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Background
SOTA solution: Overlap All-to-All and expert computation (cont’d)

Problem: Expert computation unable to fully overlap all-to-all

(GPT2-MoE model, two experts per GPU, running on AWS EC2 p4d instances)



Our insight

Current methods constraint the scope of optimization within the MoE layer.

Optimized 
MoE Layer

Custom Module 1 Custom Module 2

Optimized separately Optimized separately

What if we consider the optimization opportunities at the whole model level?
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Opportunity 1: Weight Gradient Computation
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Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

Weight gradient computation can be scheduled to overlap with All-to-All during 
the backward pass.

(superscipt = layer id, subscript = type of operators)
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Weight gradient computation can be scheduled to overlap with All-to-All during 
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(superscipt = layer id, subscript = type of operators)
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Extend the scope of overlapping
Opportunity 2: Non-expert computation
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Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning

Partition at capacity dimension (current approach) limits the range of the pipeline.
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Direct micro-batching may result in different token dropping patterns.



Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning (cont’d)
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Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning (cont’d)

Some routing methods (e.g., Batch Priority Gating, Expert Choice Gating) requires information 
of the whole batch, thus the pipeline cannot be extended before the gating operator. 
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Extend the scope of overlapping
Caveat 2: Determine the range of pipelines

Partition overhead in Tutel, running a GPT2-MoE model with 32 experts on 2 p4d nodes (16 GPUs)

Pipeline too short → insufficient overlapping

Pipeline too long → high partition overhead
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Weight Gradient Computation Schedule Pass
1. Dependency Analysis.

Instruction Sequence

Identify gradient computation operations, 

: computation instructions : weight gradient computation : all-to-all communication
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Weight Gradient Computation Schedule Pass
1. Dependency Analysis.

Identify gradient computation operations, 

: activation gradient computation : weight gradient computation : all-to-all communication

Instruction Sequence

and the all-to-alls that can be overlapped with each.



Weight Gradient Computation Schedule Pass
2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

: activation gradient computation : weight gradient computation : all-to-all communication

Available for overlap:
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Operator Partition Pass
Solve for the optimal partition range with dynamic programming

𝑇(𝑖) 
Optimal pipelining of all 

previous instructions

𝑃(𝑖, 𝑛, 𝑘)
Exec. time if instruction 

i~n forms a pipeline, 
partitioned into k parts

𝑇(𝑛) 
Optimal pipelining time of instructions 1~n 



Operator Partition Pass
Pipeline scheduling by stages
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Evaluation

Iteration time comparison

Testbed: Up to 8x AWS EC2 p4de (A100) and p3dn (V100) nodes (8xGPUs each node, 64 GPUs in total)

Dataset: WikiText Models: GPT2+MoE with two different model sizes, 2 experts per GPU.
Baseline: RAF (without optimization), Tutel, DeepSpeed.

Up to 1.3x speed up.



Evaluation
Iteration time decomposition

Reducing non-overlapped communication time by up to 77%.

Results on 4x p4de (A100) nodes.



Evaluation
Optimization time

The optimization can finish in a reasonable amount of time (e.g., 20 mins).

(when using the Switch Gate)



Summary
Extending optimization scope to the whole model enables more computation-communication 
overlapping opportunities:

• Weight gradient computation

• Non-MoE computations (self-attention, non-MoE FFNs)

Up to 1.3x speed up is observed after applying these optimizations.

Checkout the paper here:


