
Lancet: Accelerating MoE Training
via Whole Graph Computation-
Communication Overlapping
Chenyu Jiang1*, Ye Tian1*, Zhen Jia2, Shuai Zheng3^, Chuan Wu1, Yida Wang2

1The University of Hong Kong, 2Amazon Web Services, 3Boson AI

*Work done while interning at AWS. ^Work done while at AWS.

Background
Mixture-of-Experts

Self-
Attention

Tokens

MLP

Transformer

Background
Mixture-of-Experts

Self-
Attention

Tokens

MoE Transformer

Gate
(Router) MLP

MLP

MLP

Background
Mixture-of-Experts

Self-
Attention

Tokens

MoE Transformer

Expert 2

Expert 1

Expert 3

Gate
(Router)

Background
Mixture-of-Experts

Self-
Attention

Tokens

MoE Transformer

Expert 2

Expert 1

Expert 3

Gate
(Router)

Background
All-To-All Communication in MoE Training

All-to-allAll-to-all

Gate

Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Combine

Combine

Input
tokens

Output
tokens

Background
All-To-All Communication in MoE Training

All-to-allAll-to-all

Gate

Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Combine

Combine

Input
tokens

Output
tokens

Background
All-To-All Communication in MoE Training

All-to-allAll-to-all

Gate

Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Combine

Combine

Input
tokens

Output
tokens

Background
All-To-All Communication in MoE Training

All-to-allAll-to-all

Gate

Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Combine

Combine

Input
tokens

Output
tokens

Background
All-To-All Communication in MoE Training

All-to-allAll-to-all

Gate

Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Combine

Combine

Input
tokens

Output
tokens

All-to-allGate Experts All-to-all Combine

All-to-all

Gate

Experts All-to-all

Combine

All-to-all Experts All-to-all

𝑁

𝑁
2

𝑁
2

G A E A C

G C

A0

E0

A1

E0

A0 A1

Partition
Pipeline

(tokens)

Background
SOTA solution: Overlap All-to-All and expert computation

Background
SOTA solution: Overlap All-to-All and expert computation

All-to-allGate Experts All-to-all Combine

All-to-all

Gate

Experts All-to-all

Combine

All-to-all Experts All-to-all

𝑁

𝑁
2

𝑁
2

G A E A C

G C

A0

E0

A1

E0

A0 A1

Partition
Pipeline

(tokens)

(superscipt = partition id)

Background
SOTA solution: Overlap All-to-All and expert computation (cont’d)

Problem: Expert computation unable to fully overlap all-to-all

(GPT2-MoE model, two experts per GPU, running on AWS EC2 p4d instances)

Our insight

Current methods constraint the scope of optimization within the MoE layer.

Optimized
MoE Layer

Custom Module 1 Custom Module 2

Optimized separately Optimized separately

What if we consider the optimization opportunities at the whole model level?

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

! = #$

!

"
MatMul #

!"
!# =

!"
!% ⋅ '

! , !"
!' = #! ⋅ !"!%

$%
$#

MatMul
()')

!!

"!

$%
$"

$%
$!

Forward Pass Backward Pass

MatMul
()#)

ReLU&

	&'()*

= '()*(,)

$%
$&

…

…

Weight
Update

… …

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

! = #$

!

"
MatMul #

!"
!# =

!"
!% ⋅ '

! , !"
!' = #! ⋅ !"!%

$%
$#

MatMul
()')

!!

"!

$%
$"

$%
$!

Forward Pass Backward Pass

MatMul
()#)

ReLU&

	&'()*

= '()*(,)

$%
$&

…

…

Weight
Update

… …

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

! = #$

!

"
MatMul #

!"
!# =

!"
!% ⋅ '

! , !"
!' = #! ⋅ !"!%

$%
$#

MatMul
()')

!!

"!

$%
$"

$%
$!

Forward Pass Backward Pass

MatMul
()#)

ReLU&

	&'()*

= '()*(,)

$%
$&

…

…

Weight
Update

… …

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

! = #$

!

"
MatMul #

!"
!# =

!"
!% ⋅ '

! , !"
!' = #! ⋅ !"!%

$%
$#

MatMul
()')

!!

"!

$%
$"

$%
$!

Forward Pass Backward Pass

MatMul
()#)

ReLU&

	&'()*

= '()*(,)

$%
$&

…

…

Weight
Update

… …

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

! = #$

!

"
MatMul #

!"
!# =

!"
!% ⋅ '

! , !"
!' = #! ⋅ !"!%

$%
$#

MatMul
()')

!!

"!

$%
$"

$%
$!

Forward Pass Backward Pass

MatMul
()#)

ReLU&

	&'()*

= '()*(,)

$%
$&

…

…

Weight
Update

… …

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

Weight gradient computation can be scheduled to overlap with All-to-All during
the backward pass.

(superscipt = layer id, subscript = type of operators)

𝐴2𝐴!"#

time

schedule

𝑑𝑋!"#$%&' 𝑑𝑊!"#$%&'

𝐴2𝐴!"#

…𝑑𝑋()*%𝑑𝑊()*
%𝑑𝑋++,%𝑑𝑊++,% 𝑑𝑋-%𝑑𝑊-%

Extend the scope of overlapping
Opportunity 1: Weight Gradient Computation

Weight gradient computation can be scheduled to overlap with All-to-All during
the backward pass.

(superscipt = layer id, subscript = type of operators)

𝐴2𝐴!"#

time

schedule

Reduced execution time

𝑑𝑋!"#$%&' 𝑑𝑊!"#$%&'

𝐴2𝐴!"#

…

…𝑑𝑋!"#$%&' 𝑑𝑊!"#$%&'

𝑑𝑋()*%𝑑𝑊()*
%𝑑𝑋++,%𝑑𝑊++,%

𝑑𝑋++,% 𝑑𝑋()*%

𝑑𝑋-%𝑑𝑊-%

𝑑𝑋-% 𝑑𝑊++,% 𝑑𝑊-% 𝑑𝑊()*
%

𝐴2𝐴!"# 𝐴2𝐴!"#

Extend the scope of overlapping
Opportunity 2: Non-expert computation

!"#$%&&'! ()&"! !! !"#$%&&'!"# **+!"# …
%2%$ %2%$%2%# %2%#

!"

Extend the scope of overlapping
Opportunity 2: Non-expert computation

!"#$%&&'! ()&"! !! !"#$%&&'!"# **+!"# …
%2%$ %2%$%2%# %2%#

!"

!"#$%&&'! ()&"! !! …

%2%" %2%"%2%# %2%#
!" !%"!$# !!"!"#$!!"$"#$!%#!$#

Partition next layer’s computation

Extend the scope of overlapping
Opportunity 2: Non-expert computation

!"#$%&&'! ()&"! !! !"#$%&&'!"# **+!"# …
%2%$ %2%$%2%# %2%#

!"

!"#$%&&'! ()&"! !! …

%2%" %2%"%2%# %2%#
!" !%"!$# !!"!"#$!!"$"#$!%#!$#

!"!" #!" !!
"2"! "2"!"2"# "2"#

!" !"!"$# !!"!"#$!!"$"#$!"#"$#!"#" ##" …

Partition next layer’s computation

Partition current layer’s self-attention and gating modules

Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning

Partition at capacity dimension (current approach) limits the range of the pipeline.

0 0 1 0

0 1 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Input All-to-All Experts MoE Output

B
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
S

(if partitioned)

Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning

Partition at capacity dimension (current approach) limits the range of the pipeline.

0 0 1 0

0 1 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Input All-to-All Experts MoE Output

B
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
S

(if partitioned)

0 0 1

0 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Input All-to-All Experts MoE Output

B
0 0 0

1 1 1

0 0 0

1 1 1
S

Direct micro-batching may result in different token dropping patterns.

Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning (cont’d)

0 0 1 0

0 1 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Output

B
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
S

MoE Input All-to-All Experts

Irregular partitioning needed to ensure mathematic equivalence.

Extend the scope of overlapping
Caveat 1: Mathematically equivalent partitioning (cont’d)

Some routing methods (e.g., Batch Priority Gating, Expert Choice Gating) requires information
of the whole batch, thus the pipeline cannot be extended before the gating operator.

!"#$%&&'! ()&"! !! !"#$%&&'!"# **+!"# …
%2%$ %2%$%2%# %2%#

!"

!"#$%&&'! ()&"! !! …

%2%" %2%"%2%# %2%#
!" !%"!$# !!"!"#$!!"$"#$!%#!$#

!"!" #!" !!
"2"! "2"!"2"# "2"#

!" !"!"$# !!"!"#$!!"$"#$!"#"$#!"#" ##" …

Partition next layer’s computation

Partition current layer’s self-attention and gating modules

✅

❌

Extend the scope of overlapping
Caveat 2: Determine the range of pipelines

Partition overhead in Tutel, running a GPT2-MoE model with 32 experts on 2 p4d nodes (16 GPUs)

Pipeline too short → insufficient overlapping

Pipeline too long → high partition overhead

Lancet: compiler based optimizations

Weight
Gradient

Computation
Labelling

Best Fit
Schedule

Caching Op Profiler

Model IR

Pipeline
Schedule

Partition Axis
Inference

Optimized Model IR

Weight Gradient
Computation
Schedule Pass

Operator Partition Pass

Comm. Cost Model

Partition Range Selection

Lancet: compiler based optimizations

Weight
Gradient

Computation
Labelling

Best Fit
Schedule

Caching Op Profiler

Model IR

Pipeline
Schedule

Partition Axis
Inference

Optimized Model IR

Weight Gradient
Computation
Schedule Pass

Operator Partition Pass

Comm. Cost Model

Partition Range Selection

Weight Gradient Computation Schedule Pass
1. Dependency Analysis.

Instruction Sequence

Identify gradient computation operations,

: computation instructions : weight gradient computation : all-to-all communication

Weight Gradient Computation Schedule Pass
1. Dependency Analysis.

Instruction Sequence

Identify gradient computation operations,

: activation gradient computation : weight gradient computation : all-to-all communication

Weight Gradient Computation Schedule Pass
1. Dependency Analysis.

Identify gradient computation operations,

: activation gradient computation : weight gradient computation : all-to-all communication

Instruction Sequence

and the all-to-alls that can be overlapped with each.

Weight Gradient Computation Schedule Pass
2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

: activation gradient computation : weight gradient computation : all-to-all communication

Available for overlap:

Weight Gradient Computation Schedule Pass
2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

: activation gradient computation : weight gradient computation : all-to-all communication

Available for overlap:

✅✅

✅

✅ : selected for overlap

Weight Gradient Computation Schedule Pass
2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

: activation gradient computation : weight gradient computation : all-to-all communication

Available for overlap:

✅✅

✅

Available for overlap:

✅✅

✅

✅ : selected for overlap

Lancet: compiler based optimizations

Weight
Gradient

Computation
Labelling

Best Fit
Schedule

Caching Op Profiler

Model IR

Pipeline
Schedule

Partition Axis
Inference

Optimized Model IR

Weight Gradient
Computation
Schedule Pass

Operator Partition Pass

Comm. Cost Model

Partition Range Selection

Operator Partition Pass
Solve for the optimal partition range with dynamic programming

𝑇(𝑖)
Optimal pipelining of all

previous instructions

𝑃(𝑖, 𝑛, 𝑘)
Exec. time if instruction

i~n forms a pipeline,
partitioned into k parts

𝑇(𝑛)
Optimal pipelining time of instructions 1~n

Operator Partition Pass
Pipeline scheduling by stages

1 1 1 2 2 2

1

1 1

2 1

2 2 1 1 1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

2

2 2 2
Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Scheduled timeline

time (numbers = partition id)

Evaluation

Iteration time comparison

Testbed: Up to 8x AWS EC2 p4de (A100) and p3dn (V100) nodes (8xGPUs each node, 64 GPUs in total)

Dataset: WikiText Models: GPT2+MoE with two different model sizes, 2 experts per GPU.
Baseline: RAF (without optimization), Tutel, DeepSpeed.

Up to 1.3x speed up.

Evaluation
Iteration time decomposition

Reducing non-overlapped communication time by up to 77%.

Results on 4x p4de (A100) nodes.

Evaluation
Optimization time

The optimization can finish in a reasonable amount of time (e.g., 20 mins).

(when using the Switch Gate)

Summary
Extending optimization scope to the whole model enables more computation-communication
overlapping opportunities:

• Weight gradient computation

• Non-MoE computations (self-attention, non-MoE FFNs)

Up to 1.3x speed up is observed after applying these optimizations.

Checkout the paper here:

