

vMCU: Coordinated Memory **Management and Kernel Optimization for DNN Inference on MCUs**

Size Zheng^{1,2}, Renze Chen¹, Meng Li¹, Zihao Ye², Luis Ceze^{2,3}, Yun Liang¹

¹Peking University,²University of Washington, ³OctoAI

MLSys 2024

Microcontrollers (MCUs)

Microcontrollers can be seen everywhere

Mobile Phone

Modern Vehicles

Smart Home Devices

Microcontrollers are really small

Television

Table 1. Features of accelerators, mobile devices, and MCUs.

Hardware	Memory	Storage	SW Support
A100	40GB	TB-PB	CUDA runtime
Kirin-990	8GB	256GB	OS (Linux)
F411RE	128KB	512KB	None

The memory of MCU is usually 2-3 orders of magnitude smaller than mobile devices, which makes it challenging to map DNNs onto MCUs

STM32F411RE RAM: 128KB

STM32F767ZI RAM: 512KB

Memory requirements of a single convolution layer

MCU Memory

Deploy DNNs on MCUs

Various approaches work together

■ NAS can be expensive

New NAS process is required for new devices (with lower memory capacity), which often takes hours or days on GPU.

Tensor-level Memory Management

Understanding the memory consumption of DNN

Can we do better?

Closer to the lower bound

■ However...

max{

cannot be reduced due to the existence of FC and Conv layers...

For certain operators, we can!

```
Out[h,w,k]+=
    In[h+r,w+s,k]*Weight[r,s,k]
```

In-place update

Input and Output use the same tensor A special optimization in MCUNet-V2

Lin, J. et al. (2021). "Memory- efficient patch-based inference for tiny deep learning ." In: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021

Can we do better?

Our aim: make in-place optimization general!

Previous: only certain operators can Ours: make in-place optimization exploit in-place optimization, the total feasible to every operator, reducing the dynamic footprint remains the same dynamic footprint in Flash in Flash DEP FC FC CONV DEP FC CONV FC in RAM in RAM $\max\{ \boxed{\ } \} + \max\{ \boxed{\ } \}$ max{ further reduce ~2X

vMCU: Segment-level Memory Management

General in-place optimization requires fine-grained memory management

7

Compare Tensor-level and Segment-level Management using Fully Connected Layer

Input and output share the same memory buffer

- Input and output use different read/write pointers
- Make sure that write pointer never steps on alive input data

Memory Abstraction: Ring Buffer

Problem Formalization

Key insight: memory access can be formulated as a linear system $Pool[\frac{MemCap}{Seg}], \qquad Pool[addr] = Pool[addr \% \frac{MemCap}{Seg}].$ **Ring Buffer** where Pool[i] is a vector of Seg bytes, $0 \le i < \frac{MemCap}{Seg}$ $\{S[\vec{i}]: \mathbf{H}\vec{i} + \vec{B} < 0\}$ **Iteration Domain** $\{S[\vec{i}] \rightarrow T[\vec{u}] : \vec{u} = \mathbf{A}_{\mathbf{u}}\vec{i} + \vec{V}_{\mathbf{u}}\}$ **Access Function** $\{S[\vec{i}] \to T[\vec{u}] \to Pool[addr] : addr = \vec{L}_{addr}\vec{u} + b_{off}\}$ **Memory Mapping** $\forall \vec{j} < \vec{i}$ $\vec{L}_{In}(\mathbf{A}_{In}\vec{i}+\vec{V}_{In})+b_{In}>\vec{L}_{Out}(\mathbf{A}_{Out}\vec{j}+\vec{V}_{Out})+b_{Out}$ **Correctness Condition Optimization Target** min. $b_{In} - b_{Out}$

Use GEMM as Example

a) GEMM:

for m,n,k in ranges(M,N,K): S: Out[m, n] += In[m, k] * W[k, n]

c) Access functions:

 $S[m, n, k] \rightarrow In[m, k]$ $S[m,n,k] \rightarrow Out[m,n]$

```
e) Access matrices:
```

 $In:\begin{bmatrix}1 & 0 & 0\\ 0 & 0 & 1\end{bmatrix} \qquad Out:\begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\end{bmatrix} \qquad In:\begin{bmatrix}K & 1\end{bmatrix} \text{ offset: } b_{In} \\ Out:\begin{bmatrix}N & 1\end{bmatrix} \text{ offset: } b_{Out}$

b) Iteration domain:

 $\{S[m, n, k] \mid \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m \\ n \\ k \end{bmatrix} - \begin{bmatrix} M \\ N \\ K \end{bmatrix} < 0\}$

d) Memory mapping:

 $In[m,k] \rightarrow Pool[m * K + k + b_{In}]$ $Out[m,n] \rightarrow Pool[m * N + n + b_{Out}]$

f) Mapping vectors:

Optimization Problem:

min. $b_{In} - b_{Out}$ s.t. $(K-N)m - n + k \ge b_{Out} - b_{In}$ 0 < m < M 0 < n < N 0 < k < K Optimal mapping solution:

$$b_{In} - b_{Out} = \min\{N, K\} - 1$$

Implementation for GEMM

Kernel Design

```
for m=0 to M step 1: //Outer level tiling
for n=0 to N step Seq:
 Accum = RegAlloc(Seq, 0) //Zero Register array of size Seq
 for k=0 to K step Seq:
   ValueA = RAMLoad(In[m,k:k+Seq])
   ValueB = FlashLoad(Weight[k:k+Seg,n:n+Seg])
   for ki=0 to Seq step KI: //Inner level tiling
    for ni=0 to Seq step NI:
     Res = Dot(ValueA[ki:ki:KI], ValueB[ki:ki+KI, ni:ni+NI])
     Accum[ni:ni+NI] += Res
 RAMStore(Out[m,n:n+Seg], Accum)
                                              computation 0 1 computation 0 1
                                                                     computation 0 1
 for k=0 to K step Seq:
                                          2 3
                                                      2 3
                                               proceeds
                                                          proceeds
                                                                  2 3
                                                                       proceeds
                                            5
                                                      4 5
  RAMFree(In[m,k:k+Seq])
                                          4
                                          0 1
                                                      0 1
                                     1 2
                                                0 1 2
                                                           0
                                                                        0
                                                             1
                                                               2
                                                                  0 1
                                                      2 3
                                                                        3
                                                3
                                                           3
                                    3
                                                   5
                                                              4
                                                               5
```

0 1 2 3 4 5

step 0

emptv

0 0 1 2 3 4 5

store step 1

0 1 1 2 3 4 5

overlañ

step 2

3

5

2

4

2

5

0 1 2 2 3 4 5

overlap

step 3

0 1

23

Implementation for Convolution

Kernel Design

```
for n=0 to N step 1: //Outer level tiling
 for p=0 to P step 1:
  for q=0 to Q step 1:
   for k=0 to K step Seq:
   Accum = RegAlloc(Seq, 0) //Register array of size Seq
    for r=0 to R step 1:
     for s=0 to S step 1:
      for c=0 to C step Seq:
      ValA = RAMLoad(In[n,p+r,q+s,c:c+Seq])
       ValB = FlashLoad(Weight[r,s,c:c+Seg,k:k+Seg])
       for ci=0 to Seg step CI: //Inner level tiling
        for ki=0 to Seg step KI:
         Res = Dot(ValA[ci:ci+CI], ValB[ci:ci+CI, k:ki+KI])
         Accum[ki:ki+KI] += Res
    RAMStore(Out[n,p,q,ki:ki+KI], Accum)
   for c=0 to C step Seq:
    RAMFree(In[n,p,q,c:c+Seg])
```

Convolution is a hybrid of depthwise and GEMM

Handle Multiple Layers

Network topology also affect memory footprint

Compiler Support

■ Write kernels for MCU can be annoying...

35 🗸	<pre>def matmul_s8s8s8_acc32_m2x_n4x_k16x_row_col_mma_m2n2k16_aoffset_ring_buffer(</pre>	
36	ctx, A, B, C, scales, M, N, K, input_offset, output_offset, clip_min, clip_max):	
37	MI = 2	
38	NI = 4	
39	KI = 16	ve provi
40		and com
41	<pre>pack_input_offset = broadcast_to_s16x2(ctx, input_offset)</pre>	
42	MO, NO, KO = [ctx.map_var(name, value) for name, value in zip(program
43	["MO", "NO", "KO"], [M//MI, N//NI, K//KI])]	· Mith no
44		• with ha
45	<pre>with ctx.spatial_for("mo", Range(MO)) as mo:</pre>	 Wrappe
46	<pre>ctx.attr("ring_buffer_check_bound", C.var, C[(mo * 2), 0])</pre>	· Conora
47	<pre>with ctx.spatial_for("no", Range(NO)) as no:</pre>	• Genera
48	<pre>scale_array = vload_to_register_array(</pre>	1.1.1.1.1
49	ctx, "scale", scales[no*NI:(no+1)*NI], NI)	LINK:
50	<pre>acc_array = alloc_register_array(ctx, [MI, NI], "int32", "acc", 0)</pre>	https://git
51	<pre>with ctx.reduce_for("ko", Range(KO)) as ko:</pre>	hing/Dom
52	$ptr_A = [A, ref(mo * 2 + i, ko * 16)]$	
53	<pre>for i in range(MI)]</pre>	g/mculib/
54	ptr_B = [B.ref(no * 4 + i, ko * 16)	
55	<pre>for i in range(NI)]</pre>	
56	<pre>mma_m2n2xk16_acc32_aoffset(</pre>	
57	ctx, ptr_A, ptr_B, <mark>MI, NI, KI</mark> , acc_array, pack_input_offset)	
58	<pre>for mi in range(MI):</pre>	
59	<pre>for ni in range(NI):</pre>	
60	<pre>C[(mo * 2 + mi), no * 4 + ni] = requantize(ctx, acc_array[mi]</pre>	
61	[ni], scale_array[ni], output_o	ffset, clip_min, clip_max)
62		

le provide a Python DSL nd compiler support for rogramming MCU kernels

- With native Python interpreter
- Wrapper for MCU SIMD intrinsic
- Generate C code for MCU

ink:

ttps://github.com/KnowingNot ing/Domino/tree/master/testin /mculib/python/mculib

Evaluation Setup

We use two MCU dev board for evaluation

STM32F411RE RAM: 128KB

STM32F767ZI RAM: 512KB

Baseline: TinyEngine (from MCUNet)

Benchmark:

Name	H/W	C_in	C_mid	C_out	R/S	strides
MCUNet-5fps-VWW						
S 1	20	16	48	16	3	1,1,1
S2	20	16	48	16	3	1,1,1
S 3	10	24	144	16	3	1,1,1
S4	10	24	120	24	3	1,1,1
S 5	5	40	240	40	3	1,1,1
S 6	5	48	192	48	3	1,1,1
S 7	3	96	480	96	3	1,1,1
S 8	3	96	384	96	3	1,1,1

	-					
MCUNet-320KB-ImageNet						
B 1	176	3	16	8	3	2,1,1
B2	88	8	24	16	7	1,2,1
B3	44	16	80	16	3	1,1,1
B4	44	16	80	16	7	1,1,1
B5	44	16	64	24	5	1,1,1
B6	44	16	80	24	5	1,2,1
B7	22	24	120	24	5	1,1,1
B 8	22	24	120	24	5	1,1,1
B9	22	24	120	40	3	1,2,1
B10	11	40	240	40	7	1,1,1
B 11	11	40	160	40	5	1,1,1
B12	11	40	200	48	7	1,2,1
B13	11	48	240	48	7	1,1,1
B14	11	48	240	48	3	1,1,1
B15	11	48	288	96	3	1,2,1
B16	6	96	480	96	7	1,1,1
B17	6	96	384	96	3	1,1,1

Single Operator Evaluation

Pointwise convolution (GEMM) memory reduction

• Reduce 12%-49.5% memory consumption (~2X)

Single Operator Evaluation

Pointwise convolution (GEMM) energy and latency reduction

- Reduce 20%-53% energy (~2X)
- Reduce 18%-40% latency

STM32F767ZI RAM: 512KB

Multi-Layer Evaluation

Inverted bottleneck in MCUNet

- MCUNet-5fps-VWW
- Whole DNN reduce 61.5%
 memory

RAM: 128KB

- MCUNet-320KB-ImageNet
- Whole DNN reduce 58.6%
 memory

STM32F767ZI RAM: 512KB

Summary

Segment-level memory management

- Generalize in-place optimization to GEMM and convolution
- Use ring-buffer and linear-system to minimize memory requirements
- Design kernels and provide Python DSL for programming

Future work

- LLM on MCU? Flash-attention, MLP...
- Multiple MCU cooperation...
- Leverage Flash to swap data...

Thanks for your attention!