Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Chenyu Jiang^{1*}, Ye Tian^{1*}, Zhen Jia², Shuai Zheng^{3^}, Chuan Wu¹, Yida Wang²

¹The University of Hong Kong, ²Amazon Web Services, ³Boson Al

*Work done while interning at AWS. ^Work done while at AWS.

Background Mixture-of-Experts

Mixture-of-Experts

Mixture-of-Experts

Mixture-of-Experts

SOTA solution: Overlap All-to-All and expert computation

SOTA solution: Overlap All-to-All and expert computation

SOTA solution: Overlap All-to-All and expert computation (cont'd)

(GPT2-MoE model, two experts per GPU, running on AWS EC2 p4d instances)

Problem: Expert computation unable to fully overlap all-to-all

Our insight

Current methods constraint the scope of optimization within the MoE layer.

What if we consider the optimization opportunities at the whole model level?

Opportunity 1: Weight Gradient Computation

$$X = ReLU(Z)$$
$$Y = XW$$

Forward Pass

Opportunity 1: Weight Gradient Computation

Weight gradient computation can be scheduled to overlap with All-to-All during the backward pass.

Opportunity 1: Weight Gradient Computation

Weight gradient computation can be scheduled to overlap with All-to-All during the backward pass.

Opportunity 2: Non-expert computation

Opportunity 2: Non-expert computation

Opportunity 2: Non-expert computation

Caveat 1: Mathematically equivalent partitioning

Partition at capacity dimension (current approach) limits the range of the pipeline.

Caveat 1: Mathematically equivalent partitioning

Partition at capacity dimension (current approach) limits the range of the pipeline.

Direct micro-batching may result in different token dropping patterns.

Caveat 1: Mathematically equivalent partitioning (cont'd)

Caveat 1: Mathematically equivalent partitioning (cont'd)

Some routing methods (e.g., Batch Priority Gating, Expert Choice Gating) requires information of the whole batch, thus the pipeline cannot be extended before the gating operator.

Caveat 2: Determine the range of pipelines

Partition overhead in Tutel, running a GPT2-MoE model with 32 experts on 2 p4d nodes (16 GPUs)

Pipeline too **short** \rightarrow insufficient overlapping Pipeline too **long** \rightarrow high partition overhead

Lancet: compiler based optimizations

Lancet: compiler based optimizations

1. Dependency Analysis.

: computation instructions

: weight gradient computation

: all-to-all communication

Identify gradient computation operations,

1. Dependency Analysis.

: activation gradient computation

: weight gradient computation

: all-to-all communication

Identify gradient computation operations,

1. Dependency Analysis.

Identify gradient computation operations, and the all-to-alls that can be overlapped with each.

2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

Available for overlap:

: activation gradient computation

: weight gradient computation

: all-to-all communication

2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

Available for overlap:

🗸 : selected for overlap

: weight gradient computation

2. Greedy best fit schedule

Instruction Sequence, length ~ execution time

Available for overlap:

 \mathbf{V}

🚺 : selected for overlap

: weight gradient computation

: all-to-all communication

Lancet: compiler based optimizations

Operator Partition Pass

Solve for the optimal partition range with dynamic programming

T(n)Optimal pipelining time of instructions 1~n

Operator Partition Pass

Pipeline scheduling by stages

Evaluation

Testbed: Up to 8x AWS EC2 p4de (A100) and p3dn (V100) nodes (8xGPUs each node, 64 GPUs in total)
Dataset: WikiText Models: GPT2+MoE with two different model sizes, 2 experts per GPU.
Baseline: RAF (without optimization), Tutel, DeepSpeed.

Iteration time comparison

Up to **1.3x** speed up.

Evaluation

Iteration time decomposition

Results on 4x p4de (A100) nodes.

Reducing non-overlapped communication time by up to 77%.

Evaluation

Optimization time

The optimization can finish in a reasonable amount of time (e.g., 20 mins).

Summary

Extending optimization scope to the whole model enables more computation-communication overlapping opportunities:

- Weight gradient computation
- Non-MoE computations (self-attention, non-MoE FFNs)

Up to 1.3x speed up is observed after applying these optimizations.

Checkout the paper here:

