Punica

Serving multiple LoRA fine-tuned LLMs at the cost of one

[MLSys'24]
Lequn Chen* (UW), Zihao Ye* (UW), Yongji Wu (Duke),
Danyang Zhuo (Duke), Luis Ceze (UW), Arvind Krishnamurthy (UW)

Adapting Pre-trained LLMs to Tasks Finetuning

- Follow instructions
- Human alignments
- Adapt to task input/output format
- Add new documents, domain knowledge
- Personalize

LoRA: Low-Rank Adaptation of LLMs

Parameter Efficient Fine-Tuning

- Adding <1% parameter (e.g., r=16, h=4096)
 - W' = W + AB
 - W: [h1, h2], A: [h1, r], B: [r, h2]
 - xW' = x(W+AB) = xW + xAB
- Advantage:
 - Faster training, Lower memory usage
 - Low storage overhead
- How to serve LoRA models?

Serving LoRA fine-tuned LLMs

Challenge: Resource over-provision

- Serving LoRA adapters individually
- Each adapter requires 10 GPUs
- Need 10*5 GPUs for 5 adapters
- Wastes GPU memory for backbone LLM

- Wulti-tenant LoRA serving
- Pool all GPUs to serve all LoRA adapters
- Smooth out loads
- Much less over-provision
- Share backbone LLM
- (But how?)

Serving LoRA fine-tuned LLMs

Challenge: Reduced batch efficiency

- Straw-man approach for serving multi-LoRA:
 - Group requests by LoRA adapter
 - Swap LoRA weight
- Reduced batch efficiency
- LLM has strong batching effect
 - latency(b=6) is close to latency(b=1)
 - Especially for Dense layers
 - (LoRA is applied to Dense layers)
- Example: AABCCC
 - ✓ Desired: b=6
 - X Reality: b=2, b=1, b=3

How to enable batching for LoRA?

Serving LoRA fine-tuned LLMs

A closer look

 Identical adapter: n Requests, 1 Adapter

$$Y := XW + XAB$$

Distinct adapters:
 n Requests, n Adapters

$$\begin{pmatrix} \overrightarrow{y_1} \\ \vdots \\ \overrightarrow{y_n} \end{pmatrix} := \begin{pmatrix} \overrightarrow{x_1} \\ \vdots \\ \overrightarrow{x_n} \end{pmatrix} W + \begin{pmatrix} \overrightarrow{x_1} A_1 B_1 \\ \vdots \\ \overrightarrow{x_n} A_n B_n \end{pmatrix}$$

Mixed adapters:
 n Requests, <n Adapters

$$\begin{pmatrix} \begin{pmatrix} \overrightarrow{y_{1,1}} \\ \vdots \\ \overrightarrow{y_{1,b_1}} \end{pmatrix} \\ \vdots \\ \begin{pmatrix} \overrightarrow{y_{n,1}} \\ \vdots \\ \overrightarrow{y_{n,b_n}} \end{pmatrix} \end{pmatrix} := \begin{pmatrix} \begin{pmatrix} \overrightarrow{x_{1,1}} \\ \vdots \\ \overrightarrow{x_{1,b_1}} \end{pmatrix} \\ \vdots \\ \begin{pmatrix} \overrightarrow{x_{1,1}} \\ \vdots \\ \overrightarrow{x_{1,b_1}} \end{pmatrix} \\ W + \begin{pmatrix} \begin{pmatrix} \overrightarrow{x_{1,1}} \\ \vdots \\ \overrightarrow{x_{1,b_1}} \end{pmatrix} \\ A_1B_1 \\ \vdots \\ (\overrightarrow{x_{n,1}} \\ \vdots \\ \overrightarrow{x_{n,b_n}} \end{pmatrix} \\ Adapter \\ A_nB_n \end{pmatrix} Adapter$$

$$Base \ \mathsf{model}$$

Punica: Serving multiple LoRA LLMs at the cost of one We made a custom CUDA kernel, called SGMV

Segmented Gather Matrix-Vector Multiplication

SGMV Kernel Performance

Under different popularity distribution

- Distinct: n Requests, n Adapters
- Identical: n Requests, 1 Adapter
- Uniform, Skewed: in between
- Latency
 - Distinct: increases only slightly
 - Other cases: "free lunch"

Where does the free lunch come from?

Computation for LoRA

Very narrow vector-matrix multiplication

$$\overrightarrow{v}:=\overrightarrow{x}A$$
(1,16) := (1,4096) @ (4096,16)

$$\overrightarrow{y} := \overrightarrow{v}B$$

(1,4096) := (1,16) @ (16,4096)

- Problem: Only utilize a small portion of GPU compute units
- Batching: Increase degree of parallelism
- Y := BMM(X, W)
 Yi := Xi @ Wi
 - X: [B, 1, H], W: [B, H, R], Y: [B, 1, R]
- Arithmetic Intensity
 - FLOP: BHR
 - I/O: BH + BR + BHR ≈ BHR
 - Intensity: FLOP/IO ≈ O(1)

Computation for LoRA

Weight-sharing

$$\begin{pmatrix} \overrightarrow{v_1} \\ \vdots \\ \overrightarrow{v_n} \end{pmatrix} := \begin{pmatrix} \overrightarrow{x_1} \\ \vdots \\ \overrightarrow{x_n} \end{pmatrix} A$$

$$(13,16) := (13,4096) @ (4096,16)$$

- Data movement
 - Weight: GPU memory → GPU register
 - Applied to N inputs. Amortized cost
- Batching: Increase arithmetic intensity
- Y := X @ W
 - X, Y: [B, H], W: [H, H], H >> B
- Arithmetic Intensity
 - FLOP: BH^2
 - I/O: $2BH + H^2 \approx H^2$
 - Intensity: FLOP/IO ≈ O(B)

SGMV Kernel Performance

Under different popularity distribution

- Distinct: n Requests, n Adapters
- Identical: n Requests, 1 Adapter
- Uniform, Skewed: in between
- Latency
 - Distinct: latency gradually increases
 - Others: in "free lunch" range
- Batching effect
 - Improve arithmetic intensity
 - Improve degree of parallelism

Utilize more compute units

Improve Compute:I/O

How to handle popularity difference of LoRA models? (1 adapter vs N adapters)

Transformer Layer Latency

Negligible difference across popularity

- Distinct (N adapters) vs Identical (1 adapter): very close
- Negligible difference!
- Popularity difference is hidden e2e
 - Self-Attention is slower than Dense
 - Base model GeMM is slower than LoRA SGMV
 - LoRA adds only about 10% latency

Request Scheduling Simple & Effective Solution

- How?
 - Dispatch to busiest available GPU
 - Subject to GPU memory size limit for KvCache
 - On-demand loading of LoRA adapters (2ms)
 - This does not block the computation of the existing batch
- Why?
 - Batch size is the most important thing
 - Hundreds of decode steps (30ms per step) + affinity
 - Consolidate GPU usage, Auto-scaling

Punica: Serving multiple LoRA LLMs at the cost of one Simplified system design

- Serve N models == Serve 1 model
- Share base model weight
- Matching efficiency
- Resource provision
- Amortize request rate fluctuation

- Apply common LLM optimizations
 - Continuous batching
 - Request migration
 - Weight quantization
 - FlashInfer (github.com/flashinfer-ai/flashinfer)
 - PagedAttention
 - FlashAttention
 - Batch decoding
 - Ragged input
 - Share-prefix decoding
 - INT4/FP8 KVCache quantization
 - Optimized Group Query Attention

•

Text Generation Throughput (Single Instance)

Consolidate Cluster-wide GPU Usage

Punica: Serving multiple LoRA LLMs at the cost of one

- SGMV kernel: efficiently batch different LoRA models
- Simplify multi-model scheduling as single-model scheduling
- Consolidate GPU usage by prioritizing batch size
- 12x throughput

https://github.com/punica-ai/punica

Backup Slides

Comparison with S-LoRA [MHni]

- Please note that S-LoRA is arxived on Nov 6. We didn't have an opportunity to do a quantitative comparison before the MLSys deadline. Here are the differences based on reading the S-LoRA paper.
- *S-LoRA is built upon the open-source code of an earlier version of Punica*, in particular, the BGMV kernel. BGMV assumes different LoRA models for each input in the batch. It suffers in the following two cases:
- (1) Prefill. In the prefill stage, thousands of tokens may map to the same LoRA weight. S-LoRA addresses this issue by writing a kernel for prefill (MBGMM).
- (2) Shared LoRA weight across requests. S-LoRA does not address this problem.
- We solve both problems efficiently with SGMV. SGMV's semantics cover both.
- S-LoRA extends the BGMV kernel to support different ranks. As discussed in the previous section, we can easily add this support to SGMV.
- S-LoRA's Unified Paging is an extension to PagedAttention, fitting LoRA weights to the memory pool layout. We rely on PyTorch's cached memory allocator for memory management and have no such constraints.
- S-LoRA implemented prefetching and overlapping for loading LoRA weights. Our paper discusses this option and opts to use on-demand loading (Section 5.2).
- S-LoRA's tensor parallel scheme shards the computation of LoRA but adds communication. Our tensor parallel scheme replicates one side of LoRA, thus avoiding extra communication, as discussed in the previous section.