punica

L1ama2-7B

1053 1064 1056 11461944

» 1693]
* 12x throughput s
- 258—26 68 73 87 39 89 89 89 34 102 101 100 82

https://qithub.com/punica-ai/punica .

] 397 361
124 43 44 40 23 53 b3 50 28 57 57 56 51

:

.I_
N N
o0
oo

0
L1lama2-76B
500 4h44 442 456 443
400
< 309
— 2060
1@8 23 25
Uniform Skewed Identical

LoRA model popularity distribution

https://github.com/punica-ai/punica

Backup Slides

Comparison with S-LoRA [MHni]

e Please note that S-LoRA is arxived on Nov 6. We didn’t have an opportunity to do a quantitative comparison before the
MLSys deadline. Here are the differences based on reading the S-LoRA paper.

e S-LORA is built upon the open-source code of an earlier version of Punica, in particular, the BGMV kernel. BGMV assumes
different LORA models for each input in the batch. It suffers in the following two cases:

e (1) Prefill. In the prefill stage, thousands of tokens may map to the same LoRA weight. S-LoRA addresses this issue by
writing a kernel for prefill (MBGMM).

e (2) Shared LoRA weight across requests. S-LORA does not address this problem.

e We solve both problems efficiently with SGMV. SGMV’s semantics cover both.

e S-LoRA extends the BGMV kernel to support different ranks. As discussed in the previous section, we can easily add this
support to SGMV.

e S-LoRA's Unified Paging is an extension to PagedAttention, fitting LORA weights to the memory pool layout. We rely on
PyTorch's cached memory allocator for memory management and have no such constraints.

e S-LoRA implemented prefetching and overlapping for loading LoRA weights. Our paper discusses this option and opts to
use on-demand loading (Section 5.2).

e S-LoRA's tensor parallel scheme shards the computation of LORA but adds communication. Our tensor parallel scheme
replicates one side of LoRA, thus avoiding extra communication, as discussed in the previous section.

