
VQPy: An Object-Oriented Approach
to Modern Video Analytics

Shan Yu, Zhenting Zhu, Yu Chen, Hanchen Xu,

Pengzhan Zhao, Yang Wang, Arthi Padmanabhan, Hugo Latapie, Harry Xu

2

The Surge of Video Data

Surveillance Cameras

A self-driving test vehicle generates

20 to 40 TB of data per day.

Autonomous Driving

1 billion installed in the world in 2021

3

Video Query

Amber alert: The license

plate of a red Honda

heading north.

Response: “FX66 UUW”

Intersection incident type: A

turning right vehicle collides

with a going straight vehicle.

Response: “frame [i, i + k]”

Video queries center on video objects and

their spatial/temporal relationships.

4

Complexity of Video Queries: Multiple CV Tasks Required

AMBER alert: The license plate of a red Honda heading north.

5

Complexity of Video Queries: Multiple CV Tasks Required

AMBER alert: The license plate of a red Honda heading north.

license plate red Honda heading north

License Plate

Recognition

Vehicle Make

Classification

Motion AnalysisColor

Classification

6

Complexity of Video Queries: Multiple CV Tasks Required

AMBER alert: The license plate of a red Honda heading north.

license plate red Honda heading north

License Plate

Recognition

Car Make

Classification

Motion AnalysisColor

Classification

How to efficiently answer specific video queries?

7

Solution 1: Handcrafting Pipelines

Video Query

Object detection Color Classification Relationship AnalysisFrame Filter Object/Relationship

Filter

Problem 1: Pipelines need to be manually constructed.

8

Solution 1: Handcrafting Pipelines

Object detection Color Classification Relationship AnalysisFrame Filter Object/Relationship

Filter

Video Query

Writing glue code to connect

the tasks together

Problem 1: Pipelines need to be manually constructed.

9

Solution 1: Handcrafting Pipelines

Object detection Color Classification Relationship AnalysisFrame Filter Object/Relationship

Filter

Video Query

Problem 2: Pipeline need to be manually optimized.

10

Solution 1: Handcrafting Pipelines

Object detection Color Classification Relationship AnalysisFrame Filter Object/Relationship

Filter

Video Query

Problem 3: Each pipeline is subject to answer one query.

Another Video

Query?

11

Solution 2: SQL-based Video Query Frameworks

A SQL-like query expression

12

Solution 2: SQL-based Video Query Frameworks

A SQL-like query expression

frame_id bboxes labels scores

0 [[1 2, 4, 5],

[2, 3, 8, 9],

 …,

[7, 6, 5, 3]]

[car,

car,

bus,

person]

[0.5,

0.9,

0.8,

0.6]

1 [[4, 6, 7,8],

[6, 7, 4, 5]]

[car,

person]

[0.9.

0.8]

2 [[6, 5, 7, 6],

…]

[person,

…]

[0.9,

…]

Think like a table

Tabular-based data model Video objects

Lack of a video object abstraction

A red speeding car query

13

Can we have a video object abstraction

for video queries?

Insight: Video Objects Are Similar to Objects in OO Programming

14

OO Programming Objects Video Objects

Vehicle

color
speed
detectColor()

Car

type: “car”
model/make

Bus

RedCar

color: “red”

Abstraction +

Encapsulation

Inheritance +

Polymorphism
type: “bus”

inherits inherits

inherits

15

VQPy – An Object-Oriented Approach to Video Analytics

Frontend: A Python library for video-object-oriented programming

16

Express a Red Speeding Car Query

With a SQL-like language With VQPy

17

VQPy – An Object-Oriented Approach to Video Analytics

Frontend: A Python library for video-object-oriented programming

Video

Objects

Frontend: A Python library for video-object-oriented programming

18

Video Object Abstraction in VQPy

https://www.kaggle.com/datasets/trainingdatapro/cars-video-object-tracking

A video object represents a unique entity that

may appear across multiple frames.

Video objects data on frame i

i i-1 i-2 i-3 i-4

VObj 1

VObj12

frame

VObj2

… …

19

Video Object Abstraction in VQPy

https://www.kaggle.com/datasets/trainingdatapro/cars-video-object-tracking

A video object represents a unique entity that

may appear across multiple frames.

Video objects data on frame i

i i-1 i-2 i-3 i-4

VObj 1

VObj12

frame

VObj2

… …

How to program video queries with VQPy?

20

Frontend Overview

Frontend: Video-Object-

Oriented Programming

VObj

Relation

Query

Frame i

Frame i + 5

Query: Is there a car approaching a pedestrian?

Person 1

Person 1

Car 1

Car 1

Dist

Dist

21

Query on Video Objects

vobj Vehicle:

 def __init__(self):
 self.model = “yolox”

Construct a Vehicle VObj

query SpeedTicketing:

 def __init__(self):
 self.vehicle = Vehicle()

Retrieve the license plates of

vehicles traveling at

speeds exceeding 80 mph.

Construct a SpeedTicketing Query

Frame 1

Frame 2

Frame 3

{'Vehicle': [{'license_plate': 'FX66 UUW’}]}

{'Vehicle': [{'license_plate': 'FX66 UUW'},

 {'license_plate’: 'HX14 UHH'}]}

{'Vehicle': [{'license_plate': 'FX66 UUW'},

 {'license_plate’: 'HX14 UHH'}]}

vobj Vehicle:

 def __init__(self):
 self.model = “yolox”

 @stateful(input="center", history_len=2)
 def speed(self, hist_centers):
 ...

 @stateless(input=”image")
 def license_plate(self, vehicle_image):
 ...

query SpeedTicketing:

 def __init__(self):
 self.vehicle = Vehicle()

 def frame_constraint(self):
 return self.vehicle.speed > 80

 def frame_output(self):
 return self.vehicle.license_plate

22

Query on VObjs and Relations

relation SpatialRelation(vqpy.Relation):

 def __init__(self, vobj1, vobj2):
 self.vobj1 = vobj1
 self.vobj2 = vobj2

 @stateless(input1="center", input2="center")
 def distance(self, centers):
 return math.dist(centers[0], centers[1])

VQPy Spatial Relation

Retrieve the event that a

car speeds past a person.

query TrafficHazards(vqpy.Query):

 def __init__(self):
 self.car = Car()
 self.person = Person()
 self.relation = \
 SpatialRelation(self.car, self.person)

 def frame_constraint():
 return (self.relation.distance < 6)
 & (self.car.speed > 15)

A car speeds past a person Query

Frame 5 Frame 6 Frame 7

{’frame_id’: [5,6]}

4 ft
8 ft

5 ft

23

Frontend Summary

Frontend: Video-Object-

Oriented Programming

VObj

Relation

Query

Library

VObj Relation QueryDetection Model Property Model

24

Backend: An Object-Based Optimization Framework

➢ How to choose the right data model?

➢ How to automatically construct a pipeline for frontend queries?

➢ How to optimize the pipeline based on video objects?

➢ How to build the backend to be easily extensible with custom optimizations?

VQPy’s Backend

25

VQPy’s Backend

Backend: An Object-Based Optimization Framework

➢ How to choose the right data model?

➢ How to automatically construct a pipeline for frontend queries?

➢ How to optimize the pipeline based on video objects?

➢ How to build the backend to be easily extensible with custom optimizations?

26

Object-level Computation Reuse

vobj Vehicle(vqpy.VObj):

 @stateless(model="color_detect”, intrinsic=True)
 def color(self, images):
 # built-in color_detect model
 ...

Frame i Frame i + 1 … Frame k

color_detect

➢ Handcrafted pipelines

❖ Complex vehicle retrieval queries

❖ Baseline: CVIP[1]

➢ SQL-based frameworks

❖ Video-object-based queries

❖ Baseline: EVA [2]

➢ Multi-modal LLMs

❖ Diverse types of video queries

❖ Baseline: VideoChat [3]

27

Evaluation

Evaluated with 14 video queries on 5 datasets from real-world surveillance video

streams.

[1] Le, H. D.-A., Nguyen, Q. Q.-V., Luu, D. T., Chau, T. T.-T., Chung, N. M., and Ha, S. V.-U. Tracked-vehicle retrieval by natural language descriptions with multi-contextual adaptive

knowledge. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 5510–5518, June 2023.

[2] Xu, Z., Kakkar, G. T., Arulraj, J., and Ramachandran, U. Eva: A symbolic approach to accelerating exploratory video analytics with materialized views. In Proceedings of the 2022

International Conference on Management of Data, SIGMOD ’22 URL https://doi.org/ 10.1145/3514221.3526142.

[3] Li, K., He, Y., Wang, Y., Li, Y., Wang, W., Luo, P., Wang, Y., Wang, L., and Qiao, Y. Videochat: Chat- centric video understanding. arXiv preprint arXiv:2305.06355, 2023.

28

Evaluation

12.6

4.28

15.18

0

2

4

6

8

10

12

14

16

vs. CVIP (Handcrafted
pipelines)

vs. EVA (SQL-based
frameworks)

vs. VideoChat (Multi-
modal LLMs)

VQPy Speedup

Evaluated with 14 video queries on 5 datasets from real-world surveillance video streams.

Same Accuracy Same Accuracy 3-5x higher accuracy

90% percent less

GPU memory usage

29

Industrial Adoption

Loitering Alert Queue Analysis

VQPy has been integrated into Cisco as a query development/execution layer in its

DeepVision framework.

VQPy: a video-object-oriented approach towards video analytics

30

Conclusion

• Expressiveness: Easily express video queries on video objects and their
interactions, with an object-oriented programming frontend.

• Efficiency: Streamlines the efficient execution of video-object-oriented
queries, with an object-based optimization backend.

https://github.com/vqpy/vqpy

https://github.com/vqpy/vqpy

Thank you

31

	Default Section
	Slide 1
	Slide 2: The Surge of Video Data
	Slide 3: Video Query
	Slide 4: Complexity of Video Queries: Multiple CV Tasks Required
	Slide 5: Complexity of Video Queries: Multiple CV Tasks Required
	Slide 6: Complexity of Video Queries: Multiple CV Tasks Required
	Slide 7: Solution 1: Handcrafting Pipelines
	Slide 8: Solution 1: Handcrafting Pipelines
	Slide 9: Solution 1: Handcrafting Pipelines
	Slide 10: Solution 1: Handcrafting Pipelines
	Slide 11: Solution 2: SQL-based Video Query Frameworks
	Slide 12: Solution 2: SQL-based Video Query Frameworks
	Slide 13
	Slide 14: Insight: Video Objects Are Similar to Objects in OO Programming
	Slide 15: VQPy – An Object-Oriented Approach to Video Analytics
	Slide 16: Express a Red Speeding Car Query
	Slide 17: VQPy – An Object-Oriented Approach to Video Analytics
	Slide 18: Video Object Abstraction in VQPy
	Slide 19: Video Object Abstraction in VQPy
	Slide 20: Frontend Overview
	Slide 21: Query on Video Objects
	Slide 22: Query on VObjs and Relations
	Slide 23: Frontend Summary
	Slide 24
	Slide 25: VQPy’s Backend
	Slide 26: Object-level Computation Reuse
	Slide 27: Evaluation
	Slide 28: Evaluation
	Slide 29: Industrial Adoption
	Slide 30: Conclusion
	Slide 31

